Order this document by

MOTOROLA AN1664/D
SEMICONDUCTOR APPLICATION NOTE

AN1664

LOW COST 3-PHASE AC MOTOR CONTROL
SYSTEM BASED ON MC68HC908MR24

By Radim Visinka
Roznov System Application Laboratory
Motorola, Czech Republic

1 INTRODUCTION

This Application Note describes the design of a 3-phase AC induction motor drive. It is based on
Motorola’s MC68HC908MR24 microcontroller which is dedicated for motor control applications. The
system is designed as a low cost high volume motor drive system for medium power three phase AC
induction motors and is targeted for applications in both industrial and appliance fields (e.g. washing
machines, compressors, air conditioning units, pumps or simple industrial drives).

The drive runs in a speed closed loop using a speed sensor. The code can easily be modified to run the
drive in open loop if it is required by the application. Electronic impact on the cost of the global system
can be extremely large even if high volumes are considered, therefore the cost of the drive is strictly
limited and was a driving factor of this design.

The drive to be introduced is intended as a reference platform for a 3-phase AC induction motor drive.
It can be used as a good starting point for your own design of your own application according to your
special requirements. It can save a lot of development engineering time and speed-up the time to
market.

This Application Note starts with trends and general requirements for a variable speed 3-phase AC
drive. The design description incorporates both hardware and software parts of the system including
hardware schematics with a bill of material, and a software listing.

2 TRENDS IN VARIABLE SPEED DRIVES

The design of very low cost variable speed 3-phase motor control drives has become a prime focus
point for the appliance designers and semiconductor suppliers. Replacing variable speed universal
motors by maintenance-free, low noise asynchronous (induction) motors is a trend that supposes total
system costs being equivalent. The big push in this direction is given by several factors:

- the new IEC555-1, European Community regulations dealing with electrical noise in power distribution
lines and low power consumption

- the flexibility that can be achieved in using asynchronous motors with variable frequency

- the maturity level and affordable price trend of power devices

- the system efficiency optimization that microprocessor controlled drives can provide

- the size, weight and dissipated power reduction of the motors for a given mechanical power

This document contains information on products under development.
Motorola reserves the right to change or discontinue these products without notice.

@ MOTOROLA

0O MOTOROLA LTD., 1998. All trademarks are recognized.

3 SYSTEM REQUIREMENTS

The introduced AC drive is designed as a low cost system that meets the following general performance

requirements:

Motor Characteristic:

4 poles, three phase, star con-

Motor Type nected, squirrel cage AC motor
(standard industrial motor)
Speed Range: <3000 rpm
Base Electrical Frequency: 50 Hz
Max. Electrical Power: 500 W

Max. Phase Voltage (rms):

220V/(Star) / 380V (Delta)

Drive Characteristic:

Transducers: 16 poles Tachogenerator
Frequency Range < 100Hz
Line Input: 230V /50Hz AC
Max DC Bus Voltage 400 V

Control Algorithm

Speed Closed Loop Control

Optoisolation

Required

Load Characteristic:

Type

Varying

4 SYSTEM CONCEPT

Table 3-1 General Requirements

The system is designed to drive a 3-phase AC induction motor. The microcontroller runs the main control
algorithm. According to the user interface input and feedback signals it generates 3-phase PWM output

signals for the motor inverter.

For the drive a standard system concept is chosen (see Figure 4-1.). The system incorporates the

following hardware parts:

. power supply rectifier
e three-phase inverter

- feedback sensors: speed, DC-Bus voltage, DC-Bus current

. optoisolation

. microcontroller MC68HC908MR24

The drive can basically be controlled in two different ways (or Operational Modes) that can be set by a

on-board jumper.

. In the Manual Operational Mode, the required speed is set by Start/Stop switch,
Forward/Reverse switch, speed potentiometer.

. In the Demo Operational Mode, the required speed profile is pre-programmed and
the only control input is the push button “Start “.

MOTOROLA
2

AN1664

Rectifier Three-Phase Inverter

DC-Bus
Line — J_
Voltage
230V/50Hz T ~
] = T :
M\ M\ N
A
Current & Voltage
Isolation Barrier Sensing
Optoisolation Optoisolation Spegd
7,0 70 Sensing
DC-Bus Current Over-
& Current PWM
DC-Bus Voltage

i Current & j&=—— :
: Voltage ADC e i :
: P - Processing :
: rocessing :
E v §
: VHz = PWM :

Speed . . Gecv(?tLator i

Setup ; speze : c Pl Dead Time :

—T> Comma_nd Controller :

g Processing :
Speed ;
: Actual Speed ProcF:)essing P
' e—
: (Input Capture)

Figure 4-1. System Concept

The control process s following:

The state of the sensors is periodically scanned in the software timer loop, while the speed of the motor
is calculated utilising the Input Capture interrupt. According to the Operational Mode setup and state of
the control signals (Start/Stop switch, Forward/Reverse switch, speed potentiometer) the speed
command is calculated using an acceleration/deceleration ramp. The comparison between the actual
speed command and the tacho speed generates a speed error E. The speed error is brought to the
speed Pl controller that generates a new corrected motor frequency. Using a V/Hz ramp the
corresponding voltage is calculated. The PWM generation process calculates a system of three phase
voltages of required amplitude and frequency, includes dead time and finally the 3-phase PWM Motor
Control signals are generated.

AN1664 MOTOROLA
3

The DC-Bus voltage and DC-Bus current are measured during the control process. They are used for
overvoltage and overcurrent protection of the drive. The overvoltage protection is performed by software
while the overcurrent fault signal utilises a fault input of the microcontroller.

If any of the above mentioned fault occurs, the motor control PWM outputs are disabled in order to
protect the drive and fault state of the system is displayed.

WARNING

It is strongly recommended to use opto-isolation (optocouplers and optoisolation amplifiers)
during the development time to avoid any damage to the development system.

5 HARDWARE DESIGN

5.1 System Outline

The motor control system is designed to drive the 3-phase AC motor in a speed closed loop. It consists
of the following blocks (see Figure 5-1. Motor Control System Configuration):

. Microcontroller Board

. High Voltage Power Stage Board with Sensor Board
. Power Supply Board & Line Filter

. 3-Phase AC Motor with Speed Transducer

MOTOR CONTROL SYSTEM
High Voltage
Power Power Supply High Voltage M
EUppgl Power Stage 30h AC
220V AC oar Auxiliary Voltage Board P
_& Power Supply RS
Line
Filter S ?
ensor Speed
Board <
1 Control ‘Feedback
Signals
MC68HC908MR24 Speed Setup
Microcontroller -
Board

Figure 5-1. Motor Control System Configuration

MOTOROLA AN1664
4

5.2 Microcontroller Board

The microcontroller board accommodates the brain of the drive - a Motorola MC68HC908MR24
microcontroller that follows the Motorola MC68HC(7)08MP16. The microcontroller controls the entire
drive by reading the speed command together with feedback signals and according to the pre-
programmed algorithm generates the PWM signals for power devices and status signals for the user
interface. Around the microcontroller only minimal amount of components are placed. Thus the simplicity
of the ‘MR24 usage is clearly illustrated.

