
Order this document
by AN1770/D

Rev. 1.0

Motorola Semiconductor Application Note

AN1770
In-Circuit Programming of FLASH Memory
in the MC68HC908GP20

By Grant Whitacre
Microcontroller Division
Austin, Texas

Introduction

This application note describes two methods of programming FLASH
memory in the Motorola MC68HC908GP20 (GP20) microcontroller, a
general-purpose device based on the 68HC08 architecture that has
20 Kbytes of on-board FLASH.

Programming the FLASH array can be done either in user mode or
monitor mode. The information given here details:

• How the FLASH is programmed and erased in-circuit in each of
these two modes

• How the control and protection registers are programmed

• Additional considerations when dealing with this type of memory

To illustrate the GP20’s in-circuit programming capabilities, a sample
program is included which executes programming routines from RAM.
© Motorola, Inc., 1999 AN1770 — Rev. 1.0

Application Note
These RAM routines are loaded in one of two ways:

• When programming in user mode, the routines would be part of
and transferred into RAM by a bigger program residing in FLASH.
This program could be initiated by the user’s main program,
perhaps through the monitoring of an input port, or it could be
loaded into FLASH as a stand-alone seed program which would
later enable re-programming of the entire FLASH array with the
actual user program.

• Alternatively, the RAM routines could be loaded directly into RAM
by an external host with the device in monitor mode.

The main routine of this dual mode program monitors the SCI (serial
communications interface) port when user mode programming, or port A
bit 0 when monitor mode programming, for the input of data and the
address range in FLASH where the data is to be programmed. It then
makes necessary calls to other RAM-loaded routines to do necessary
erasing, programming, and verifying.

A host program’s necessary functionality is also described in this
application note. The one specifically used in the generation of this
document is a Windows application and accommodates both modes of
programming. It is available as a free download from the Motorola web
site, http://mot-sps.com/csic/techhelp/appsw/appsw.htm.

The user will be able to in-circuit program the GP20 in either monitor
mode or user mode with:

• This host program

• Two MC68HC908GP20 RAM programs in S19 format

• A target system that is configured to communicate with a PC host

• A basic understanding of the device and its FLASH memory

Windows is a registered trademark of Mircrosoft in the U.S. and other countries.
AN1770 — Rev. 1.0

2 MOTOROLA

Application Note
Description of FLASH Memory in the MC68HC908GP20
 Description of FLASH Memory in the MC68HC908GP20

Memory Map
FLASH Location

The memory map for the MC68HC908GP20 is shown in Figure 1. Note
that the FLASH memory occupies addresses from $B000 to $FDFF, a
single byte for the block protection register at $FF80, and a block for the
user vectors from $FFDC to $FFFF. The total addressable FLASH
capacity is 20,005 bytes.

$0000
I/O Registers

64 Bytes
↓

$003F

$0040
RAM

512 Bytes
↓

$023F

$0240
Unimplemented

44,480 Bytes
↓

$AFFF

$B000
FLASH Memory

19,968 Bytes
↓

$FDFF

$FE00 SIM Break Status Register (SBSR)

$FE01 SIM Reset Status Register (SRSR)

$FE02 Reserved (SUBAR)

$FE03 SIM Break Flag Control Register (SBFCR)

$FE04 Interrupt Status Register 1 (INT1)

$FE05 Interrupt Status Register 2 (INT2)

$FE06 Interrupt Status Register 3 (INT3)

$FE07 Reserved (FLTCR)

$FE08 FLASH Control Register (FLCR)

Figure 1. Memory Map (Sheet 1 of 2)
AN1770 — Rev. 1.0

MOTOROLA 3

Application Note
$FE09 Break Address Register High (BRKH)

$FE0A Break Address Register Low (BRKL)

$FE0B Break Status and Control Register (BRKSCR)

$FE0C LVI Status Register (LVISR)

$FE0D
Unimplemented

3 Bytes
↓

$FE0F

$FE10 Unimplemented
16 Bytes

Reserved for Compatibility with Monitor Code
for A-Family Parts

↓

$FE1F

$FE20
Monitor ROM

307 Bytes↓

$FF52

$FF53
Unimplemented

45 Bytes
↓

$FF7F

$FF80 FLASH Block Protect Register (FLBPR)

$FF81
Unimplemented

91 Bytes
↓

$FFDB

Note: $FFF6–$FFFD
Also Used for

8 Security Bytes

$FFDC
FLASH Vectors

36 Bytes
↓

$FFFF

Figure 1. Memory Map (Sheet 2 of 2)
AN1770 — Rev. 1.0

4 MOTOROLA

Application Note
Description of FLASH Memory in the MC68HC908GP20
FLASH Control
Register

The FLASH control register is located at $FE08 in the user memory map.
This register provides the means to erase, program, and verify the
FLASH. All bits in this register can be read or written at any time. The
register structure is shown in Figure 2.

