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This presentation is a self paced tutorial of the 68HC05 family of 8-bit
microcontrollers.



The Tutorial starts with an architectural overview of the 68HC05 central
processor unit (CPU). It covers memory organization, the CPU programmer’s
model, stack pointer operation, and the 68HC05 instruction set and its
addressing modes. Once learned, this knowledge is applicable to all 68HC05
devices, because they all use the same CPU.

In the second part of this tutorial, two sample applications illustrate the use of
some common 68HC05 peripherals. One of these is a smart light dimmer in
which the very low cost MC68HC705KJ1 provides features not available on
conventional electro-mechanical dimmers. The other is a cycling computer that
uses the MC68HC705P6A to monitor rider heart rate, temperature, humidity,
speed, and distance traveled.

Other common 68HC05 peripherals are covered in the third and final section of
this tutorial. These provide some of the communication, timing, and display
features of embedded control applications not illustrated in the previous
examples.
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The 68HC05 is a Von Neumann computer. All storage and input/output
resources are memory mapped into a single linear address space.

The memory map is organized as bytes, begins at $0000, and ends at $xxFF,
where, depending on factors like ROM or EPROM array size, ‘xx’ is $03, $07,
$0F, $1F, $3F, or $7F.

The address space on a 68HC05 device is usually sized just large enough to
contain the integrated ROM or EPROM, RAM, and control registers. The
MC68HC705KJ1, for example, has a 2-Kbyte (‘xx’ equals $07) memory map
containing 1240 bytes of EPROM, 64 bytes of RAM, and 14 bytes of other
processor accessible resources.

The 68HC05 is also a Big Endian machine. A 16-bit piece of data, or word, is
stored in memory with its high byte at address N and its low byte at address
N + 1. This ordering applies whether the word is part of an assembled
instruction (such as an index register offset), a return address residing on the
stack, or the address of a service routine contained in an interrupt vector. See
the examples above.
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68HC05 Memory Organization68HC05 Memory Organization
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The 68HC05 central processor unit (CPU) consists of an accumulator (A), an
index register (X), a stack pointer (SP), a program counter (PC), and a condition
code register (CCR).

Data can be read from memory into the accumulator and the index register.
Likewise, data can be written into memory from the accumulator and the index
register. The accumulator, however, is the only register upon which arithmetic
and combinatorial logic operations can be performed. Only the index register
can provide user-generated effective addresses for operands read into or written
from the accumulator. Both the accumulator and the index register support bit-
wise shift and rotate operations.

Most accumulator, index register, and memory operations affect status flags in
the condition code register. The carry bit is set when an arithmetic carry or
borrow has taken place. Shift and rotate operations also move bits through the
carry bit. The zero flag is set when all bits of an operand or result are zero.
Likewise, the negative flag is set when the MSB of an operand or result is one.
The I bit masks interrupts and is set during interrupt processing. Software can
also set and clear the I bit. To facilitate BCD arithmetic, the half carry flag is set
when a carry from bit three to bit four of an operand occurs as the result of an
ADC or ADD instruction.
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� 68HC05 Programmer’s Model68HC05 Programmer’s Model

Half Carry Flag

Interrupt Mask

Negative Flag

Zero Flag

Carry/Borrow Flag

Accumulator (A)
7 06 5 4 3 2 1

Index Register (X)
7 06 5 4 3 2 1

Stack Pointer (SP)
7

1
0

1
6 5 4 3 2 115

0
8

00

14

0
13

0
12

0
11

0
10

0
9

Program Counter (PC)
7 06 5 4 3 2 115 814 13 12 11 10 9

Condition Code Register (CCR)
7

1

0

C1

6

1

5

H

4

I

3

N

2

Z

1

 98/07/02



The program counter (PC) points to the address of the current instruction. It
advances one byte at a time as instructions and operands are fetched during the
course of normal program execution.

Jumps, branches, returns, and interrupts can change program flow and, thus, the
normal procession of the PC. The address of a jump or branch is specified by
the instruction’s addressing mode (i.e. a relative offset for a branch). Return
from interrupt (RTI) and from subroutine (RTS) instructions load the PC with a
return address stored on the stack. Interrupts load the PC with a value specified
by the vector associated with the interrupt source.
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� Program Counter OperationProgram Counter Operation

Pro gram Counte r Opcode /Ope ra nd Re ad Ins truction

$100 0 $B6 LDA $8 0

$100 1 $80

$100 2 $47 ASRA

$100 3 $47 ASRA

$100 4 $4C I NCA

$100 5 $B7 STA $8 0

$100 6 $80

$100 7 $CD J SR $1 3FE

$100 8 $13

$100 9 $FE

$13FE $4F CLRA

The program counter (PC) increments by one after each byte of an instruction or
operand is read. Jumps, branches, returns, and interrupts load the PC with a new value.
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Processor state is saved on the stack when changes in program flow occur. The
68HC05 has a 64-byte hardware-controlled stack. Reset initializes the stack
pointer to $00FF; the RSP instruction does the same. No other instructions
allow direct user manipulation of the stack.

When a byte is ‘pushed’ onto the stack, it is written to the location pointed to by
the stack pointer, and then the stack pointer is decremented by one. When a byte
is ‘pulled’ from the stack, the stack pointer is incremented by one, and the
location pointed to by the stack pointer is then read.

When the stack pointer is at $00C0, the next push will store a byte at $00C0 and
roll the stack pointer to $00FF. This is stack pointer overflow. Subsequent
pushes will overwrite information stored on the stack from $00FF on down.
Similarly, underflow occurs when the stack pointer is at $00FF and the next pull
rolls the stack pointer to $00C0 and reads the byte there.

Subroutines called with the BSR and JSR instructions save a two byte return
address on the stack. Interrupts save a two byte return address, the index
register, the accumulator, and the condition code register.

The examples above show how subroutine calls and interrupts and their
respective return instructions affect the stack.
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� Stack Pointer OperationStack Pointer Operation

‘xx’ indicates that contents of memory location are not known
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The LDA and LDX instructions read or “load” data from memory. The memory
location read can be specified using one of several addressing modes discussed
later.

The STA and STX instructions write or “store” data to memory. As with LDA
and LDX, several addressing modes are available to specify the desired memory
location.

The “clear” instructions are memory efficient ways to zero a memory location
or register.

For example, CLR $01 (read as “clear direct address $01”) requires 2 bytes of
storage and executes in 5 clock cycles.

On the other hand, LDA #$00 (read as “load accumulator with immediate value
$00”) and STA $01 (read as “store accumulator to direct address $01”) require
4 bytes of storage and execute in 6 cycles.

Likewise, CLRA and CLRX each require only 1 byte of storage, versus 2 each
for LDA #$00 (read as “load accumulator with immediate value $00”) and LDX
#$00 (read as “load index register with immediate value $00”).
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� 68HC05 Instruction Set — Part 168HC05 Instruction Set — Part 1

Memory Reads & Writes

LDA load the accumulator
LDX load the index register
STA store the accumulator
STX store the index register

Register Transfers

TAX transfer the accumulator to the index register
TXA transfer the index register to the accumulator

Clear Memory & Registers

CLR clear a memory location
CLRA clear the accumulator
CLRX clear the index register
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The ADD and SUB instructions, respectively, add or subtract a byte to or from
the accumulator. ADC and SBC do the same but with a carry or borrow if the
condition code register carry bit (C) is set.

The MUL instruction performs an unsigned multiply of the index register (X)
and the accumulator (A). The result is stored with the upper byte in X and the
lower byte in A.