The 68HC908MR24 is a HC08-based MCU designed for single or three-phase motor drive applications.
General features include 24K bytes of FLASH, 768 bytes of RAM, two 16-bit timers, SPI, SCI (UART),
13 general-purpose I/O pins, and an LVR module in a 64-pin QFP package. The ‘MR24 also has specific
features that target AC induction motor applications including a 6-channel, 12-bit PWM module; a high
current sink port; and a 10-channel, 10-bit A/D module. Key features of the 6-channel PWM module
include center- or edge-aligned modes, a mode that configures the six outputs as complementary pairs
for coherent updates, a dead time generation register to prevent shoot-through currents in the motor
drive circuit, current sense pins to correct for dead time distortion, and fault detect pins for fast shut down
of the PWM outputs. The hardware contained in the PWM module eliminates the need for several
external components (i.e. logic for current sense, deadtime generation, and fault handling).

The ‘MR24 features are assigned on the Microcontroller Board as follows:

+ Power Supply pins (Vppap: Vssap: VRerL: VReFH: VDD Vss)

* Clock Generation Module pins (Vppa, Vssa, CGMXFC, OSC1, OSC2)
* Motor Control PWM'’s (PWML1 - PWM6, PWMGND)

. Fault Input: Overcurrent (FAULT?2)

e Timer: Input Capture for speed sensor (TCHOB)

« Analog to Digital Converter for analogue feedback signals: DC-Bus Current
Sensing (ATD2) and DC-Bus Voltage Sensing (ATD3)

. Control/Status pins: Run/Stop (PTA7), Forward/Reverse (PTA6), Speed Setup
(ATDO), LED’s (PTC4, PTCS5), DIP Switch (PTAL, PTA2):

— PTAL1 DIP = OFF Demo Operational Mode
— PTA1DIP =ON Manual Operational Mode

. Critical pins are set to the known state (/RST, /IRQ1: high; Fault1,3,4, Current
Sense IS1-3: low)

The signal interface between all the boards is provided by a standardized 40-pin Motorola interface
‘UNI2".

The schematic of the microcontroller board can be found in the APPENDIX A.

5.3 Power Stage Board

The HV Medium Power Board that was designed in Motorola RSAL is used as the power stage. It's
suitable to drive various three phase motors - AC induction, permanent magnet (PM), brush and
brushless (BLDC) - with power ratings from 100W to 1kW. DC-Bus voltages up to 400V can be applied
and phase currents up to 20A depending on the power devices.

Based on the above mentioned specifications and the power requirement the following configuration of
the power stage was chosen:

Power devices: IGBT (copack) MGP7NG60OED
High voltage drivers: IR2112
Optoisolation: HP 4503
AN1664 MOTOROLA

5

The schematic of the Power Stage Board can be found in the APPENDIX A.

The optoisolation galvanically isolates the power part and the control part of the system. Six
optocouplers isolate motor control PWM signals, an additional one allows use of the fault input of the
IR2112 drivers to switch off the power switches by the microcontroller when necessary. It also serves as
protection of microcontroller +5V power failure; in this case the power switches are switched off
immediately. Also all the feedback signals (voltage, current) must be isolated using the optocouplers or
optoisolation amplifiers.

Although optoisolation implies a hardware complication and added devices, including an additional
power supply, the security of the system is highly improved. For motor control drives where cost is a
driving factor of the design, the optoisolation can be omitted and the control signals of the
microcontroller can be connected directly to the high voltage drivers. Caution must be taken to avoid
damage of the system or human injury. Thus galvanic isolation of a human interface is highly
recommended.

The detailed description of the power stage can be found in Motorola application note AN1590
“HV Medium Power Board for Three Phase Motors*.

5.4 Sensor Board

The control algorithm requires speed, DC-Bus voltage and DC-Bus current sensing. Therefore these
sensors are built on the power stage board. Schematics of the sensors circuits can be found in the
APPENDIX A.

54.1 Speed Sensor

A 16 pole AC tachogenerator senses the actual speed of the motor. The output of the tachogenerator is
an AC sinewave signal, its frequency corresponds to the motor speed. For a motor speed of 3000 rpm
(100Hz synchronous) the tachogenerator output frequency is 400Hz (4 poles motor : 16 poles
tachogenerator). The sinusoidal signal of the tachogenerator is filtered and transformed to a logic level
square wave by a squaring circuit. The generated square signal is fed to the microcontroller Input
Capture block of the Timer A. The Input Capture function reads the time between two subsequent rising
edges of the generated square wave. The measured time corresponds to the actual speed of the motor.

Speed
Sensor Low Pass Squaring
Filter Circuit
—— |— e Speed
T] P> (Input Capture)

Figure 5-2. Speed Sensor Block Diagram

MOTOROLA AN1664
6

5.4.2 DC-Bus Voltage Sensor

The DC Bus voltage must be checked because of the overvoltage protection requirement.

A simple voltage sensor is created by a resistor divider. The voltage signal is transferred through
isolation amplifier (HP7800) and then amplified to the 5V reference level. The amplifier output is
connected to the A/D converter of the microcontroller ATD2.

Voltage Opto
Divider Gain Amplifier Gain
DC-Bus
Voltage — DC-Bus Voltage
|> D|> |> — (to ADC)
—

Figure 5-3. DC-Bus Voltage Sensor Block Diagram

5.4.3 DC-Bus Current Sensor

The DC-Bus current is checked because of the overcurrent protection requirement. Also, the analogue
DC-Bus current measurement may be required by the algorithm.

A current sensing resistor is inserted into the ground path of the DC-Bus lines. The ground of the drive
is created on the inverter side of the sense resistor. This configuration has an advantage that the voltage
drop across the current sense resistor has no influence on the gate driver signals. Because of this
configuration a positive DC-Bus current creates a negative voltage drop on the current sensing resistor.
The voltage drop is amplified using an operational amplifier (with gain = -10). The voltage signal is
transferred through optoisolation amplifier (HP7800) and then amplified to the 5V reference level.The
measured DC-Bus current is compared with the threshold and, in case of overcurrent, a fault signal is
generated. The fault signal is connected to the microcontroller fault input FAULT2. The analogue value
of DC-Bus current is also fed to the A/D converter of the microcontroller (ATD3).

) Gain Opto .
Filter (A =-10) Amplifier Gain DC-Bus Current
(to ADC)
=T
L DL D> -
Rsense
|
. Comparator
i - Overcurrent
< Fault
Overcurrent I> >
Threshold ——
Figure 5-4. DC-Bus Current Sensor Block Diagram
AN1664 MOTOROLA

7

5.5 Power Supply Board

The Power Supply Board provides a high voltage DC-Bus power supply for the drive and +5V, +15V and
isolated +5V auxiliary power supply for microcontroller, optoisolation, high voltage drivers and OP
amplifiers.

Typical designs of the HV DC power supply incorporate a simple one or three phase diode bridge
rectifier that provides a DC-Bus voltage directly from the line. It can be followed by an inrush current
limiter that avoids a high inrush current during switch-on operation. Also a relay can be included to switch
on/off the DC-Bus voltage under microcontroller control.

Different designs for the auxiliary power supplies can be suggested. For example a classical design
includes transformer and voltage regulators. Another possibility is to use a DC-DC converter to create
the auxiliary voltage directly from the DC-Bus lines. The final configuration depends on the cost,
performance and complexity comparison of both solutions.

Because the system has to meet new EMC regulations (like IEC555-1), the RF filter, harmonic distortion
filter and power factor correction have to be included. Two possibilities can be considered. Firstly a PFC
design and secondly a choke filter. The PFC design is more complex, but the performance is higher. The
choke filter is simple and reliable, but bulky and heavy, also the performance of the filtration is reduced
compared to the PFC.

The power supply design is a separate wide range topic described in many special articles. Therefore it
is not part of this Application Note.