The FDIV bits are frequency divide control bits and are set to ensure
proper operation for the charge pump. Its optimum frequency is about
2 MHz and is derived by dividing the internal bus frequency by a value
stored in FDIV1 and FDIV0. Setting of these two bits should be made
according to bus frequency as shown in Table 1.

NOTE: There is no mechanism to step up the pump clock frequency from a bus
frequency lower than 1.8 MHz to attain a charge pump frequency of
about 2 MHz. Also, programming and erasing the FLASH cannot be
done if the charge pump frequency is lower than 1.8 MHz.

BLK1 and BLK0 are block erase control bits and are used to specify the
size and location of a block of FLASH to be erased. Erasing can take
place in chunks of a single row (64 bytes), eight rows (512 bytes),
4 Kbytes, 16 Kbytes, or the entire array. The procedure for erasing any

Address: $FE08

Bit 7 6 5 4 3 2 1 Bit 0

Read:
FDIV1 FDIV0 BLK1 BLK0 HVEN MARGIN ERASE PGM

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 2. FLASH Control Register (FLCR)

Table 1. Charge Pump Clock Frequency
as a Function of Bus Frequency

FDIV1 FDIV0 Pump Clock Frequency Use When Bus
Frequency Is

0 0 Bus frequency ÷ 1 1.8–2.5 MHz

0 1 Bus frequency ÷ 2 3.6–5.0 MHz

1 0 Bus frequency ÷ 2 3.6–5.0 MHz

1 1 Bus frequency ÷ 4 7.2–10.0 MHz
AN1770 — Rev. 1.0

MOTOROLA 5

Application Note
of these blocks of FLASH is discussed in Procedure for Erasing the
FLASH. The setting of the BLK bits corresponds to the erase block as
shown in Table 2.

HVEN is the high-voltage enable bit and provides the control to apply the
charge pump voltage to the cells to be erased or programmed.

The MARGIN bit is used during programming to verify that the page
attempting to be programmed gets programmed adequately. It can only
be set for verification after the HVEN bit is turned off. If it is high when
HVEN is turned on, it will clear automatically. Setting the MARGIN bit
puts the FLASH in a “hard read” state, which ensures that if the FLASH
is verified in this state then it guarantees a good read during normal
operation.

The ERASE and PGM (program) control bits are required to be set when
erasing and programming, respectively. Both cannot be set at the same
time.

Block Protection The block protection register provides a way of preventing a block of
FLASH from being erased or programmed. This register, itself a FLASH
address, has four bits with each bit protecting a progressively larger
block of FLASH starting at $FFFF. Figure 3 shows the register contents
and the FLASH range that is protected by setting each bit.

Erasing this register clears all bits and removes protection from all
blocks.

Table 2. Size of Erase Blocks

BLK1 BLK0 Block Size

0 0 Full array: 20 Kbytes

0 1 Partial array*: 4 or 16 Kbytes

1 0 Eight rows: 512 bytes

1 1 Single row: 64 bytes

* $B000–$BFFF or $C000–$FFFF, depending on bit A14 of address written to
AN1770 — Rev. 1.0

6 MOTOROLA

Application Note
Description of FLASH Memory in the MC68HC908GP20
NOTE: Setting more than one bit is redundant, and three of the bits provide
protection of a FLASH range some of whose locations are not available
in the GP20. Setting bits 0, 1, or 2 protects all of FLASH, and setting only
bit 3 protects all but the lower 1000H bytes.

Protection of any block protects the block protection register because it
is located at address $FF80. The only way to circumvent block
protection to modify FLASH is to enter monitor mode with VTST applied
to the IRQ line upon reset. (See the monitor mode entry in Circuit
Requirements.) When this occurs, all of FLASH, including the block
protection register, can be erased or programmed regardless of block
protection.