NEG, NEGA, and NEGX take the two’s complement of a memory location, the
accumulator, or the index register. The two’s complement of a number is zero
minus that number.
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� 68HC05 Instruction Set — Part 268HC05 Instruction Set — Part 2

Arithmetic

ADD add to the accumulator
ADC add to the accumulator with carry
SUB subtract from the accumulator
SBC subtract from the accumulator with borrow
MUL multiply the accumulator by the index register
NEG negate (take the 2’s complement of) a memory location
NEGA negate (take the 2’s complement of) the accumulator
NEGX negate (take the 2’s complement of) the index register
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In addition to the ADD/ADC and SUB/SBC instructions, the 68HC05 has
dedicated increment and decrement instructions to add one to or subtract one
from a memory location, the accumulator, or the index register.

The AND, ORA, and EOR instructions, respectively, take the logical AND,
inclusive OR, and exclusive OR of the accumulator and an operand and store
the result in the accumulator.

COM, COMA, and COMX take the one’s complement of a memory location,
the accumulator, or the index register. The one’s complement of a number is
simply the binary inversion of its bits.
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� 68HC05 Instruction Set — Part 368HC05 Instruction Set — Part 3

Decrement & Increment Memory & Registers

INC increment a memory location by one
INCA increment the accumulator by one
INCX increment the index register by one
DEC decrement a memory location by one
DECA decrement the accumulator by one
DECX decrement the index register by one

Boolean Logic

AND logical AND of the accumulator and an operand
ORA inclusive OR of the accumulator and an operand
EOR exclusive OR of the accumulator and an operand
COM take the one’s complement of (invert) a memory location
COMA take the one’s complement of (invert) the accumulator
COMX take the one’s complement of (invert) the index register
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� 68HC05 Instruction Set — Part 468HC05 Instruction Set — Part 4

Shift Memory & Registers

ASL arithmetically shift a memory location left by one bit
ASLA arithmetically shift the accumulator left by one bit
ASLX arithmetically shift the index register left by one bit
ASR arithmetically shift a memory location right by one bit
ASRA arithmetically shift the accumulator right by one bit
ASRX arithmetically shift the index register right by one bit
LSL logically shift a memory location left by one bit
LSLA logically shift the accumulator left by one bit
LSLX logically shift the index register left by one bit
LSR logically shift a memory location right by one bit
LSRA logically shift the accumulator right by one bit
LSRX logically shift the index register right by one bit
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These instructions allow left and right shifts of memory locations, the
accumulator, and the index register.

Arithmetic shift left and logical shift left are the same operation, and the ASL,
ASLA, and ASLX opcodes are the same as those for LSL, LSLA, and LSLX. In
either case, the operand is shifted one bit to the left, with the MSB moving into
the condition code register carry (C) bit and a zero moving into the LSB.

Assemblers for the 68HC05 will recognize both the arithmetic shift left and
logical shift left instructions and assemble them to the same opcodes.

Arithmetic shift right and logical shift right are two different operations. In both
cases, though, the operand is shifted one bit to the right, with the LSB moving
into the carry bit.

When an operand is arithmetically shifted right, the MSB remains unchanged.
This preserves the sign of the operand. The arithmetic right shift of $80 (-128 in
decimal), for example, is $C0 (-64 in decimal).

The MSB of an operand logically shifted right is always set to zero.



Rotate instructions operate in a fashion similar to shift instructions. A rotated
operand is first shifted in the direction indicated by the instruction. The empty
bit created by the shift (LSB for left and MSB for right) takes the state of the
condition code register carry (C) bit, and the carry bit takes the state of the bit
shifted out of the operand (MSB for left and LSB for right).

The BIT instruction sets the condition code register negative (N) or (Z) flags
based on the logical AND of the accumulator and an operand. The result of this
logical AND is discarded.

The compare instructions allow subsequent branch operations to determine if an
argument is equal to, not equal to, greater than, greater than or equal to, less
than, or less than or equal to the value in the designated register.

A register and an operand are “compared” by non-destructively subtracting the
operand from the register and setting the condition code register C, N, or Z bits.

The test instructions set the negative and zero flags by non-destructively
subtracting zero from a memory location (TST), the accumulator (TSTA), or the
index register (TSTX).
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� 68HC05 Instruction Set — Part 568HC05 Instruction Set — Part 5

Rotate Memory & Registers

ROL rotate a memory location left by one bit
ROLA rotate the accumulator left by one bit
ROLX rotate the index register left by one bit
ROR rotate a memory location right by one bit
RORA rotate the accumulator right by one bit
RORX rotate the index register right by one bit

Test Registers & Memory

BIT bit test the accumulator and set the N or Z flags
CMP compare an operand to the accumulator
CPX compare an operand to the index register
TST test a memory location and set the N or Z flags
TSTA test the accumulator and set the N or Z flags
TSTX test the index register and set the N or Z flags
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This group of branch instructions allow changes in program flow based on the
states of various condition code register bits. Branch instructions use the relative
addressing mode and can move backward 128 bytes or forward 127 bytes in
memory from the address of the next instruction.

Notice that the BCS (branch if carry set) and BLO (branch if lower) instructions
test the same condition code register bit. These instructions are the same and
have the same opcode. The same is also true of BCC (branch if carry clear) and
BHS (branch if higher or same).

Assemblers for the 68HC05 will recognize BCS, BLO, BCC, and BHS and
assemble them to the appropriate opcodes.
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� 68HC05 Instruction Set — Part 668HC05 Instruction Set — Part 6

Branches on Condition Code Register Bits

BCC branch if carry clear (C = 0)
BCS branch if carry set (C = 1)
BEQ branch if equal (Z = 0)
BNE branch if not equal (Z = 1)
BHCC branch if half carry clear (H = 0)
BHCS branch if half carry set (H = 1)
BHI branch if higher (C or Z = 0)
BHS branch if higher or same (C = 0)
BLS branch if lower or same (C or Z = 1)
BLO branch if lower (C = 1)
BMI branch if minus (N = 1)
BPL branch if plus (N = 0)
BMC branch if interrupts are not masked (I = 0)
BMS branch if interrupts are masked (I = 1)

 98/06/04



These “other” branch instructions do not examine bits in the condition code
register to change program flow. BIH and BIL, in particular, test the state of the
actual IRQ pin, not the condition code register interrupt mask (I) bit.

BRN is useful as a three clock cycle no operation instruction. The actual NOP
instruction executes in two clock cycles and has a different opcode.

The single bit operations allow setting and clearing of and branching on the set
or clear states of single bits in a byte operand. These instructions use the direct
addressing mode only and can operand on any bit in the first 256 locations of
memory (i.e. internal RAM and peripheral control registers).

The BCLR and BSET instructions each have eight opcodes, one for each bit in a
byte. BCLR and BSET require two bytes of storage and execute in five clock
cycles which makes them the most memory and time efficient way to clear or
set a bit. The same operations using the LDA, AND/ORA, and STA instructions
require six bytes and nine clock cycles.

BRCLR and BRSET are similarly efficient, needing only three bytes and five
cycles for an operation that would otherwise require six bytes and eight cycles if
using a sequence of LDA, AND/ORA, and BEQ/BNE instructions.
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� 68HC05 Instruction Set — Part 768HC05 Instruction Set — Part 7

Other Branches

BIH branch if IRQ pin is high
BIL branch if IRQ pin is low
BRA branch always
BRN branch never
BSR branch to subroutine and save return address on stack

Single Bit Operations

BCLR clear the designated memory bit
BSET set the designated memory bit
BRCLR branch if the designated memory bit is clear
BRSET branch if the designated memory bit is set
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JMP and JSR are analogous to BRA and BSR and allow changes in program
flow to be made with 16-bit addresses or index register offsets.

RTS is used to return from a BSR or JSR subroutine call. It pulls only a return
address from the stack. RTI is used to return from an interrupt service routine
and pulls the condition code register, accumulator, and index register, as well as
a return address, from the stack.