6 SOFTWARE DESIGN
This section describes the design of the software blocks of the drive. The software will be described in
terms of -

. Control Algorithm Data Flow

. State Transition

. Software Listing

. Memory Usage

» Software Modifications for Open Loop Drive

6.1 Data Flow

The requirements of the drive dictate that software takes some values from the user interface and
sensors, processes them and generates 3-phase PWM signals for motor control.

The control algorithm of close loop AC drive is described in Figure 6-1. It consists of processes
described in following sub-sections. The special attention is given to the subroutines 3-phase PWM
calculation and Volt per Hertz control algorithm. Also initialisation of the microcontroller is described in
a detalil.

MOTOROLA AN1664
8

Switches A/D converters

Operation
Mode
Jumper

Process
Speed Command

Tacho IC

Process
LED Control

Process
Speed Sensor

Dc_bus_volt V_command

LN

Process
Acceleration/Deceleration Ramp

Gf_flag L2 V_tacho

V_com_actual

Process
Pl Controller

Process T

Fault Control V_pi_out

Y

Process
OC Fault PCTLA V/Hz Ramp

Amplitude Table_inc

Process
PWM Generation

¥ N

PVALA1 PVAL3 PVALS

Figure 6-1. Data Flow

AN1664 MOTOROLA
9

6.1.1 Process Speed Command and LED Control

The process has the following input parameters:
. Operational Mode DIP: Manual OM or Demo OM

— DIP =OFF Demo Operational Mode
— DIP=0ON Manual Operational Mode
. Control Switches: Start/Stop
Forward/Reverse
e« A/D Converters: potentiometer output for required speed
DC-Bus Voltage sensing
. General fault flag: Gf _flag

The process has the following output parameters:

. DC-Bus voltage Dc_bus_volt
. Speed command V_command
Reset

Stand-By
MCS State

PWM disabled

V_command <> 0 General Fault Recovery = 0

Start/Stop = 1

Fault
Recovery
MCS State

PWM
disabled

Start/Stop = 1
V_command =0

Run
MCS State

General Fault =0

PWM
enabled

Start/Stop =0

Fault
MCS State

V_commaqd <> 0

PWM
disabled

Stop
MCS State
PWM disabled

V_command =0
v_pi_out=0

Over Current

Over Voltage

Figure 6-2. State Diagram of the Drive

MOTOROLA AN1664
10

The input parameters of the process are evaluated and the speed command V_commandis calculated
accordingly. Also the DC-Bus voltage Dc_bus _volt is measured. The general fault Gf flag s
analysed and the state of the drive is set. The state diagram of the drive describes Figure 6-2. The status
LED’s are controlled according the system state.

The calculated speed command V_commandis 2-byte variable with format 8.8 (1Hz = 0x10). This format
is kept through all the program for all the speed variables.

6.1.2 Process Acceleration/Deceleration Ramp

The process calculates the new actual speed command based on the required speed according to the
acceleration / deceleration ramp.

During deceleration the motor can work as a generator. In the generator state the DC-Bus capacitor is
charged and its voltage can easily exceed its maximal voltage. Therefore the DC-Bus voltage is
measured and compared with the limit. In case of deceleration overvoltage, the deceleration is
interrupted and the motor runs with constant speed in order to discharge the capacitor. Then
deceleration can continue.

6.1.3 Process Speed Sensor

The speed sensor process utilises the IC function. It reads the time between the following rising edges
of speed sensor output and calculates the actual motor speed V_tacho . Also a software filter of the
speed measurement can be incorporated in the process for better noise immunity. In this case the actual
motor speed is calculated as a average value of several measurements.

6.1.4 Process PI Controller

The general principle of the speed PI control loop illustrates Figure 6-3.: Closed Loop Control System

Reference Corrected
Speed Speed S_peed
(V_com_actual) > Error > Pl (V_pi_ou » Controlled
Controller System

Actual Motor
Speed
(V_tacho)

Figure 6-3. Closed Loop Control System

The speed closed loop control is characterised by the measurement of the actual motor speed. This
information is compared with the reference set point and the error signal is generated. The magnitude
and polarity of the error signal corresponds to the difference between the actual and required speed.
Based on the speed error the Pl controller generates the corrected motor frequency in order to
compensate the error.

Process Description

This process takes the input parameters: actual speed command V_com_actual and actual motor
speed measured by a tachogenerator VV_tacho. It calculates a speed error and performs the speed
P1 control algorithm.

The output of the PI controller is a frequency of the first harmonic sine wave to be generated by the
inverter: V_out .

AN1664 MOTOROLA
11

6.1.5 Process V/Hz Ramp

The drive is designed as a “Volt per Hertz" drive. It means that the control algorithm keeps the
magnetizing current (flux) of the motor constant by varying the stator voltage with frequency. The
common used Volt per Hertz ramp of a 3-phase AC induction motor illustrates Figure 6-4.

Phase

Voltage A Base
Point

100% -+

Boost | .7

Voltage L7

7 I I »
Boost Base Frequency (rpm)
Frequency Frequency

Figure 6-4. \Volt per Hertz ramp

The Volt per Hertz ramp is defined by following parameters:
. Base Point - defined by Base Frequency (usually 50Hz or 60Hz)
. Boost - Defined by Boost Voltage and Boost Frequency
The ramp profile fits to the specific motor and can be easily changed to accommodate different ones.

Process Description

This process provides voltage calculation according to V/Hz ramp.

The input of this process is the generated inverter frequency V_out .

The output of this process are parameters required by PWM generation process:

e The table increment Table_inc that corresponds to the frequency V_out and is
used to roll through the wave table in order to generate the output inverter
frequency

* Amplitude Amplitude of the generated inverter voltage

The example of V/Hz routine for the MC68HC908MR24 microcontroller illustrates code listing in
APPENDIX B.2: Subroutine “V/Hz Ramp”

6.1.6 Process PWM Generation

This process generates a system of three phase sinewaves (or sinewaves with addition of third harmonic
component) shifted 120° to each other.

The calculation is based on the wave table stored in ROM of the microcontroller. The table describes
either a pure sinewave or sinewave with third harmonic addition. The second case is often preferred
because it allows one to generate a first harmonic sine voltage equal to the input AC line voltage.
Because of sine symmetry only one quadrant of the wave period is stored in the table. The wave values

MOTOROLA AN1664
12

for other quadrants are calculated from the first one. The format of the stored wave table data is from
#0x00 (for ZERO Voltage) up to PWM Modulus/2 (for the 100% Voltage). Thus the proper data scaling
is secured.

It is important to note that 50% PWM (or 50% of PWM Modulus loaded to the corresponding PVAL
registers) corresponds to the ZERO phase voltage. But in the wave table the ZERO phase voltage
corresponds to the number #0x00 . Therefore the fetched wave value from the table must be added to
the 50% PWM Modulation for quadrant 1 and 2 or substracted from the 50% PWM Modulation for
quadrant 3 and 4 (see point 5 of the process description). Thus the correct PWM value is loaded.