NOTE: Since the block protection register is located at $FF80, it is the first byte
in a row whose range is $FF80–$FFBF. There are no other implemented
FLASH locations within this row, so this register can be erased with no
impact to other locations by specifying row erasing with the BLK bits in
the FLASH control register (BLK1 = BLK0 = 1).

To program FLASH in user mode, make sure that the FLASH to be
modified is not block protected; otherwise, turn block protection off as in
the example described here.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 Bit 6 Bit 5 Bit 4 BPR3 BPR2 BPR1 BPR0

Write:

Reset: U U U U U U U U

U = Unaffected by reset. Initial value from factory is 0.

Figure 3. FLASH Block Protect Register (FLBPR)

Table 3. Block Protection Register and Size
and Location of Block Protected

Bit Location Bit Name Address Block Protected

0 BPR0 $B000–$FFFF

1 BPR1 $B000–$FFFF

2 BPR2 $B000–$FFFF

3 BPR3 $C000–$FFFF
AN1770 — Rev. 1.0

MOTOROLA 7

Application Note
Procedure for Erasing the FLASH

The FLASH array is erased as a block, the size of which is determined
by the BLK bits of the FLASH control register, as shown in Table 2.
Follow this step-by-step procedure to erase a block of FLASH reliably.

1. Make sure that the block to be erased is not protected by the
settings in the block protection register. See Block Protection for
a description of clearing protection for a block.

2. Write to the FLASH control register with a bit pattern that sets the
appropriate FDIV bits and BLK bits. Set the ERASE bit at the same
time.

3. Read the block protect register so that the FLASH control logic
can latch its content.

4. Write any data to any FLASH address within the block to be
erased.

5. Set the HVEN bit in the FLASH control register to apply the
programming (charge pump) voltage.

6. Delay for a time, tErase (FLASH erase time), while the
programming voltage is applied. Consult the memory
characteristics information in the electrical specifications section
of MC68HC908GP20 Advance Information, Motorola document
order number MC68HC908GP20/D, for this value and other times
referenced in this application note.

7. Clear the HVEN bit to turn off the programming voltage.

8. Delay for a time, tKill (high voltage kill time), to allow the high
voltage of the charge pump to dissipate.

9. Clear the ERASE bit.

10. Delay for a time, tHVD (FLASH return to read time), before trying
to read from this block of FLASH.

Optionally, an erase verification may be performed after step 10. This
verification would be done with a normal read of each location of FLASH,
and a location would be verified as erased if a value of 0 is read.

NOTE: It is recommended that a row be erased after eight programs of any
page/pages of the row.
AN1770 — Rev. 1.0

8 MOTOROLA

Application Note
Procedure for Programming the FLASH
Procedure for Programming the FLASH

The FLASH array is programmed a page at a time, where a page is
defined as eight contiguous bytes whose first byte is on an 8-byte
boundary. The normal programming sequence includes a verification
step during which the FLASH is put in a “margin read” verification mode.
In this mode, the control gates are held at a lower voltage than in a
normal read. To allow sensing of the lower cell current, reads in this
mode last eight machine cycles longer than a normal read.

Follow this procedure to reliably program and verify a page of FLASH.

1. Make sure that the page to be programmed is not within a
protected block. See the block protection section for a description
of clearing protection for a block.

2. Write to the FLASH control register with a bit pattern that sets the
appropriate FDIV bits. Set the PGM bit at the same time.

3. Read the block protect register so that the FLASH control logic
can latch its content.

4. Write individual data to each of the eight bytes of the page to be
programmed.

5. Set the HVEN bit in the FLASH control register to apply the
programming (charge pump) voltage.

6. Delay for a time, tPROG (FLASH program time), while the
programming voltage is applied.

7. Clear the HVEN bit to turn off the programming voltage.

8. Delay for a time, tHVTV (FLASH HVEN low to MARGIN high time),
to allow enough time between applying high voltage and doing a
verification.

