
© Motorola, Inc., 1999 EB301

Order this document
by EB301/D

Motorola Semiconductor Engineering Bulletin

EB301

Programming EEPROM on the MC68HC811E2
during Program Execution

By Brian Scott Crow
Austin, Texas

Introduction

The MC68HC811E2 microcontroller (MCU) has the largest EEPROM
array in the MC68HC11 Family of microcontrollers. This 2-K array of
EEPROM can be used for both program code and data values. In
addition to the 2-K array of EEPROM, the device has 256 bytes of RAM.
While some users may choose to use RAM for program variables during
execution, others may want to store data and variables in the non-
volatile EEPROM, so that data will still be valid after a power-off and
power-on sequence.

The Problem

For expanded mode applications of this part, Motorola publishes
programming and erasing algorithms in the technical data book for the
MC68HC811E2, Motorola document order number MC68HC811E2/D.
However, in single-chip mode applications, the only memory resources
available for program code are the internal RAM and EEPROM. Code
which programs or erases internal EEPROM cannot reside in internal
EEPROM. The only other memory resource is RAM, which cannot

Engineering Bulletin

EB301

2 MOTOROLA

contain program code immediately after power-up because of its volatile
nature. Therefore, code in EEPROM must copy the programming
algorithm into RAM, load parameters into the registers or in global RAM
variables, and then jump (JSR) to the programming algorithm copy in
RAM.

At the end of the subroutine, execution resumes in EEPROM, and the
data is stored until it is erased using the same procedure.

Users often wonder why code executing out of internal EEPROM cannot
write to or erase EEPROM, especially users of the MC68HC811E2,
where the only other memory resource in single-chip applications is the
internal RAM.

Programming and erasing of EEPROM requires applying a high voltage
to the EEPROM array. In MC68HC11 devices, this programming voltage
is developed with an on-chip charge pump.

High voltage is applied to the EEPROM array only when the EEPGM bit
in the PPROG register is set to logic 1. While high voltage is applied to
the EEPROM array, the read circuitry in the EEPROM array is disabled.
This is why programs that try to use the programming algorithm while
executing code from EEPROM "hang" or "get lost." After turning on the
high voltage, the processor executes a read cycle to fetch the opcode for
the next instruction. Because the internal EEPROM read circuitry is
disabled, the processor can no longer fetch opcodes.

Engineering Bulletin
The Solution

EB301

MOTOROLA 3

The Solution

The code listing provided here shows how to overcome the problem of
programming EEPROM in single-chip applications. The code will work in
expanded mode applications as well; however, expanded mode
applications simply need to put programming and erase algorithms in an
external memory resource to overcome this problem.

The code segment has three major portions:

• The main routine, which initializes the stack pointer, clears the
EEPROM block protection register (BPROT), and calls the other
routines

• The cpy2ram routine, which copies the algorithms from EEPROM
to RAM

• The program, erase, and delay algorithms for EEPROM

The code in the main routine illustrates four important points:

• First, every program must initialize the stack pointer. This must
happen before any subroutine calls, interrupts, or pushes and
pulls from the stack occur.

• Next, the BPROT register (or single bits in the BPROT register)
must be cleared within the first 64 clock cycles after reset, so that
the EEPROM array is not protected from programming and
erasure.

• If an application separates data and program space, then only the
bits which protect data space should be cleared. The main routine
calls cpy2ram to ensure that the algorithms are in place every time
out of reset.

• Finally, the main routine shows how to set up the parameters and
call the program and erase routines. Parameter passing schemes
may use registers, specified RAM locations, or the stack.

This code segment only programs one byte of data to the EEPROM.
Additional instructions could be substituted for lines 19 through 23, for
instance, to fetch data from the serial communications interface (SCI).
Each individual byte could then be programmed into EEPROM by calling
the bytprgram routine.

Engineering Bulletin

EB301

4 MOTOROLA

Sample Code
EE811.ASM Assembled with IASM 02/15/1993 16:05

0000 1 ramhi equ $00ff ;last address of internal RAM
0000 2 regbas equ $1000 ;register base address
000 3 bprot equ $0035 ;offset from base for BPROT
0000 4 pprog equ $003b ;offset from base for PROG
0000 5 eestrt equ $f800 ;first address EEPROM on

;811E2
6

0000 7 rsetvec equ $fffe ;address of reset vector
0000 8 ersram equ $0000 ;the address in RAM that

9 ;routines will be copied to
10

FFFE 11 org rsetvec ;reset points to main
FFFEF800 12 fdb main

13
F800 14 org eestrt ;main begins at start of

;eeprom
F800 8E00FF 15 main lds #ramhi ;set the stack pointer
F803 CE1000 16 ldx #regbas ;used for index X access
F806 6F35 17 clr bprot,x ;clear reg for eeprom prog