The SWI instruction allows an interrupt to be taken under software control,
regardless of the state of the condition code register interrupt mask (I) bit. SWI
stacks a return address and all of the CPU registers, and jumps to an address
specified by its own interrupt vector.

WAIT and STOP allow a 68HC05 device two enter one of two low power
modes. WAIT clears the interrupt mask bit (I = 0) and halts the CPU. This
allows interrupts from on-chip peripherals or external interrupt pins (e.g. IRQ)
to re-start execution.

STOP also clears the I bit, but it halts the entire MCU by stopping the clock
oscillator. This is the lowest power mode available on a 68HC05 and only
interrupts from dedicated external interrupt pins, like IRQ, can re-start
execution.
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� 68HC05 Instruction Set — Part 868HC05 Instruction Set — Part 8

Jumps & Returns

JMP jump to specified address
JSR jump to subroutine and save return address on stack
RTS pull address from stack and return from subroutine
RTI pull registers from stack and return from interrupt

Miscellaneous Control

CLC clear the condition code register carry bit
SEC set the condition code register carry bit
CLI clear the condition code register interrupt mask bit
SEI set the condition code register interrupt mask bit
SWI software initiated interrupt
RSP reset the stack pointer to $00FF
NOP no operation
WAIT enable interrupts and halt the CPU
STOP enable interrupts and stop the oscillator
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The simple availability of powerful instructions does not alone comprise a good
microcontroller architecture. Flexible addressing modes are also needed so that
these instructions can efficiently access the different types of data that may be
distributed in memory.

In addition to its 65 basic instructions, the 68HC05 has eight addressing modes
that determine the source and/or destination of the data upon which these
instructions operate.

For practical reasons, no single 68HC05 instruction can use all eight addressing
modes. Branches, for example, are relative operations, so it would make no
sense for them to use any addressing mode other than relative.

On the other hand, those instructions that must be capable of operating on any
memory location and the accumulator or the index register should have the
widest selection of addressing modes. Thus, these instructions, like ADD, CMP,
and LDA, can use all modes except inherent and relative.
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� Addressing Modes — SummaryAddressing Modes — Summary

Several different addressing modes are available to support
the data requirements of different 68HC05 instructions.

Inherent (INH)

Immediate (IMM)

Extended (EXT)

Direct (DIR)

Indexed, 16-Bit Offset (IX2)

Indexed, 8-Bit Offset (IX1)

Indexed, No Offset (IX)

Relative (REL)

Bit Set and Clear (BSC)

Bit Test and Branch (BTB)
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Instructions that use inherent addressing need only one byte of program storage.
These are the simplest 68HC05 instructions because they have fixed operands.

Any instruction that operates directly on a named register without an attendant
read or write cycle uses inherent addressing. ASLX, CLRA, DECX, INCA,
RSP, and TXA are obvious examples. The same also applies to the CLC, CLI,
SEC, and SEI instructions that directly manipulate condition code register bits.

Inherent mode instructions that do not explicitly name registers typically affect
multiple registers or a single condition code register bit. MUL, for example,
uses the accumulator and the index register. SWI and RTI operate on all of the
CPU registers, while STOP and WAIT only clear the condition code register
interrupt mask (I) bit.

Instructions that use inherent addressing can have no other addressing modes,
only analogous instructions that use other addressing modes. For example,
LSLA, LSLX, and LSL all perform a logical shift left. LSLA operates only on
the accumulator, LSLX only on the index register, and LSL only on a memory
location.
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� Addressing Modes — INHAddressing Modes — INH

The operand of an instruction that uses inherent addressing is implied by or inherent in
the instruction’s opcode.

Some instructions explicitly name registers…

ASLA, CLRX, DECA, INCX, ROLA, RORX, RSP, TAX, TXA

Others explicitly name condition code register bits…

CLC, CLI, SEC, SEI

Still others affect one or more unnamed registers…

MUL, RTI, RTS, STOP, SWI, WAIT

And some have no operands whatsoever…

NOP
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Immediate addressing is used to specify values that remain constant during
program execution. On the 68HC05, the address from which an immediate
value is read is always one more than the address of the instruction reading that
value.

Assembling LDA #$40 at address $1000, for example, will place $A6 (the
opcode for LDA when immediate addressing is used) in memory location $1000
and $40 (the operand) in memory location $1001.

The pound sign (#) is used to designate an operand as an immediate value in
Motorola assembly language syntax. It can also be used with assembler-defined
symbols. For example, if ASCTONUM is equated to $30, the instruction SUB
#ASCTONUM will subtract $30 (decimal 48) from the accumulator.

Pound sign omission is a common assembly language programming error. LDA
$40 will not load the accumulator with immediate value $40 (decimal 64). The
absent pound sign designates $40 as a direct address, so LDA $40 will load the
accumulator with the contents of memory location $0040. For similar reasons,
adding a pound sign where it is not required is also a common error.
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� Addressing Modes — IMMAddressing Modes — IMM

The operand of an instruction that uses immediate addressing immediately follows the
instruction’s opcode in memory.

Immediate addressing is often using with LDA and LDX…

LDA #$40
LDX #$80

As well as with ADC, ADD, SBC, and SUB for arithmetic operations…

ADC #$01
SUB #$02

…CMP, CPX, and BIT for register comparison and testing…

BIT #$C4
CPX #$FF

And with AND, EOR, and ORA for combinatorial logic…

AND #$03
ORA #$FC
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Extended addressing allows any location in the 68HC05 memory map to be read
from or written to using a single instruction. The address is always specified
using a 16-bit value.

All instructions that use extended mode addressing require three bytes of
program storage, one for the opcode and two for the operand.
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� Addressing Modes — EXTAddressing Modes — EXT

Instructions that use extended addressing can read from or write to any location in the
68HC05 memory map.

Extended addressing is often used with LDA, LDX, STA, and STX…

LDA $4000
STX $0130

As well as with ADC, ADD, SBC, and SUB for arithmetic operations…

SBC $01F1

…CMP, CPX, and BIT for register comparison and memory testing…

CMP $08C3

…with AND, EOR, and ORA for combinatorial logic…

EOR $0325

And with JMP and JSR for program flow changes…

JMP $1200
JSR $3040
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Direct addressing is like a simplified form of extended addressing. It allows any
location between $0000 and $00FF to be read from or written to by specifying
only the lower eight address bits. Direct mode instructions execute in one less
cycle and require one less byte of storage than their extended mode
counterparts.

Some instructions, like test, shift, rotate, complement, negate, decrement, and
increment have direct, but not extended, mode forms. This may seem to be an
omission from the 68HC05, but careful consideration reveals that this is not the
case.

Every instruction that has a direct, but not extended, mode form performs a
read-modify-write operation. The targets for these instructions must be on-chip
RAM or peripheral control registers. Most RAM on 68HC05 devices is located
below address $00FF. Similarly, on-chip peripheral registers are mapped
starting at address $0000.

Because the vast majority of read-modify-write operations will target addresses
between $0000 and $00FF, the lack of extended addressing (as well as indexed
addressing with 16-bit offsets) does not impair device functionality.
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� Addressing Modes — DIRAddressing Modes — DIR

Instructions that use direct addressing can only read from or write to memory locations
$00 to $FF.

All read-modify-write instructions support direct addressing…

ASL $00
ASR $FF
CLR $02
COM $FD
DEC $04
INC $FB
LSL $06
LSR $F9
NEG $08
ROL $F7
ROR $0A
TST $F5

All instructions that support extended addressing also support direct addressing.
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Instructions that use indexed addressing with 16-bit offsets can read from or
write to any location in the 68HC05 memory map. These instructions always
require three bytes of storage.