The input parameters of the process are:
e« The table increment Table_inc that is used for the wave pointer update
e Amplitude Amplitude of the generated inverter voltage

The output parameters of the process are:
. PWM value for phase A: PVALL register
. PWM value for phase B: PVALS3 register
. PWM value for phase C: PVALS5 register

The process can be described by following points:
Phase A
Wave pointer for phase A is updated by the Table Increment
Based on the wave pointer of the phase the required wave quadrant is selected

The quadrant pointer is calculated from the wave pointer with respect to the related
quadrant

Table value determined by quadrant pointer is fetched from the wave table

The table value is added to (or substracted from) the 50% modulus with respect to
the related quadrant

6. The result is loaded to the PVALL register; PVAL2 register is loaded automatically
because of complementary PWM mode selected during the PWM module
initialisation

Phase B

1. The phase B wave pointer is calculated as phase A wave pointer + 1/3 of wave
period (1/3 of Oxffff ~ equals to 0x5555)

2-5. See corresponding points of the Phase A calculation

6. The result is loaded to the PVAL3 register; PVAL4 register is loaded automatically
because of complementary PWM mode

Phase C

1. The phase B wave pointer is calculated as phase A wave pointer + 2/3 of wave
period (1/3 of Oxffff ~ equals to Oxaaaa)

2-5. See corresponding points of the Phase A calculation

The result is loaded to the PVALS5 register; PVALG register is loaded automatically
because of complementary PWM mode

AN1664 MOTOROLA
13

The process is accessed regularly in the rate given by the set PWM frequency and the selected PWM
interrupt prescaller (register PCTL2). This process has to be repeated often enough compared to the
wave frequency in order to generate the correct wave shape. Therefore for 16KHz PWM frequency it is
called each 4th PWM pulse and thus the PWM registers are updated in 4KHz rate (each 250usec).

6.1.7 Process Fault Control

This process is responsible for fault handling. The software accommodates two fault inputs: overcurrent
and overvoltage.

Overcurrent: In case of overcurrent the external hardware provides a rising edge on the fault input of
the microcontroller FAULT2. This signal disables all Motor Control PWM'’s outputs (PWM1 - PWM®6) and
sets general fault flag Gf_flag

Overvoltage: The sensed DC-Bus voltage is compared with the limit within the software. In case of
overvoltage all Motor Control PWM outputs are disabled (PCTL1) and the general fault flag Gf_flag is
set.

If any of the faults occur, the recovery time for the individual fault is loaded and till this time expires the
system remains disabled.

6.2 State Diagram

The processes described above are implemented in a single state machine, as illustrated in Figure 6-5,
Figure 6-6 and Figure 6-7.

The general state diagram incorporates the main routine entered from Reset and three interrupt states.
The Main Routine includes the initialisation of the microcontroller and a Software Timer for the control
algorithm time base. The interrupt states provides calculation of actual speed of the motor, overcurrent
fault handler and PWM generation process.

6.2.1 Initialisation
The Main Routine provides initialisation of the microcontroller:
e clears RAM
. initialises PLL Clock
. initialises PWM module:
— center aligned complementary PWM mode, positive polarity (MOR register)
— COP and LVI enable (MOR register)
— PWM modulus - defines the PWM frequency (PMOD register)
— 2usec dead time (DEADTM register)
— PWAM interrupt reload every 4th. PWM pulse (PCTL2 register)
— FAULT2 (over current fault) in manual mode, interrupt enabled (FCR register)
. sets-up 1/O ports
. initialises Timer B for IC and for software timer reference
. initialises Analog to Digital Converter
. sets-up Operational Mode (Manual OM or Demo OM)
. enables interrupts

MOTOROLA AN1664
14

Input Capture Interrupt

Reset

IC
Interrupt
Handler

Initialize
Software

Fault Interrupt done

timeout

Fault
Interrupt
Handler

Software
Timer

READ_CONST

done

timeout
PWM Interrupt

PWM
Interrupt
Handler

Figure 6-5. State Diagram - General Overview

The example of initialisation of PLL Clock and Motor Control PWM Modules for MC68MC908MR24 is
following:

/* setup PLL clock */
PBWC = 0x80; [* set Auto Bandwidth Control */
while (~PBWC & 0x40); /* wait for PLL lock */
PCTL = 0x30; /* use PLL clock */

* setup Motor Control PWM module */

MOR = 0x00; /* 0x00: pos. center PWM mode; cop and LVI enabled */
/* 0x60: neg. center PWM mode; cop and LVI enabled */
PMOD = PWM_MODULUS; * set up PWM modulus => PWM frequency */
[*for 7.3728MHz Bus Frequency PWM_MODULUS = 0x00e6
gives 16kHz PWM */
DEADTM=15; [* 2usec deadtime = #15 (for Bus freq. = 7.3728MHz) */
DISMAP=0xff; *when PWM disabled, disable PWM1-6 */
PCTL2 = 0x80; * PWM interrupt every 4th. pwm loads */
AN1664 MOTOROLA

15

PCTL1 |= 0xcO; * disable MCPWM */

PWMOUT = 0x00; [* output port control is PWM generator */
PCTL1 |= 0x02; [* set LDOK bit */
FCR |= 0x08; /* Flt2 enabled in manual mode */

PVAL1 = PWM_MODULUS/2; * set phase A pwm to 50% */
PVAL3 = PWM_MODULUS/2; * set phase B pwm to 50% */
PVAL5 = PWM_MODULUS/2; * set phase C pwm to 50% */

When all modules of the microcontroller are initialised, enable the PWM module:

PCTL1 |= 0x20; [* enables pwm interrupts */
PCTL1 |= 0x01,; [* enables PWM */

6.2.2 Software Timer

The software timer routine provides the timing sequence for required subroutines. The software timer is
performed instead of a Output Capture interrupt handler because of a lack of interrupt priority in the
HC08 MCU. The main program has several time-demanding interrupt routines and more interrupt
requirements can cause a software fault.

The software timer routine has two timed outputs -

. in READ CONST timeout is a routine that scans inputs, calculates speed command,
handles fault routines and the LED driver

. in PI_CONST timeout is a routine that provides overvoltage protection during
deceleration, speed ramp (acceleration/deceleration), Pl controller, V/Hz ramp and
provides parameters for PWM generation

The interrupt handlers have the following functions:

. Input Capture Interrupt Handler reads the time between the two subsequent IC
edges (basic part of the Process Speed Sensor)

. Fault Interrupt Handler takes care of overcurrent fault interrupt (overcurrent part of
the Process Fault Control)

. PWM Interrupt Handler generates system of three phase voltages for the motor
(Process PWM Generation)

6.2.3 State - READ_CONST Timeout

This state is accessed from the main software timer in READ_CONST rate. The following sequence is
performed (see Figure 6-6. State - READ_CONST Timeout):

e All the inputs are scanned (DC-Bus voltage, speed pot, Start/Stop switch,
Forward/Reverse switch)

* According to the operational mode the speed command is calculated

* The DC Bus voltage is compared with the overvoltage limit and overcurrent flag is
checked

. In case of fault the fault recovery routine is entered and till the recovery time
expires, the drive stays disabled

MOTOROLA AN1664
16

6.2.4

. Finally the LED driver controls individual LED’s according to the status of the drive

READ_CONST timeout

I done
Operational Mode
Distribution

Speed Calculation
Demo OM

Speed Calculation
Manual OM

Fault Detection

Idone

Run Enable

Fault Recovery

done
Fault Recovery

done

LED Driver

; done

Return to scheduler

Figure 6-6. State - READ_CONST Timeout

State - PI_CONST Timeout

This state is accessed from the main software timer in PI_CONST rate. The rates defines the time
constant of the PI controller. The following sequence is performed (see Figure 6-7. State - PI_CONST

Timeout):

. During deceleration the DC-Bus voltage is checked and in case of overvoltage the
deceleration is interrupted until the capacitor is discharged

e When no deceleration overvoltage is measured the acceleration/deceleration
speed profile is calculated

AN1664

MOTOROLA
17

e Actual motor speed is calculated. It is based on the time measurement between
two subsequent rising edges of the Input Capture

. P1 speed controller is performed and the corrected motor frequency calculated

e« The corresponding voltage amplitude is calculated according the Volt per Hertz
ramp. Thus both parameters for PWM generation are available (Table_inc,
Amplitude)

PI_CONST timeout

Deceleration Overvoltage
Protection

NO Overvoltage

Acceleration/Deceleration
Ramp

done

-\

Overvoltage

Tacho Speed
Calculation

I done

Pl Speed Controller

I done

V/Hz Ramp

; done

Return to Scheduler

Al

\ A

A
\

A
\/

Figure 6-7. State - PI_CONST Timeout

MOTOROLA AN1664
18

6.3 Software Listing

The software listing is also available for this Application Note. Special attention was given to the
modularity of the code. The code is written in C (C-Cross compiler - Cosmic Software Inc.).