;and erase
F808 BDF81C 18 jsr cpy2ram ;copy routines to ram on the

;811e2
F80B 18CEF800 19 ldy #eestrt ;load address parameter into

;index Y
F80F 9D00 20 jsr ersram ;for sample byte erase
F811 18CEF800 21 ldy #eestrt ;then program it to $00
F815 8600 22 ldaa #$00 ;get data parameter into Acc A
F817 BD0020 23 jsr bytprg ;REMEMBER: you must jump to

24 ;in RAM not those in EEPROM
F81A 20FE 25 bra * ;infinite self-loop to ends

;example
26
27 ;this subroutine will copy the

;program, byte erase
28 ;and delay 10 ms routines into

;RAM at address $0100
29 ;this will let the user

;jumpsubroutine to these
;routines

30 ;which will allow proper
;programming of the EEPROM

31 ;on the 811E2
32

F81C 3C 33 cpy2ram pshx
F81D 183C 34 pshy
F81F CEF837 35 ldx #byteras
F822 18CE0000 36 ldy #ersram

Engineering Bulletin
The Solution

EB301

MOTOROLA 5

F826 E600 37 cpyloop ldab 0,x
F828 18E700 38 stab 0,y
F82B 08 39 inx
F82C 1808 40 iny
F82E 8CF86E 41 cpx #endprg
F831 26F3 42 bne cpyloop
F833 1838 43 puly
F835 38 44 pulx
F836 39 45 rts

46
47 ;this subroutine expects the

;address of the byte to be
48 ;erased to be passed in the y

;register, and pprog is
49 ;declared in an equate file

F837 3C 50 byteras pshx ;make reentrant and
F838 37 51 pshb ;save registers
F839 CE1000 52 ldx #regbas ;used indexed x access
F83C C616 53 ldab #$16 ;eelat=1, byte erase
F83E E73B 54 stab pprog,x
F840 18E700 55 stab 0,y ;access byte pointed to by Y
F843 C617 56 ldab #$17 ;turn on eepgm
F845 E73B 57 stab pprog,x
F847 8D05 58 bsr delay10 ;relative addressing is

59 ;location independent!
F849 6F3B 60 clr pprog,x ;turn off eepgm and eelat
F84B 33 61 pulb
F84C 38 62 pulx ;restore registers
F84D 39 63 rts
F84E 64 enderas equ *

65
66 ;this subroutine delays the mcu

;for 10 milliseconds
F84E 3C 67 delay10 pshx ;make reentrant and

68 ;save registers
F84F CE0D05 69 ldx #$0d05 ;constant for 10mS at 2MHz

;E-clock
F852 09 70 loop10 dex
F853 26FD 71 bne loop10 ;relative addressing is

72 ;position independent
F855 38 73 pulx ;restore registers
F856 39 74 rts
F857 75 enddly equ *

76
77 ;this subroutine programs the

;byte whose address is in
78 ;register y with the value

;passed in register a
F857 3C 79 bytprg pshx ;make reentrant and
F858 37 80 pshb ;save registers
F859 CE1000 81 ldx #regbas ;for indexed x access

Engineering Bulletin

EB301

6 MOTOROLA

F85C C602 82 ldab #$02 ;eelat=1, eepgm=0
F85E E73B 83 stab pprog,x
F860 18A700 84 staa 0,y ;write data to address

85 ;pointed to by Y
F863 C603 86 ldab #$03 ;eepgm=1
F865 E73B 87 stab pprog,x
F867 8DE5 88 bsr delay10 ;relative addressing is

89 ;position independent
F869 6F3B 90 clr pprog,x ;eelat=eepgm=0
F86B 33 91 pulb
F86C 38 92 pulx ;restore registers
F86D 39 93 rts

95
F86E 96 dlyram equdelay10-byteras ;compute

;addresses for the routines
97 ;that will be in RAM

F86E 98 bytprg equ bytprg-byteras
99
100

Symbol Table

BPROT 0035
BYTERAS F837
BYTERSRAM 0000
BYTPRG F857
BYTPRGRAM 0020
CPY2RAM F81C
CPYLOOP F826
DELAY10 F84E
DLYRAM 0017
EESTRT F800
ENDDLY F857
ENDERAS F84E
ENDPRG F86E
LOOP10 F852
MAIN F800
PPROG 003B
RAMHI 00FF
REGBAS 1000
RESETVECTOR FFFE

This code was assembled using IASM11 from P&E Microsystems on an
IBM-compatible PC.

Engineering Bulletin
Conclusion

EB301

MOTOROLA 7

Conclusion

The MC68HC811E2 is a unique member of the MC68HC11 Family
because of its large EEPROM array. This memory resource is available
to users for program space, as well as for data and variables. Single-chip
application designers can run into trouble trying to use the EEPROM for
variables if they do not realize that internal EEPROM programming or
erase algorithms cannot be executed from internal EEPROM.

Once the solution discussed in this engineering bulletin is implemented,
users will be able to successfully use the MC68HC811E2 to its full
potential in control applications.

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Engineering Bulletin

EB301/D

© Motorola, Inc., 1999

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447

or 1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan, 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, New Territories, Hong Kong, 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

	Introduction
	The Problem
	The Solution
	Sample Code
	Conclusion