Target addresses are formed by taking the unsigned sum of the 16-bit offset and
the contents of the index register and always range from $0000 to $FFFF. Thus,
if X = $41, the instruction STA $FFE0,X will write to address $0021.

Indexed addressing with 16-bit offsets is especially useful for accessing tabular
or string data stored in on-chip ROM which, on most 68HC05 devices, resides
primarily above $0100.
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� Addressing Modes — IX2Addressing Modes — IX2

When indexed addressing with 16-bit offsets is used, target addresses are calculated by
taking the unsigned sum of the contents of the index register and the 16-bit offset.

Example instructions include loads and stores…

LDA $4000,X
STX $03F8,X

…arithmetic and combinatorial logic operations…

SBC $01F1,X
EOR $18FF,X

…CMP, CPX, and BIT for register comparison and memory testing…

CMP $08C3,X

And JMP and JSR for program flow changes…

JSR $0F4C,X

The same group of instructions that can use extended addressing is also the only group
of instructions that can use indexed addressing with 16-bit offsets.
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Instructions that use indexed addressing with an 8-bit offset have access to the
first 511 locations in memory. These instructions execute in one less cycle and
require one less byte of storage than their counterparts that use 16-bit offsets.

Target addresses are formed by taking the unsigned sum of the 8-bit offset and
the contents of the index register and can range from $0000 (offset = $00 and X
= $00) to $01FE (offset = $FF and X = $FF).

Most 68HC05 devices have 512 bytes of RAM or less, which makes indexed
addressing with 8-bit offsets especially useful for operations on tabular or string
data maintained in on-chip RAM.
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� Addressing Modes — IX1Addressing Modes — IX1
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Instructions that use indexed addressing with 8-bit offsets can read from or write to any
memory location between $0000 and $01FE inclusive.

All read-modify-write instructions support this addressing mode…

ASL $00,X
ASR $FF,X
CLR $02,X
COM $FD,X
DEC $04,X
INC $FB,X
LSL $06,X
LSR $F9,X
NEG $08,X
ROL $F7,X
ROR $0A,X
TST $F5,X

Likewise, all instructions that can use direct addressing can also use indexed addressing
with 8-bit offsets.



Instructions that use indexed addressing without offsets can only access
memory locations $00 to $FF. Target addresses for these instructions are
formed by zero extending the contents of the 8-bit index register to 16 bits.

This is the fastest indexed addressing mode, with instructions needing one less
cycle to execute than if an 8-bit offset if used. Looked at differently, these
instructions execute as quickly as their direct mode counterparts but require
only one byte of storage.
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The target address for an instruction that uses indexed addressing without an offset is
simply the contents of the index register zero extended to 16 bits.

All read-modify-write instructions support this addressing mode…

ASL ,X
ASR ,X
CLR ,X
COM ,X
DEC ,X
INC ,X
LSL ,X
LSR ,X
NEG ,X
ROL ,X
ROR ,X
TST ,X

All instructions that can use direct addressing and indexed addressing with 8-bit offsets
can also use indexed addressing without offsets.



Only branch instructions use relative addressing. A branch instruction executes
in three clock cycles and consists of two bytes. The first byte is the opcode for
the particular branch condition, and the second byte is a signed two’s
complement offset from the address of the next instruction.

The target address of a branch instruction is calculated as…

New Program Counter = Address of Branch Opcode + 2 + Signed Offset

Because the offset for a branch is from the address of the next instruction, the
smallest practical negative offset is -2 ($FE). An offset of zero causes no change
in program flow, essentially making the branch instruction a three cycle NOP.
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� Addressing Modes — RELAddressing Modes — REL

Relative addressing is used only by branch instructions to calculate the target address of
a change in program flow relative to the value of the program counter (PC).

Each branch instruction requires two bytes of storage — one for the branch opcode and
one for the signed two’s complement 8-bit relative offset.

This offset is relative to the address of the next instruction, which is the address of the
branch instruction plus two.

Consider the following line of code…

HERE BEQ THERE

If the label HERE equates to address $1000 and this is a FORWARD branch, the target
address can be between $1002 (offset of $00) and $1081 (offset of $7F).

Similarly, if the label HERE equates to address $1000 and this is a REVERSE branch,
the target address can be between $0F82 (offset of $80) and $1000 (offset of $FE).
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Bit set and bit clear instructions have a unique addressing mode that is similar to
direct mode. The source code format for these instructions is:

BSET/BCLR bit_number, direct_address

Although each instruction has two operands, an assembled BSET or BCLR
instruction consists only of an opcode and a direct address. Each bit that can be
modified has its own BSET and BCLR opcodes.

The BSET opcodes for bits 0, 1, 2, 3, 4, 5, 6, and 7 are $10, $12, $14, $16, $18,
$1A, $1C, and $1E, respectively. Similarly, the BCLR opcodes for bits 0, 1, 2,
3, 4, 5, 6, and 7 are $11, $13, $15, $17, $19, $1B, $1D, and $1F, respectively.

Like other read-modify-write instructions that take a direct address, BSET and
BCLR execute in 5 clock cycles.
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� Bit Set and Clear — BSCBit Set and Clear — BSC

The bit set and clear (BSC) addressing mode is used only by the BSET and BCLR
instructions. Like other read-modify-write instructions, BSET and BCLR take a direct
address. There are eight BSET and BCLR opcodes, one for each bit in a byte.

Consider the following line of code…

BSET n, $00

In this example, 0 ≤ n ≤ 7 and denotes one of the eight bits in a byte. This assembles to
one of the BSET opcodes (calculated at $10 + 2n) and the direct address $00.

BCLR instructions are formed the same way…

BCLR n, $00

As above, 0 ≤ n ≤ 7 and denotes one of the eight bits in a byte. This assembles to one
of the BCLR opcodes (calculated at $11 + 2n) and the direct address $00.
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Like the bit set and bit clear instructions, the branch on bit set and branch on bit
clear instructions also have a unique addressing mode. This bit test and branch
(BTB) addressing mode is best described as a cross between the bit set and clear
(BSC) and relative (REL) addressing modes. The source code format for these
instructions is:

BRSET/BRCLR bit_number, direct_address, offset

Although each instruction has three operands, an assembled BRSET or BRCLR
instruction consists of an opcode, a direct address, and a signed two’s
complement offset to the target address. Each bit that can be tested has its own
BRSET and BRCLR opcodes.

Target addresses for bit test and branch instructions are calculated as…

New Program Counter = Address of BRCLR/BRSET Opcode + 3 + Signed Offset

Like a regular branch, the target address for BRSET and BRCLR is offset from
the address of the next instruction. This makes the smallest practical negative
offset for branch on bit set/clear -3 ($FD). These instructions execute in five
clock cycles.
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� Bit Test and Branch — BTBBit Test and Branch — BTB

The bit test and branch (BTB) addressing mode is used only by the BRSET and BRCLR
instructions. BRSET and BRCLR take a direct address and have eight opcodes to denote
each bit in a byte, just like BSET and BCLR.

Consider the following line of code…

BRSET n, $00, TARGET

In this example, 0 ≤ n ≤ 7 and denotes one of the eight bits in a byte. This assembles to
one of the BRSET opcodes (calculated at $00 + 2n), the direct address $00, and an
offset to TARGET relative to the address of the instruction that follows BRSET.

BRCLR instructions are formed the same way…

BRCLR n, $00, TARGET

As above, 0 ≤ n ≤ 7 and denotes one of the eight bits in a byte. This assembles to one
of the BRCLR opcodes (calculated at $01 + 2n) , the direct address $00, and an offset to
TARGET relative to the address of the instruction that follows BRCLR.
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To simplify the interpolation math, the look up table includes the cosine of
every fourth degree (0°, 4°, 8°, and so on) rather than, say, every fifth degree
(0°, 5°, 10°, and so on).