The code listing can be found on Motorola Web page: http://Design_NET.com

The software consists of the following parts:

6.3.1 MAIN.C

It is the entry point following a Reset. It contains the Initialise Software State code, the Main state
machine with the Software Timer State code.

6.3.2 SPEED.C

Contains READ_CONST Timeout code (Scan Inputs State, OM Distribution State, Speed Calculation
- Manual OM State, Speed Calculation - Demo OM State, Fault Detection State, Run Enable State, Fault
Recovery State, LED Driver State).

6.3.3 RAMP.C

Contains code for ramps: Acceleration/Deceleration Ramp State, V/Hz Ramp State.

6.3.4 PI.C

Contains PI_CONST Timeout code (Deceleration Overvoltage Protection State, Tacho Speed
Calculation State, Pl Speed Controller State and calls Acceleration/Deceleration Ramp State and V/Hz
Ramp State appropriately).

6.3.5 FAULT.C

Contains Fault Interrupt Handler code.

6.3.6 PWMCALC.C

Contains PWM Calculation Interrupt Handler code.

6.3.7 TACHO.C

Contains Tacho Interrupt Handler code.

6.3.8 3RDHQUAD.H

Contains the first quadrant of sinewave with its 3rd. harmonic injection - 256 unsigned 2-byte entries.

6.3.9 RAM.H

Contains the global RAM variable definitions for the whole project.

6.3.10 CONST.H

Contains the global constants definitions for the whole project.

6.3.11 VECTORS.H

Contains the interrupt vectors.

AN1664 MOTOROLA
19

7 OPEN LOOP DRIVE

The system presented in this application note can also run in a open loop mode. In this case the actual
motor speed is not measured and the generated voltage frequency directly corresponds to the externally
set speed command and is not corrected by any controller according the actual motor speed.

Because of the motor is asynchronous, the actual motor speed varies with the mechanical motor load.
The higher mechanical load the higher slip of the motor and the lower motor speed. Therefore the speed
precision of the drive is not so high. For some application such behaviour of the drive is not acceptable
(like washing machine), some others can withstand it. The example of the applications can be fan,
compressor, pump, etc., where performance of the open loop drive is sufficient. The advantage of the
open loop drive is its relative simplicity of both hardware and software design compare to the closed loop
system.

The open loop system design has the following modifications:

e« The hardware design doesn'’t require the speed transducer and speed sensing
circuitry.

e The software for Open Loop drive requires the following modifications (see Figure
6-1. Data Flow):

— Remove Process PI Controller
— Remove Process Speed Sensor and disable IC Interrupt

— Load the output of Process Acceleration/Deceleration ramp to the input of
Process Volt per Hertz ramp (Set variable V_out =V_com_actual)

In the provided software, the open loop control can be set during the software initialisation:

/* OPEN speed control loop */
I* Speed_control = OPEN_LOOP?*/ [* Activate for Open loop */

8 MICROCONTROLLER USAGE

Table 8-1 shows how much memory is needed to run the 3-phase AC drive in a speed closed loop.
A significant part of the microcontroller memory is still available for other tasks.

Memory Available (MC68HC908MR24) Used
FLASH 24 KBytes 3.7 KBytes
RAM 768 Bytes 82 Bytes

Table 8-1 RAM and ROM Memory Usage

The MC74HC908MR32 microcontroller offers many features that simplifies the drive design. The
following table describes the individual available blocks and its usage for the introduced system.

MOTOROLA AN1664
20

Module available on Used PUrDOSE
MCB8HC908MR24 P
PWMMC yes 3-phase PWM generation
Timer A (4-channel) no
Time base for control algorithm
Timer B (2-channel) yes Input Capture for measurement
of actual motor speed
SPI no
SCI no
See 5.2
VO ports yes (28 1/0 pins are free)
COP yes S/W runaway protection
IRQ no
LVI yes Low voltage protection
Speed set-up
ADC yes DC-Bus voltage measurement
DC-Bus current measurement
POR yes Reset after Power ON
Table 8-2 MR24 Modules Usage
9 CONCLUSION

The design of a speed closed loop drive with a three phase AC induction motor was described in this
Application Note. It is based on Motorola’s MC68HC908MR24 microcontroller. It illustrates the drive
from a system point of view, including power supply, power stage, hardware around the microcontroller

with sensors and finally software.

The described design shows simplicity and efficiency of the usage of the MC68HC908MR24
microcontroller for motor control and introduces it as an appropriate candidate for different low-cost
applications in both industrial and appliance fields.

AN1664

MOTOROLA

21

APPENDIX A

Schematics

AA1

3doz
90

AND Bojeuy
O¥NOO
T o
TueIany snd-oaq e
7 L e
. _ 1€
SPE3TOA sng-0a —] e
A ¥
TTSTIGTE0 mm
.
X
e
FUTewss 75505 b Mw
X &
1z
N4rZHINSOBOHEION —_— al
=z €0HOLA3Ld IMOLOALD [L ““lez
e S1HO LA Ld 9N |-E= v
e WiToUedld SN | €
56 ¥OHOLv3Ld ANOWW | 44
4noL Juool WIHOLSALd YAV (25 1z
5e— ¥eHoLea1d SN |72 0z
2OA N & ¥eHoL/3Ld L 6l
S PPA LM 22 8l
MOSdS/041d ZSysald (=2 9l
wo oo $8/b41d TSiwald — Sl
y y &7 | sonred1d pIIvIeald [£2 vl
Jdoz JU00k U004 OSI/edLd ELINV4ZALd |75 el
HOLXT vy S| QrALd 2LINv4/1ald (o 4
0 63 80 dxi/sld LINVA/001d (o i
ALOYI 901d X ol
oon Q0A E2N 57 L8 SOld o7 6
ZHN 2516 o5 EPP A vOld (2r g
ok D4XNDD €01d Boreu L
X Y] 5 aNo Bojeuy
T T = 1080 2oLd AN Bojeuy 9
2080 Wl A W_W 5
wm ess A [mvw u_:omoor v
| M2 ovid pess”A H aNo Bofeuy €
— == % oo bvid pepp A z
== ¢ 2 evid 60L1v/L0Ld . W_W L
= X—g| €vLd £01V/00.Ld 00A V4 owm
zdia kn 5 Pyl £a1viig1d T 20nV wr
- o3 gvid 901v/981d
Vs ovld salv/sald «
an & ngumeos 00 _[w0 | 2o rvid ¥QLv/v8ld on
»—-o o wl =5 0aLvosLd £alviegid
Mg lalviald zalvieald
Ln SMRIOSC/INQD
AeTTed
00A ¥—o0
[> aNo Bojeuy - m STYNINEAL
WS il o " [s
X
dOLSNNY ary Vi El jaN zr
€ 0k a1
\a
@ W Ld
00A
A
20A
RS
00A 20A