9. Set the MARGIN bit to initiate verification mode.

10. Delay for a time, tVTP (FLASH MARGIN high to PGM low time).

11. Clear the PGM bit.

12. Delay for a time, tHVD (FLASH return to read time), before trying
to read from this block of FLASH.
AN1770 — Rev. 1.0

MOTOROLA 9

Application Note
13. Read the individual data in each of the eight byte locations to
compare to what was intended to be programmed.

14. Clear the MARGIN bit.

15. Repeat steps 2 through 14 for each page until the data matches.

Practical Considerations for Programming, Verifying, and Erasing

Life Expectancy
in Terms
of Program/Erase
Cycling

The FLASH in the MC68HC908GP20 has an endurance specification of
100 erase/program cycles. Therefore, it is not suited for short-term or
temporary non-volatile parameter storage. This limitation could be
alleviated somewhat by devising a scheme to move the parameter
storage area when it approaches the 100-cycle limit.

For example, if a row (64 bytes) of parameter data is to be stored and
updated on a frequent basis and the program is short enough to occupy
less than two-thirds of the 20-Kbyte capacity, then a method of moving
the location of the parameter block when the number of erase/program
cycles approach 100 (cycle count could be stored in this block) could be
implemented. In this example, this would effectively increase the number
of parameter updates to 10,400.

Unused FLASH: 1/3 x 19,968 bytes = 6656 bytes = 104 rows

100 cycles/row x 104 rows in the unused FLASH space = 10,400
erase/program cycles

Since the smallest block erased is an entire row, whenever one byte is
changed, the entire row would need to be erased and reprogrammed.
Because of this limitation with FLASH, using it to store non-volatile
temporary values is of limited usefulness.
AN1770 — Rev. 1.0

10 MOTOROLA

Application Note
Programming the MC68HC908GP20 in User Mode
Margin
Programming

Margin, or bump, programming is a method of FLASH programming
which is done in successive periods of relatively short duration, such as
1 millisecond. After each “bump,” the page that is attempted to be
programmed is checked in margin mode, and if verification of any byte
in the page fails, the entire page is re-programmed, without erasing, for
another bump period. This process is repeated until all bytes in the page
pass verification.

Bump programming minimizes the programming time, not only for the
user’s benefit but also for the endurance of the FLASH. By minimizing
the amount of time that a FLASH cell is exposed to the programming
voltage, the life of the cell is maximized and the possibility of disturbing
(inadvertently programming) neighboring cells by an excessively long
programming time is minimized. The RAM program contained in this
application note utilizes this method of programming, as does the
information in Procedure for Programming the FLASH.

Programming the MC68HC908GP20 in User Mode

Program Algorithm Included in this application note is a program that demonstrates the
capability to perform in-circuit programming. By setting assembler
directives, this program can be loaded into FLASH and run in user mode,
so no special mode entry hardware is required. After an initialization and
loading of the RAM routine executed from FLASH, initiated either upon
reset or subroutine call from the user’s existing main program, the
program branches to a place in RAM where program execution
resumes.

From RAM, the SCI serial communication port is monitored for the
download of data to be programmed into FLASH and the starting
address to place this data. After this data is received, the main RAM
routine calls necessary subroutines, also located in RAM, to perform
necessary FLASH erasing, programming, verification, and memory
dumping. Up to a row (64 bytes) of data can be downloaded at a time,
although there are a few stipulations when downloading data to be
programmed.
AN1770 — Rev. 1.0

MOTOROLA 11

Application Note
They are:

• All data downloaded must be intended to reside within a single row
boundary. This means that the start address must be divisible by
64 when an entire row is to be programmed.

• If data forming less than an entire row is downloaded, the previous
rule still applies. All intended addresses must be within a single
row boundary. Additionally, since programming takes place eight
bytes at a time, a multiple of eight bytes should be downloaded
and the starting address must be on a page (8-byte) boundary.

• The program checks to see if all intended addresses are erased
before attempting to program. If any cell is not erased, then the
entire row is erased. So, if programming less than an entire row,
remember that the entire row will be erased if the block designated
for reprogramming is not completely erased.

• At the completion of each block programming, the data is read
from the current row and all 64 bytes of the row are sent out the
SCI port, even if less than the entire row was reprogrammed.

This main RAM routine executes a continuous loop so that multiple data
downloads can take place without the program ever leaving RAM. In
fact, the entire FLASH array can be (re)programmed in this manner. At
the completion of programming, the device will need to be reset to take
it out of the SCI monitoring routine and to execute the new code in
FLASH.