This makes the difference between the known upper and lower angles four, and
allows the division of the difference between the cosines of the known lower
and upper angles to be accomplished with two right shift instructions.

Similarly, because all the known angles are multiples of four, the difference
between the given angle and the known lower angle is found by logically
ANDing the given angle with three.

These simplifications allow the interpolation to be taken with only three
mathematical operations:

1. the difference between the cosine of the known angle and delta
2. the difference in the numerator of the delta fraction
3. the product of the two delta terms
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� A Sample 68HC05 ProgramA Sample 68HC05 Program

The sample function that follows finds the cosine of an angle between 0 and 180
degrees inclusive by interpolating the result from a look up table.

The table consists of 46 elements representing the cosine of every fourth degree, again,
from 0 to 180 degrees inclusive, scaled by 127.

A simple linear interpolation is performed using these standardized equations:

Cosine of Given θ = Cosine of Known θ - DELTA

DELTA =

Cosine of Known Lower θ - Cosine of Known Upper θ
Known Upper θ - Known Lower θ

× (Given θ - Known Lower θ)
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The FIND_COSINE subroutine starts by reading the given angle, THETA, from
on-chip RAM. This would likely be done using direct addressing, because RAM
on most 68HC05 devices is located below $00FF. There is usually no explicit
need to denote whether an instruction should use direct or extended addressing
— most assemblers will make this determination automatically, based on the
value to which the symbol THETA is equated.

THETA is loaded into the index register and shifted right two places
(effectively dividing it by four) and used with the offset COSINE_TABLE, to
read the cosine of the first known angle less than THETA. The value at
COSINE_TABLE + 1 subtracted from the accumulator would be the cosine of
the first known angle greater than THETA. The offset COSINE_TABLE can be
eight or sixteen bits, and as with THETA, most assemblers will determine
which addressing mode should be used.

The difference between the cosines of the first known angles less than and
greater than THETA is then divided by four (again, using two right shift
instructions). Next, it is transferred to the index register where it will be
multiplied by the difference between THETA and the first known angle less
than THETA.
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� Sample Program Listing — Part 1Sample Program Listing — Part 1

* The function begins by reading the given angle, THETA, from
* on-chip RAM (using direct mode addressing) and dividing it by
* four.  This is used as an offset into the look up table.

FIND_COSINE ldx THETA
lsrx
lsrx

* Using indexed addressing with a 16-bit offset, the cosine of
* the known lower angle is loaded into the accumulator, and the
* cosine of the known upper angle is subtracted from it.  This
* difference is then divided by four, which is the difference
* between the known upper angle and the known lower angle.  Save
* this result in the index register to take the delta product.

lda COSINE_TABLE,X
sub COSINE_TABLE + 1,X
lsra
lsra
tax
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As noted previously, the following relation is always true because the difference
between any two adjacent known angles is always four.

0 ≤ (THETA - first known angle less than THETA) ≤ 3

Consequently, the difference between THETA and the first known angle less
than THETA is simply THETA logically ANDed with three.

With the two terms that comprise DELTA now calculated, DELTA itself can be
calculated by taking their product. The unsigned product returned by the MUL
instruction is stored with the MSB in the index register and the LSB in the
accumulator.

Because the maximum difference between any two cosine terms is nine, and is
subsequently divided by four and multiplied by a number no greater than three,
the DELTA product will always reside only in the accumulator.

Knowing this, THETA is again read to calculate the offset into the look up table
of the first known angle less than THETA. DELTA is negated and added to
(effectively subtracting it from) the cosine of the first known angle less than
THETA. This is the interpolated cosine of THETA.
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� Sample Program Listing — Part 2Sample Program Listing — Part 2

* Take the difference between the given angle and the known lower
* angle by logically ANDing the given angle with three.  Now take
* the product of the two DELTA terms.  MUL stores its product MSB
* in the index register and LSB in the accumulator.

lda THETA
and #$03
mul

* Because this product is always a small number, it will reside
* only in the accumulator; the index register will be zero.  Once
* again, use the given angle to look up the cosine of the known
* lower angle.  Negating the accumulator and adding the cosine of
* the known lower angle returns the cosine of the given angle.

ldx THETA
lsrx
lsrx
nega
add COSINE_TABLE ,X
sta THETA_COSINE
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This is the look up table used for the cosine interpolation function just
presented. It consists of the 46 values that represent the cosine of every fourth
angle from 0 to 180 degrees, inclusive, multiplied by 127.

Together, this table and the interpolation code require 46 bytes of storage. A
complete table and associated look up code for every integer degree from 0 to
180 would require 186 bytes of storage.

If the slightly reduced accuracy of this method can be tolerated, a code space
savings of 75% is achieved over a fully implemented look up table. A more
accurate 91 entry table (a cosine for every second angle from 0 to 180 degrees
inclusive) and associated look up code require 116 bytes of storage and still
manage to save 70 bytes over the complete alternative.

Other options are available for implementing trigonometric functions. Taylor
series approximations exist for sine and cosine but require arithmetic capability
well beyond the means of small microcontrollers. Table interpolation, then,
offers a good compromise between space, accuracy, and computational
requirements.
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� Sample Program Listing — Part 3Sample Program Listing — Part 3

* This is the look up table used for the cosine interpolation
* function.

*   0,   4,   8,  12,  16,  20,  24,  28,  32
COSINE_TABLE fcb $7F, $7E, $7D, $7C, $7A, $77, $74, $70, $6B

*  36,  40,  44,  48,  52,  56,  60,  64,  68

fcb $66, $61, $5B, $54, $4E, $47, $3F, $37, $2F

*  72,  76,  80,  84,  88,  92,  96, 100, 104
fcb $27, $1E, $16, $0D, $04, $FC, $F3, $EA, $E2

* 108, 112, 116, 120, 124, 128, 132, 136, 140
fcb $D9, $D1, $C9, $C1, $B9, $B2, $AC, $A5, $9F

* 144, 148, 152, 156, 160, 164, 168, 172, 176
fcb $9A, $95, $90, $8C, $89, $86, $84, $83, $82

* 180
fcb $81
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Every 68HC05 device has a particular mix of integrated peripheral devices. This
section shows how the peripherals on two 68HC05 devices are used in different
applications.

The first example is a smart light dimmer. A typical light dimmer consists of
little more than a user-actuated potentiometer that offers varying levels of
brightness. By using the MC68HC705KJ1, the smart dimmer can do this and,
additionally, can pleasantly fade in and fade out room lighting.
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� Smart Light Dimmer ApplicationSmart Light Dimmer Application

Ç Smart Light Dimmer

ÕMC68HC705KJ1 Overview

Õ Schematics

Õ Input & Output Ports

ÕMultifunction Timer

 98/06/11



For it to be an affordable replacement for conventional dimmers, the smart light
dimmer needs a cost-efficient microcontroller. The MC68HC705KJ1 fits the
bill by providing features appropriate for this application.

Apart from the EPROM and RAM used for program and variable storage, the
smart light dimmer depends on three MC68HC705KJ1 features. In the
schematic diagram that follows, a triac controls the AC waveform seen by the
light bulb. Because it has 10 mA current sink capability on all of its I/O pins,
the MC68HC705KJ1 can drive this triac directly. A less capable device would
require triac drive hardware that would increase the smart light dimmer’s cost.

The triac automatically turns off each time the AC waveform crosses zero. By
using both the active low IRQ interrupt and the optional active high interrupt
capability of the low order port A pins, an interrupt is generated each time the
AC waveform crosses zero.