Figure A-1. MC68HC908MR24 Microcontroller Board

AN1664

MOTOROLA

22

SENSOR BOARD
CONNECTOR

I

CENDNBWN =

TACHO
CONNECTOR

VOLTAGE AND CURRENT SENSING

UNI2
CONNECTOR

GNDA isol
+15V isol

VCC isol

| sense 2

| sense 1

V_bus sense

Isolation Barrier

|

vce

AD_voltage

AD_current

©oNDNAWN =

Over-current

XXX XX

GNDA

GND . 14

V_I_SENS.SCH

2]

SPEED SENSING

Tacho 1

1
CON2

R14

Tacho 2

vce

GND

Tacho IC

SPD_SENS.SCH

T e D e e D e Deeerex

Figure A-2. Sensor Board 1 of 3 (Block Schematic)

R15

R12
15k

vce vce

C10
100uF/16V
GND

GND

R13
10k

—

Tacho 1
6k8

Tacho 2

GND

2k2

c1
220nF/100V

GND

GND

> Tacho IC

D1
1N5817

GND

R16
470

LM339

GND

<
0
O

C12
100nF

o

o)
P
O

Figure A-3. Sensor Board 2 of 3 (Speed Sensing)

AN1664

MOTOROLA
23

ano . "VaND
68N Diy A VAND Jzﬂﬂ [0s! VAND
voin A9L/4N00}L NSZ/HANLY

JUs.1IN2-IBAQ

920 520
ane
1081 AGL+ O o] IosIAGL
VI ' YONS 1081 50A O|rD 1051 00

4uool
220
20A 4uool
20
1081 AGL+
A h_m_mr T vane
e ved szl 2405k yano TVaNS vaNS VaNS
A A T [0St AGL+
9ed 120 N
-~ 008/71dOH ~ " m
OOA oL 5 JOVEON TVAND VaND
> e P] asuss |
s w 4 m = ¥LOVEON
Em:8|n_<AH_|)\/\,|.v|A e 1ed IA
T . 7 7 g N
Dy S 3 T ol T 5 004
0ed 88N ote oM BT quol| 9AS 62y oon
[e 020 €d ~ 9e
dZ0ZEEON 4uol aon Z esuss |
8L
o) & gug
20N Nzl 10SIDOA 1081 AGL+ s 610
) 20A TvaNo
—— ANN—
s
I nze v
4dosL 210
ano
o3 YQ®
VAND L VANS
oA __}——o0 oA
VAND 4dog} VAND TYAND VAN TYaND
A e L A z_l ~~
) N
IN 910 008/7dOH M ~
= T 5 4 7 VLOVEON |4
obejon Qv [4 DE T Led 9 € 4
+ . ,\/\/\|_ m w + z asuss snq A\
N iz 8 614 von
dZ0ZEEIN [0 1 n mmmw m\wm_ N
ven 4uool
¥10
Q o
101 30A 10SI AG L+
29A

AN1664

Figure A-4. Sensor Board 3 of 3 (Voltage and Current Sensing)

MOTOROLA

24

Tost ano boreuy

dane
SINOD A0g/n0L JuooL
Az o 610
8Ly €L X1ddns damod
Wi WL [2l 1051997 RETTIRNY
sng~oa nﬂ qaIvIo ST
sl 91y L1y o
TosT aNo boTwuy A0O¥/4n00L m
mng\ e OOPNL 9
. £1a ASE/4N0001 2400}
y%_mo i 1051307 m 020 120
z 1081 AGL+ £ 081 AS 1+
Ll SISl o€ | oo eSSy
Al danNo YOS HOSNES
1 C
& ¥ U e
Q309NLdOW Wz_ - —— F-------- FoT3Ta USTAPLOET
Y Jugzz o1 ON| !
% \\v dawr 9o 1 woo ssp [!
we 1 ¢ 190n NI i
19N as -t |
T SA NIH
[w Juoze S lan aan (9 !
ootynw |60 | 0l 8 T R ON g—X
& ¥ ‘ omn 0S¥ o squo 4qno
=Y PW
ook auooL 2001] ¥ o3 |
Q309NLdOW 5] % 913 H < Fe—rn— A0g/AN0L Juo0l
o I 5 K zen o 520 SaNO
B o ey n i
J0A M ATddns ¥amod
/ m w +08bdH M H TavrTIXNY
ugoL] M 23 e
_ I — H < NP 4aNo
g FE oex
W vz ey I or
+za ool ¥ 8¢
Q309NLdON N 918NN chiedl 0GPdH s
8y duoce o1 ON o
o Wi | oo SSA ol g ¥ oee SR
24 1 20A NI Yo —— < € > vE
> A
1 o N b3 F5 e %
[23
P w duoee T 5 | gn aan o cou| ° an e
091N | 8a oyl €0 9 | o oN i
i h 4 [Gyl 6
§oo0L =Y Y0SvdH x
Q309NLdON JuggL g % ose] oz
g0 —— 9| < € 5z
o Va Lm\A,\/}l s e
€ g 82y 2] ez
o ey e] ez
iz
2] oz
0S¥ jar
s
4ugoL S ¥ ose b
e W % e vwF < EaoAE W Nw
cza Hool 8 pxa] | ¥l
Q309NLdOW O - zuizal o led wn e
[
W/ Y Juoze H_’I o1 o)) —— 1w
0 0la W 2 Y SSA 0S¥ o
3 uee I 20A N 16
4 KON as JugoL g A 8
Vi 1 SA NIH o ——= < € L
Eon & oo | W duoze > | an aaa H ERAs 3
ia oyl %] 9| o ON[E 5 % 92y [
h T oIz oz
STeN THEL e 4 L an € 4
HOLOM ool 2] 105120 $05¥dH ¢
Q309NLdOW e ¢ | wozomuion
K _ sane B
Ju00L S oge &
Y 3 29 v
010 b < L
1o T
5 [ooy
zn
e 61 29A SnorooN0o | N0LS
1051 AGL+ 105190A © ey

Figure A-5. Power Stage Board

MOTOROLA

AN1664

25

A.2 Part List of Components

Table A-1 Part List - Microcontroller Board

Component Value/Rating Description Quantity
Ul MC68HC908MR24FU Microcontroller 1
D1 - D3 LED LED 3
X1 4.9152 MHz Crystal 1
R1-R3 1k Resistor 3
R4 10k Resistor 1
R5 10M Resistor 1
P1 10k Potentiometer 1
C1-C5,C8-C10 100nF Capacitor 8
C6, C7 20pF Capacitor 2
Cl1 10uF/16V Electrolytic Capacitor 1
Ji Con40 Connector 1
J2 Con3 Connector 1
SWi1, Sw2 - Switch 2
sw3 - 2 bit DIP Switch 1
All tolerances +£10% for capacitors and +1% for resistors, unless otherwise specified.
Table A-1 Part List - Sensor Board
Component Value/Rating Description Quantity
U3, u1o LM339 Comparator 2
U6 MC34074 Operational Amplifier 1
u7, U9 HCPL7800 Isolation Amplifier 2
us MC33202P Operational Amplifier 1
D1 1N5817 Diode 1
D2, D3 5V6 Zener Diode 2
R11 100k Resistor 1
R12 15k Resistor 1
R13 10k Resistor 1
R14 6k8 Resistor 1
RIS, Rl%’;\iﬂ' R28, 2k2 Resistor 5
MOTOROLA AN1664

26

Table A-1 Part List - Sensor Board

Component Value/Rating Description Quantity

R16 470 Resistor 1
R20, R30 4k7 Resistor 2
R17, R23 13k Resistor 2
R19, R29 1k0 Resistor 2
R22 22 Resistor 1

R24 22k Resistor 1
R25, R36 12k Resistor 2
R26 100 Resistor 1
R27, R32 2k0 Resistor 2
R33 10 Resistor 1

R34 33k Resistor 1

R35 1k Resistor 1

R37 M Resistor 1
R38 5k Resistor 1

P1 4k7 Trimmer 1

C10, C26 100uF/16V Electrolytic Capacitor 2
C11 220nF/100V Capacitor 1
cl2, %124:'3 ((2:12?1 c22, 100nF Capacitor 6
C13, C16, C17,C21 150pF Capacitor 4
C15, C20 10nF Capacitor 2
C19 3n3 Capacitor 1
C25 47uF/25V Electrolytic Capacitor 1

J1 Coni5 Connector 1

J2 Con 40 Connector 1

J3 Con 2 Connector 1

All tolerances +10% for capacitors and +1% for resistors, unless otherwise specified.

AN1664 MOTOROLA
27

Table A-1

Part List - Three Phase HV Power Board

Component Value/Rating Description Quantity
U2, Us, U4, Us, U6, U7, HP4504 Optocoupler 6
u13
U8, U9, U10 IR2112 Gate Driver 3
Q1-Q6 MGP8NG6OED Copack IGBT 6
Dz1 - DZ6 22V Zener Diode 6
D7, D8, DDgiglo’ D11, MUR160 Diode 6
D13 1N4004 Diode 1
R1, R5, R9 1RO Resistor 3
R2, R4, ';i‘st’ R10, 100R Resistor 6
R3, R7, R11 22R Resistor 3
R13 0.1R Current Sense Resistor 1
R15, R16, R17 M Resistor 3
R18 27k Resistor 1
R19 - R24, R31 2k2 Resistor 7
R25 - R30 330 Resistor 6
R32 620 Resistor 1
RN1 8x10k Resistor Net 1
Cl-C6 220nF/63V Capacitor 6
C7a, C7b 4n7/630V- Capacitor 2
C8 100uF/400V Electrolytic Capacitor 1
c10- g;g g;f €21, 100nF Capacitor 11
C19, C24 100uF/50V Electrolytic Capacitor 2
C20 1000uF/35V Capacitor 1
Ji Con40 Connector 1
J2,J3 Con4 Connector 2
J4 Con3 Connector 1
J5 Con2 Connector 1
J6 Conl5 Connector 1
All tolerances +£10% for capacitors and +1% for resistors, unless otherwise specified.
MOTOROLA AN1664

28

APPENDIX B

B.1 Subroutine “PWM Calculation”

I

* Project: CLOSED LOOP 3-PHASE AC DRIVE

*

* Microcontroller: Motorola MC68HC908MR24

*

* Module: PWMCALC.C

* Revision/Date: 1.0/ June 1998

* Description: This routine is 2nd level ISR responding to PWM interrupt.
* Input: New waveform parameters Incval and Amplitude
* Output: Load 3 PWM registers PVAL1, PVAL3, PVAL5
*

* Compiler: C Cross Compiler - COSMIC Software Inc.

*

* Author: Radim VISINKA

* Company: MOTOROLA SPS

* Roznov System Application Laboratory

* Roznov pod Radhostem, Czech Republic

*

*

*

* Copyright (c): MOTOROLA Inc.,1998, All rights reserved.

*

*

*THIS SOFTWARE IS PROVIDED BY MOTOROLA RSAL "AS IS" AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MOTOROLA RSAL OR

* TS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

*NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

*

*/

/* DEFINITION_START */

* Include Header Files */
#include <mr24io.h> [*file contains input/output file */
#include "CONST.H* [*file contains global constants and definitions */
#include <3rdhquad.h> [* contains wave table for one quadrant*/
[* 3rdhquad.h for sine wave with third harmonic */
/* constant unsigned int wavequad[256] */

AN1664 MOTOROLA
29

* Global Variables (External) - 8 bit */
extern unsigned char Amplitude; /¥ 0to 255 gives 0 to 100% modulation*/

* Global Variables (External) - 16 bit */
extern signed int Table_inc; [* table wave increment */

* Local Variables - 8 bit */
unsigned char Table_value; * Value read from wave table */

/* Local Variables - 16 bit */

unsigned int Wave_ptr_a =0; [* wave pointer for phase A */
unsigned int Wave_ptr_b; /* wave pointer for phase B */
unsigned int Wave_ptr_c; * wave pointer for phase C */
unsigned int Quad_ptr; [* quadrant pointer for phase A */
unsigned int Pwmmod_wave; /*wave modulus */

/* DEFINITION_END */

void PWMcalc (void)
{
COPCTL=0x00; * service COP */
PCTL1 &= Oxef; /* clear PWMF bit */
* PHASE A */
Wave_ptr_a +=Table_inc; * load new wave pointer for phase A */
if (Wave_ptr_a < 0x4000) /* QUADRANT 1%
{
Quad_ptr = (Wave_ptr_a)<<2; [* calculate quadrant pointer
from wave pointer */
Table_value = (wavequad[Quad_ptr>>8]); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); [* scale by Amplitude */

PVALL1 = (Pwmmod_wave>>8) + (PWM_MODULUS/2);

[* update PVALL register for QUADRANT 1*

}

else if (Wave_ptr_a < Ox7fff) * QUADRANT 2 */

{
Quad_ptr = (0x7fff - Wave_ptr_a)<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8)); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); * scale by Amplitude */

PVAL1 = (Pwmmod_wave>>8) + (PWM_MODULUS/2);

* update PVALL1 register for QUADRANT 2 */

}
else if (Wave_ptr_a < Oxbfff) * QUADRANT 3*/
{
Quad_ptr = (Wave_ptr_a-0x7fff)<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8]); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); [* scale by Amplitude */
MOTOROLA AN1664

30

PVAL1 = (PWM_MODULUS/2) - (Pwmmod_wave>>8);
* update PVALL1 register for QUADRANT 3 */

}

else [* (Wave_ptr_a < 0xffff) QUADRANT 4 */

{
Quad_ptr = (Oxffff - Wave_ptr_a)<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8)); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); [* scale by Amplitude */

PVAL1 = (PWM_MODULUS/2) - (Pwmmod_wave>>8);
[* update PVAL1 register for QUADRANT 4 */

/* PVAL2 is updated automaticaly because of COMPLEMENTARY PWM MODE */
/*PHASE B */

Wave_ptr_b=Wave_ptr_a + 0x5555;

if (Wave_ptr_b < 0x4000) /¥ QUADRANT 1%

{
Quad_ptr = Wave_ptr_b<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8)); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); * scale by Amplitude */

PVAL3 = (Pwmmod_wave>>8) + (PWM_MODULUS/2);
[* update PVALS3 register for QUADRANT 1 */

}

else if (Wave_ptr_b < 0x7fff) * QUADRANT 2 */

{
Quad_ptr = (0x7fff - Wave_ptr_b)<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8)); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); [* scale by Amplitude */

PVAL3 = (Pwmmod_wave>>8) + (PWM_MODULUS/2);
[* update PVALS register for QUADRANT 2 */

}

else if (Wave_ptr_b < Oxbfff) ¥ QUADRANT 3%/

{
Quad_ptr = (Wave_ptr_b - Ox7fff)<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8)); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); * scale by Amplitude */

PVALS3 = (PWM_MODULUS/2) - (Pwmmod_wave>>8);
[* update PVALS3 register for QUADRANT 3 */

}

else f* (Wave_ptr_b < Oxffff) QUADRANT 4 */

{
Quad_ptr = (Oxffff - Wave_ptr_b)<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8)); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); [* scale by Amplitude */