With the multifunction timer, a delay can be inserted between each zero
crossing and subsequent firing of the triac. This delay determines the
conduction period of the triac, the length of which is directly proportional to the
brightness of the light bulb.
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Ç 16-Pin Plastic DIP, Ceramic DIP, and SOIC Packages

Ç 4 MHz Maximum Operating Frequency at 5 Volts

Ç 1240 Bytes of EPROM

Ç 64 Bytes of RAM

Ç Multifunction Timer with 15-Stage Ripple Counter

Ç Computer Operating Properly (COP) Watchdog Timer

Ç 10 Bidirectional I/O Pins

Õ Software Programmable Pulldown Devices on All I/O Pins

Õ 10 mA Current Sink Capability on All I/O Pins

Õ Optional Active High Interrupt Capability on 4 I/O Pins

Ç Selectable Sensitivity on External Interrupt Request Line

Ç On-Chip Oscillator for Crystal, Ceramic Resonator, or Resistor-Capacitor Network

Ç Internal Steering Diode and Pullup Device from RESET Pin to VDD



All 68HC05 devices have some number of pins, either dedicated or shared with
other peripherals, that can be used as digital inputs and outputs. The partial
circuit for the smart light dimmer, shown above, illustrates two useful features
available on the I/O pins of the MC68HRC705KJ1.

In order to directly drive LEDs, or in this circuit, the gate control of a triac,
many 68HC05 devices, including the MC68HRC705KJ1, have outputs with low
side current sink capability of 10 mA or more.

The inputs on some 68HC05 devices can optionally be used as active high
interrupt request lines. This is the case with the four low order bits of port A on
the MC68HRC705KJ1.

In the example above, negative and positive zero crossings of the AC line
voltage are detected by using the IRQ external interrupt pin and the optional port
A interrupt capability, respectively.

Fade in and fade out of the light bulb (initiated by touch sensors connected to
other inputs not shown in this diagram) are accomplished by using the
MC68HRC705KJ1 multifunction timer to vary the delay between each zero
crossing and MCU-controlled firing of the triac.
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� Smart Light Dimmer SchematicSmart Light Dimmer Schematic
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The diagram above shows a simplified version of the logic that comprises a bi-
directional port pin. I/O pins, typically in groups of eight, comprise a single
port.

All ports have a data register that holds the value written to or read from the
port. Bi-directional ports share a single data register that, when read, returns the
state of any pins configured as inputs and, when written, drives pins configured
as outputs to their specified states. A data direction register specifies whether
each pin associated with a bi-directional port is an input or an output. All bi-
directional pins are preconfigured as inputs during and immediately after
RESET assertion.

Many 68HC05 devices have mask programmable pulldown or pullup devices
that keep pins configured as inputs in a known state. Integrated pulldown or
pullup devices generally eliminate the need for similar external components
and, in turn, help reduce current consumption by preventing CMOS input
devices from “floating” at indeterminate levels.

On 68HC05 devices with UV-erasable or one-time programmable EPROM,
integrated pulldown or pullup devices are controlled by a mask option register
that is programmed in the same fashion as the main EPROM array.
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Simple 68HC05 devices have a simple timer, the multifunction timer (MFT).
Consisting of a 15-bit ripple counter, the lower eight bits of which can be read
from the timer counter register (TCR), the MFT is clocked at one fourth the
internal MCU clock frequency.

The MFT is essentially a circuit for generating various periodic interrupts. Bits
in the timer status/control register (TSCR) can enable interrupts for overflow of
the lower eight bits of the ripple counter (flagged by TOF, enabled by TOIE,
and cleared by TOFR) and overflow of the real-time interrupt (flagged by RTIF,
enabled by RTIE, and cleared by RTIFR).

One of four real-time interrupts rates can be selected by the RT[1:0] bits in
TSCR. Overflows from TCR clock the upper seven bits of the ripple counter
which serve as the time base for real-time interrupts.

Interrupts can be generated every 1024 internal clock cycles by the timer
overflow interrupt and every 16384, 32768, 65536, or 131,072 internal clock
cycles by the real-time interrupt.
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� Bicycling Computer ApplicationBicycling Computer Application

ÇBicycling Computer

Õ MC68HC705P6A Overview

Õ Block Diagram

Õ Analog-to-Digital Converter

Õ 16-bit Capture/Compare Timer

Õ Serial Input/Output Port

Information that cyclists need to ride smarter is provided by the bicycling
computer in the second example. This application uses the MC68HC705P6A to
monitor heart rate, air temperature, humidity, speed, and distance traveled. With
this data, cyclists can track course performance and avoid over-exertion if it is
too hot or too humid.



Based on a Motorola University Design Contest entry, this next example makes
extensive use of the features found on the MC68HC705P6A. The peripherals
used in this application (analog-to-digital converter, timer, serial input/output
port, and I/O pins) are found on many different 68HC05 devices.

With three of the analog-to-digital converter’s (ADC) four channels, the cycling
computer monitors rider heart rate, air temperature, and ambient humidity. If
desired, the remaining ADC channel could be used to monitor the cycling
computer’s battery voltage.

Bicycle speed and distance traveled are calculated using the 16-bit timer’s
overflow and input capture functions. The output compare function
synchronizes ADC operation.

This information are gathered and shown on a serially interfaced liquid crystal
display (LCD) driven by the MC68HC705P6A serial input/output port (SIOP).
Pushbuttons connected to the port A inputs (with optional pullup devices and
interrupt capability enabled) allow the user to cycle through the different
statistics displayed, start and stop an elapsed time counter, and adjust certain
operating parameters. The cycling computer must know tire size, for example,
to accurately calculate speed and distance traveled
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Ç 28-Pin Plastic DIP, Ceramic DIP, and SOIC Packages

Ç 2.1 MHz Maximum Operating Frequency at 5 Volts

Ç 4672 Bytes of EPROM

Ç 176 Bytes of RAM

Ç 16-Bit Timer with Input Capture, Output Compare, and Counter Overflow

Ç Computer Operating Properly (COP) Watchdog Timer

Ç Full Duplex, Bidirectional Serial Input/Output Port (SIOP) with 4 Baud Rates

Ç 4-Channel, 8-Bit Analog-to-Digital Converter

Ç 21 Discrete Input/Output Pins

Õ 20 Bidirectional Pins (Port A[7:0], Port C[7:0], Port D5)

Õ 1 Input Only Pin (Port D7)

Õ Software Programmable Pullup Devices on Port A[7:0]

Õ Optional Active High Interrupt Capability on Port A[7:0]

Õ 10 mA Current Sink Capability on Port C[1:0]



For riders to find the cycling computer useful, it must collect and present its
statistics with a minimum of fuss. Ambient temperature and humidity are easily
monitored with sensors attached to the cycling computer’s housing, but the
rider’s heart rate presents a special problem.

In its original design, the cycling computer monitored heart rate using either a
set of rib cage electrodes or a glove mounted photosensor. Neither of these
would be acceptable in a commercial product, because connecting wires
between the sensors and the cycling computer could become tangled or impede
rider movement.

New foam handlebar grips with integrated foil contacts solve this problem and
are readily available, because they are commonly used on stationary exercise
bicycles. When gripped by the rider, an EKG signal that can be monitored by
the ADC appears across these contacts.

The 16-bit timer input capture function on the MC68HC705P6A provides the
information needed to calculate speed and distance traveled. A magnetic switch
connected to the input capture pin detects wheel rotations, the number of which
is directly proportional to distance traveled. Likewise, speed can be calculated
from the number of wheel rotations that occur during a given period of time.
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� Cycling Computer Block DiagramCycling Computer Block Diagram
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The MC68HC705P6A incorporates a 4-channel version of the 8-bit analog-to-
digital converter (ADC) used on several 68HC05 devices.

The ADC is a ratiometric, fully monotonic, successive approximation converter.
It has an analog multiplexer that supports up to eight input channels and also
allows the high and low references and one half the difference between
references to be read for calibration purposes.