PVAL3 = (PWM_MODULUS/2) - (Pwmmod_wave>>8);
* update PVALS register for QUADRANT 4 */

AN1664 MOTOROLA
31

[* PVAL4 is updated automaticaly because of COMPLEMENTARY PWM MODE */

¥ PHASE C*/

Wave_ptr_c = Wave_ptr_a + Oxaaaa;

if (Wave_ptr_c < 0x4000) ¥ QUADRANT 1%

{
Quad_ptr =Wave_ptr_c<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8)); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); * scale by Amplitude */

PVALS5 = (Pwmmod_wave>>8) + (PWM_MODULUS/2);
[* update PVALS register for QUADRANT 1 */

}

else if (Wave_ptr_c < 0x7fff) * QUADRANT 2 */

{
Quad_ptr = (0x7fff - Wave_ptr_c)<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8)); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); * scale by Amplitude */

PVALS5 = (Pwmmod_wave>>8) + (PWM_MODULUS/2);

[* update PVALS register
for QUADRANT 2 */

}

else if (Wave_ptr_c < Oxbfff) * QUADRANT 3 */

{
Quad_ptr = (Wave_ptr_c - Ox7fff)<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8)); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); * scale by Amplitude */

PVAL5 = (PWM_MODULUS/2) - (Pwmmod_wave>>8);
* update PVALS register for QUADRANT 3 */

}

else ¥ (Wave_ptr_c < Oxffff) QUADRANT 4 */

{
Quad_ptr = (Oxffff - Wave_ptr_c)<<2; [* quadrant pointer */
Table_value = (wavequad[Quad_ptr>>8]); [* fetch value from table */
Pwmmod_wave = (Table_value * Amplitude); [* scale by Amplitude */

PVAL5 = (PWM_MODULUS/2) - (Pwmmod_wave>>8);

* update PVALS register for QUADRANT 4 */

[* PVALSG is updated automaticaly because of COMPLEMENTARY PWM MODE */

PCTL1 |= 0x02; * set LDOK bit */
}

MOTOROLA

32

AN1664

B.2 Subroutine “V/Hz Ramp”

[* DEFINITION START */

f* Constant Definitions */

#define VOLTS_BOOST 10 * min. voltage for boost = 10% from 255 */
#define FREQ_BOOST 0x0f00 /* boost frequency = 15Hz = 0x0f00 */
#define FREQ_BASE 0x3200 [* frequency base point 50Hz=0x3200 */

[* Global Variables (External) - 8 bit */
extern unsigned char Amplitude; /*0 to 255 gives 0 to 100% modulation */

* Global Variables (External) - 16 bit */
extern signed int Table_inc; [* table wave increment */

extern signed int V_out; [* actual generated frequency */

/* Local Variables - 16 bit */

signed int V_out_abs; /* ABS(V_out) */

unsigned int Boost_slope; /* Boost slope pre-calculation */
unsigned int Temp_var_16; [* temporary 16-bit variable */
unsigned int Amplitude_16; [* temporary 16-bit amplitude */

* Local Variables - 32 bit */
unsigned long Temp_var_32; [* temporary 32-bit variable */

/* DEFINITION END */

/* SUBROUTINE VHZ_RAMP */

I

Based on output from PI controller (V_out = required motor frequency) the routine calculates
the wave increment Incval and voltage scale Amplitude.

These two parameters are inputs to the PWM Calculation routine PWMcalc()
*
void vhz_ramp (void)

{

[* Calculate wave increment Incval for rolling thru wavetable */

Table_inc=V_out>>4; [* divide by 16 to get proper wave increment
in 8.8 format for PWM reload=PWM/4 */

[* Calculate Amplitude according V/Hz ramp */

V_out_abs = abs(V_out);

if (V_out_abs < FREQ_BOOST)
{ *if ABS(V_out) < FREQ_BOOST */

/* Initialise boost of VV/Hz ramp (can be implemented during
program initialisation)*/

AN1664

MOTOROLA
33

Boost_slope = (FREQ_BOOST<<16)/(FREQ_BASE) - (VOLTS_BOOST * 0x028f);
[* 0x028f scales the range of VOLTS_BOOST from 100% to Oxffff */

Temp_var_32 = (long)Boost_slope * (long)V_out_abs;
Temp_var_16 =Temp_var_32/FREQ_BOOST;
Amplitude_16 = Temp_var_16 + (VOLTS_BOOST * 0x028f);

Amplitude = Amplitude_16>>8; /*16to 8 bit*/
}
else
{
if (V_out_abs < FREQ_BASE)
{ [*if FREQ_BOOST < ABS(V_out) < FREQ_BASE */
Amplitude = V_out_abs/(FREQ_BASE>>8);
}
else [*if ABS(V_out) > BASE_FREQ*/
{
Amplitude = Oxff;
}
}
}
MOTOROLA AN1664

34

AN1664 MOTOROLA
35

All products are sold on Motorola’s Terms & Conditions of Supply. In ordering a product covered by this document the Customer agrees to be bound by those Terms
& Conditions and nothing contained in this document constitutes or forms part of a contract (with the exception of the contents of this Notice). A copy of Motorola’s
Terms & Conditions of Supply is available on request.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shallindemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

The Customer should ensure that it has the most up to date version of the document by contacting it local Motorola office. This document supersedes any earlier
documentation relating to the products referred to herein. The information contained in this document is current at the date publication. It may subsequently be
updated, revised or withdrawn.

Mfax is a trademark of Motorola, Inc.
How to reach us:
USA/EUROPE/Locations Not Listed : Motorola Literature Distribution; JAPAN : Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141,
P.O. Box 5405, Denver, Colorado 80217. 1-303—-675-2140 or 1-800—441-2447 4-32-1 Nishi—-Gotanda, Shinagawa—ku, Tokyo, Japan. 81-3-5487-8488

Customer Focus Center: 1-800-521-6274

MfaxO: RMFAX0@email.sps.mot.com — TOUCHTONE 1-602-244-6609 ASIA/PACIFIC : Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
Motorola Fax Back System — US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

— http://sps.motorola.com/mfax/
HOME PAGE: http://motorola.com/sps/

@ MOTOROLA
0 AN1664/D

	Low Cost 3 Phase AC Motor Control System Based On MC68HC908MR24
	1. Introduction
	2. Trends in Variable Speed Drives
	3. System Requirements
	4. System Concept
	5. Hardware Design
	5.1 System Outline
	5.2 Microcontroller Board
	5.3 Power Stage Board
	5.4 Sensor Board
	5.4.1 Speed Sensor
	5.4.2 DC-Bus Voltage Sensor
	5.4.3 DC-Bus Current Sensor

	5.5 Power Supply Board

	6. Software Design
	6.1 Data Flow
	6.1.1 Process Speed Command and LED Control
	6.1.2 Process Acceleration/Deceleration Ramp
	6.1.3 Process Speed Sensor
	6.1.4 Process PI Controller
	6.1.5 Process V/Hz Ramp
	6.1.6 Process PWM Generation
	Phases A-C
	6.1.7 Process Fault Control

	6.2 State Diagram
	6.2.1 Initialisation
	6.2.2 Software Timer
	6.2.3 State-READ_CONST Timeout
	6.2.4 State-PI_CONST Timeout

	6.3 Software Listing

	7. Open Loop Drive
	8. Microcontroller Usage
	9. Conclusion
	Appendix A
	A.1 Schematics
	A.2 Part List of Components
	Appendix B
	B.1 Subrouting "PWM Calculation"
	B.2 Subrouting "V/Hz Ramp"