Pins used by the ADC may also be used as inputs and sometimes outputs. Total
converter accuracy is ±1 or ±1.5 LSB when its channels are input-only or bi-
directional pins, respectively. The converter’s high reference voltage is supplied
by a separate pin. The low reference input, when not bonded to an external pin,
is internally tied to VSS.

Each single channel conversion requires 32 internal clock cycles. A separate RC
oscillator, enabled under software control, can clock the ADC when MCU
operating frequencies are below 1 MHz.

The converter is disabled on power-up and is enabled by setting the ADON bit
in the A/D status and control register. Once enabled, conversions continue until
the ADON bit is cleared or the MCU enters low-power stop mode.
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The cycling computer uses the analog-to-digital converter to sample the EKG
signal that appears across the handlebar contacts when they are gripped.

Short leads connect the handlebar contacts to an instrumentation amplifier that
multiplies the 4 mV peak-to-peak EKG signal by 1980. Input capacitors C1 and
C2, along with shunt resistors R1 and R2, precede the instrumentation amplifier
and form a high pass filter with a cut off frequency of 7.2 Hz.

After amplification, the signal is passed through a fourth order Chebyshev low
pass filter that provides 90 dB of attenuation per decade beyond the cut off
frequency of 10 Hz. This, along with the input high pass filter, eliminates
extraneous noise beyond the 5 to 10 Hz frequency band of the signal that is
digitized by the MC68HC705P6A.

After amplification and filtering, the EKG signal should lie approximately
between -2.25 and +2.25 volts. A final stage in the signal conditioning chain
provides a DC offset of 2.5 volts, placing the EKG waveform in the 0 to 5 volt
range required by the MC68HC705P6A analog-to-digital converter.
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All functions of the 16-bit timer are related to the 16-bit counter which serves as
its time base.

The counter can be read from two locations, both of which return the same data.
A read of the timer register high (TRH) byte or the alternate timer register high
(ATRH) byte returns the high byte of the 16-bit counter and latches the low byte
of the 16-bit counter in a buffer until it can be read from TRL or ATRL.
Repetitive reads of the high byte will not change the low byte in the buffer until
it is read.

The 16-bit counter increments once every four internal clock cycles, and upon
reaching $FFFF, it rolls over to $0000. This event sets the timer overflow flag
(TOF) in the timer status register (TSR) and generates a timer overflow
interrupt request if the timer overflow interrupt enable (TOIE) bit in the timer
control register (TCR) is set.

The TOF bit in TSR remains set unless explicitly cleared. A read of TSR,
followed by a read of TRL, clears TOF. The same sequence will not clear TOF
if ATRL is read in place of TRL. This allows the counter to be read at all times
(from ATRH and ATRL) without the possibility of missing a timer overflow
interrupt.

40

� 16-Bit Timer Overflow16-Bit Timer Overflow
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Output compare is essentially a method for generating delays, because it allows
future events to be synchronized to the current value of the 16-bit timer counter.

The output compare high (OCRH) and low (OCRL) registers hold the value that
the 16-bit timer counter will match at some point in the future. When writing to
the output compare registers, first write data to OCRH. This prevents a match
from occurring until OCRL is written.

When a match occurs, the TCMP pin will be driven to the level specified by the
OLVL bit in the timer control register (TCR), and the output compare flag
(OCF) bit in the timer status register (TSR) will be set. An interrupt will also be
generated if the output compare interrupt enable (OCIE) bit in TCR is set. A
read of TSR, followed by a read of or write to OCRL, clears OCF.

The EKG signal that appears across the handlebar contacts must be sampled at a
fixed frequency in order to make accurate pulse calculations. Analog-to-digital
conversion of the EKG waveform occurs during the service routine of a 100 Hz
interrupt generated by the output compare hardware. By finding two adjacent
peaks of similar amplitude on the EKG wave, the time between two heart beats
is known in hundredths of a second and can be converted to a pulse rate in beats
per minute.
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� 16-Bit Timer Output Compare16-Bit Timer Output Compare

 98/07/02

OUTPUT COMPARE
INTERRUPT REQUEST

OUTPUT COMPARE
REGISTER HIGH (OCRH)

OUTPUT COMPARE
REGISTER LOW (OCRL)

16-BIT COMPARATOR
PIN

CONTROL
TCMP

˜4
INTERNAL

MCU CLOCK

TIMER REGISTER
HIGH (TRH)

ALTERNATE TIMER
REGISTER HIGH (ATRH)

ALTERNATE TIMER
REGISTER LOW (ATRL)

TIMER REGISTER
LOW (TRL)

TIMER CONTROL REGISTER (TCR) TIMER STATUS REGISTER (TSR)

ICIE OCIE TOIE IEDG OLVL0 0 0 ICF OCF TOF0 0 0 0 0



Input capture functions like output compare in reverse. Instead of generating an
edge on the TCMP pin at a specific time, input capture saves the time at which a
specific edge occurs on the TCAP pin.

The IEDG bit in the timer control register (TCR) specifies whether rising or
falling edges are recognized by the input capture hardware. When a capture
occurs, the input capture flag (ICF) bit in the timer status register (TSR) is set,
and an interrupt will be generated if the input capture interrupt enable (ICIE) bit
in TCR is set.

To clear ICF, read the input capture register high (ICRH) byte. This prevents
further captures and latches the low byte of the result until ICRL is read.

In the wheel speed sensor shown above, each rotation of the bicycle’s front tire
closes the magnetic switch. This generates a falling edge that is detected by the
input capture hardware. The number of wheel rotations that occurs during a
given period of time is directly proportional to the distance traveled.

When the MC68HC705P6A is clocked with a 4.194 MHz crystal, the 16-bit
counter overflows eight times per second. This allows the cycling monitor to
accurately update and display the speed and distance traveled every one and ten
seconds, respectively.
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� 16-Bit Timer Input Capture16-Bit Timer Input Capture
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The serial input/output port (SIOP) is a simplified version of the serial
peripheral interface (SPI) that appears on numerous Motorola microcontrollers
ranging from other 68HC05 devices to members of the highly-integrated 68300
family. The SIOP supports master (processor initiated) and slave (externally
initiated) mode transfers.

A bi-directional shift register, dividers that derive the shift clock from the
internal MCU clock, and three shared pins with associated control logic
comprise the SIOP.

Depending on the device, three or four registers control the SIOP. All SIOP
implementations have a data register (SDR) from which received data is read
and to which data for transmission is written. The SIOP status register (SSR)
reports transfer completion (via the SPIF bit) and data collisions (via the DCOL
bit) if SDR is read or written before SPIF is set.

The SIOP control register (SCR) enables the SIOP and configures it for master
or slave mode. Baud rate is implementation dependent and, on some devices,
may be fixed at some fraction of the internal MCU clock. Other devices have
one or more rate control bits resident either in SCR or a mask option register
(MOR) that permit alternative SIOP baud rates to be selected.
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� Serial Input/Output Port (SIOP)Serial Input/Output Port (SIOP)
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The cycling computer can display the following statistics on its Planar Standish
8-digit LCD: temperature, relative humidity, speed, distance traveled, pulse rate,
and stopwatch time.

Motorola’s MC14LC5003 is used to simplify the LCD interface. This device
multiplexes 32 frontplanes with 4 backplanes to drive up to 128 segments. This
is a perfect fit for the Planar Standish LCD which uses 32 frontplanes and 4
backplanes to display eight 15-segment alphanumeric characters.

The decision to use a serially interfaced LCD was prompted by the need to keep
the cycling computer code as compact as possible. A microcontroller with built-
in LCD drive capability would reduce component count, and possibly cost, but
at the expense of requiring more complicated software to manage LCD updates.

On the other hand, a serially interfaced LCD can be managed with simpler,
loop-oriented code that treats all updates identically. The resulting message
handler is smaller and less complicated than the equivalent code for a direct
drive LCD.
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No single application can possibly demonstrate every available 68HC05
peripheral. Listed above are several other common 68HC05 peripherals that are
covered in the following section for completeness.
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� Other 68HC05 Family PeripheralsOther 68HC05 Family Peripherals

Ç Serial Peripheral Interface

Ç Serial Communications Interface

Ç Enhanced Serial Communications Interface

Ç Pulse Length Modulation Timer

Ç Liquid Crystal Display Driver

 98/06/16



The serial peripheral interface (SPI) is the full-duplex, synchronous data transfer
mechanism upon which the simpler serial input/output port (SIOP) is based.
Differences between the SIOP and the SPI are discussed below.

Master mode transfers at 1/2, 1/4, 1/16, or 1/32 of the internal MCU clock
frequency are supported by the SPI. In slave mode, transfers are synchronized
by the shift clock from the external master device and can occur at frequencies
up to that of the internal MCU clock.

The SPI also supports four different transfer protocols. Each one is defined by a
unique combination of the clock phase (CPHA) and clock polarity (CPOL) bits
in the SPI control register (SPCR). Unless masked otherwise, the SIOP only
supports the single CPOL = CPHA = 1 protocol.

For proper operation in multiple master systems, SPI mode fault logic should be
enabled. This is done by making the SS (slave select) pin an input when a
device becomes the bus master. Normal transfers will take place as long as SS
remains at logic one. When logic zero appears on SS, the fault detection
hardware on the current master will automatically disable the SPI subsystem,
make all of its pins as inputs, and generate an SPI interrupt. This releases the
bus for a new master. The SIOP has no such fault detection mechanism.
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The serial communications interface (SCI) is the universal asynchronous
receiver/transmitter (UART) peripheral on 68HC05 devices.

A single 8-bit register from which received data is read and to which data for
transmission is written is shared by the receiver and transmitter sections of the
SCI. Separate bits in SCI control register 1 (SCCR1) provide access to the ninth
data bit when it is used for parity of address mark purposes.

Two prescaler bits allow the baud rate generator to run at the internal MCU
clock frequency divided by 1, 3, 4, or 13. Three additional selection bits permit
division of the prescaler output by 1, 2, 4, 8, 16, 32, 64, or 128. At internal
MCU clock frequencies of 2 MHz and 4 MHz, the highest standard baud rates
available are 9600 and 19200 baud, respectively.

Flags in the SCI status register (SCSR) report when the transmit data register is
empty (TDRE), when a transmission is complete (TC), when the receive data
register is full (RDRF), when the reciver goes idle (IDLE), and when receiver
over-run (OR), framing (FE), and noise (NF) errors occur. Interrupts may be
independently enabled for the TDRE, TC, and IDLE conditions. When enabled,
the receiver interrupt is triggered by both RDRF and OR.
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� Serial Communications Interface (SCI)Serial Communications Interface (SCI)

The serial communications interface (SCI) is the universal asynchronous
receiver/transmitter (UART) on 68HC05 devices. It has the following features:

Ç Full duplex operation

Ç 32 baud rate selections

Ç 8- or 9-bit character lengths

Ç Separately enabled receiver and transmitter

Ç Wake up on idle line or address mark

Ç Optional interrupt generation upon transmit data register empty,
transmission complete, receive data register full, receiver over-run,
and idle line conditions

Ç Detection of receiver framing, noise, and over-run errors

 98/06/15



As noted above, the SCI+ can perform simple, output-only, synchronous
transmissions in addition to its standard UART functions.

Like the regular SCI, the SCI+ has a prescaler that divides the internal MCU
clock by 1, 3, 4, or 13. Three control bits on the standard SCI further divide this
prescaler output by 1, 2, 4, 8, 16, 32, 64, or 128 to derive the transmitter and
receiver clocks. On the SCI+, two sets of these bits provide the same division
factors and allow independent baud rate selection for both the receiver and
transmitter.

In addition to its asynchronous transfer capability, the SCI+ can transmit data
synchronously by using the transmitter clock signal present on the dedicated
SCLK pin. The synchronous transfer mode of the SCI+ is not, however, fully
SPI-compliant. While it does have the obligatory CPOL and CPHA bits to
control the polarity and phase of the shift clock on SCLK, the SCI+ performs all
trannsfers in the same order as a UART — LSB first — which is opposite that
used by the SPI.

Nonetheless, data placed in the proper bit order is transmitted in the same
fashion on the SCI+ as it is on the SPI. Additionally, because a single data
register is used for all transfers, the SCI+ can use 8- or 9-bit data words for
synchronous as well as asynchronous transfers.
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� An Enhanced SCI — The SCI+An Enhanced SCI — The SCI+
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In addition to the capabilities of the standard SCI, the enhanced serial
communications interface (SCI+) supports…

Ç Separate transmitter and receiver baud rates

Ç Output of the transmitter clock on the dedicated SCLK pin

Ç SCLK phase and polarity control

Ç Output-only, least significant bit first, synchronous transfers

The SCI+ essentially adds a simple, master mode, SPI-like, synchronous
transfer capability to the standard SCI’s UART features.



The pulse length modulation (PLM) timer has two channels, each with an 8-bit,
buffered duty cycle register, an 8-bit comparator, zero detection circuitry, a
slow/fast rate multiplexer, and a latch that drives an associated output pin.

PLM waveforms are output at one of two fixed frequencies and are active high
for a user-specified length of time. A rate selection multiplexer allows each
channel to choose a fast or slow 8-bit time base consisting, respectively, of bits
[7:0] or [11:4] of the counter associated with the 16-bit timer subsystem.

In fast and slow modes, one count of the 8-bit time base is, respectively, 4 and
64 internal MCU clock cycles. The resulting output waveform periods are
likewise 4 × 256 = 1024 and 64 × 256 = 16384 internal MCU clock cycles.
Each PLM duty cycle register, just as its associated time base, is 8 bits wide.

Once a time base and duty cycle are selected, a PLM channel operates as
follows. Starting at $00, the 8-bit time base increments at the user-specified fast
or slow rate. When a non-zero duty cycle is in effect, the channel output pin is
driven high and remains there until the duty cycle register value matches that of
the 8-bit time base. The comparator detects this match and clears the output
control latch, driving the associated PLM pin low. The waveform remains low
until the 8-bit time base rolls over from $FF to $00, and the zero detection
circuit sets the output control latch, again driving the PLM pin high.
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All 68HC05 “L” family members have liquid crystal display (LCD) interfaces
of varying degrees of sophistication. A representative implementation is the
LCD driver on the popular MC68HC705L16, shown in the block diagram
above.

Supporting as many as 39 frontplanes and up to 4 backplanes, the
MC68HC705L16 can drive up to 156 segments. Bias voltages for this LCD
interface are input directly on the VDD, VLCD1, VLCD2, and VLCD3 pins,
typically from taps off a resistive ladder network. Bias levels of 1/1, 1/2, 1/3,
and 1/3 are used when driving one, two, three, and four backplanes,
respectively. Uncommitted backplane pins may be used as discrete outputs.
Similarly, separate enable and multiplexer control bits also allow independent
configuration of frontplanes [38:27] as discrete outputs.

The MC68HC705L16 has two other notable features. Like other 68HC05 “L”
family devices, it has an alternate low-power oscillator from which LCD
waveform timing can be derived. Additionally, when the LCD interface is
disabled, the register locations that comprise display RAM are still accessible
and can be used to store variables or prepare new messages for display at a later
time.
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� Liquid Crystal Display (LCD) DriverLiquid Crystal Display (LCD) Driver
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