After receiving data to be programmed and loading RAM with necessary
programming code, program execution jumps to RAM to do the actual
FLASH programming.

The program consists of the functions listed here:

• Initialize all variables, ports, PLL (if selected), and SCI.

• Transfer these subroutines to RAM:

– LOADDATA — Polls the SCI for data to be programmed, the
start address, and length of data array (see Message
Structure to Communicate between Host and GP20). This
routine also calls the other RAM routines as needed.
AN1770 — Rev. 1.0

12 MOTOROLA

Application Note
Programming the MC68HC908GP20 in User Mode
– DUMPROW — Dumps the contents of the current row (64
bytes) out the SCI

– PRGFLSH — Controls the routine to program a row of FLASH

– ERACHK — Checks to see if FLASH needs to be erased and
does so, if necessary

– DELNUS — Delays for n microseconds (n preloaded into H:X)

– PRGPAGE — Programs a page (eight bytes) of FLASH

• Execute code to program FLASH out of RAM, making necessary
calls to other RAM routines to perform actual
programming/erasing.

• Return to SCI port monitoring loop in RAM

RAM Utilization
and Program
Execution

Since program execution cannot occur out of a FLASH block at the same
time it is being modified, and since this device has only one block of non-
volatile memory, execution of code to modify the FLASH must be from
RAM (or from monitor ROM which will be discussed later).

The program which resides in FLASH loads the necessary programming
and erasing modules to RAM and then jumps to the main RAM routine
which, when appropriate, makes calls to other RAM modules. Since
RAM capacity in the GP20 is 512 bytes, the code executed in RAM is
kept to that size.

Therefore, only the programming, erasing and dumping routines, the
array of data to be programmed, necessary variables, and the stack fit
into RAM. Almost all of RAM is used by the program, variables, message
buffer, and stack.
AN1770 — Rev. 1.0

MOTOROLA 13

Application Note
The RAM utilization map is found in Table 4.

Assembler
Directives

A few switches in the program are implemented through assembler
directives. They were left in the program for mode configuration and
ease of user testing, especially in an emulation environment.

The directive constant and its use and meaning are outlined in Table 5.

Table 4. RAM Utilization Map

Function Allocated Space Address Range

Unused 16 bytes $40–$4F

Download size 1 byte $50

Start address of block to program 2 bytes $51–$52

Number of bytes to program 1 byte $53

Data array 64 bytes $54–$93

Variables 20 bytes $94–$A7

RAM routines 56 bytes $A8–$DF

Stack 32 bytes $E0–$FF

RAM routines 320 bytes $100–$23F

Table 5. Assembler Directives

Assembler
Constant Use

MONPROG
If set, all (necessary) routines will be addressed in RAM initially.

This version would be used as the S19 record file that is
downloaded into RAM in monitor mode for FLASH programming.

TESTMOD
When set, changes all STA to LDA in programming/erase routines.

Done to prevent an illegal write error when emulating.
Programming is not attempted so any verification step will fail.

ERSDTST
When set, always causes erase verification to be true. Done to

exercise good loop logic.
AN1770 — Rev. 1.0

14 MOTOROLA

Application Note
Programming the MC68HC908GP20 in User Mode
Other Application-
Specific Memory
and I/O Equates

Several other constants are used in the program which can be modified
as desired by the user. This may be necessary if the user wishes to
incorporate this program into an existing program which is already fixed
in memory.

Table 6. Program Constants

Constant Default
Value Other Possible Settings Description

CPUSPD 2 4, 8
Specifies the bus frequencies:
2 = 2.45 MHz, 4 = 4.92 MHz, 8 = 8.0 MHz

RAM $50 $40–$4F
Specifies the start address of RAM. All RAM

locations are offset from this value.

STCKSIZ $23
Dependent on location of

branch to page 2
Specifies the amount of RAM reserved for the

stack

PRGSTRT $B000 Anywhere in FLASH
Start of the FLASH program that launches the

RAM program

RAMPRG $A8
Anywhere after the variable

space
Start of RAM program. Set here, just after the

variable space

RAMPRSZ $1A7
Any value larger than the RAM

program size plus the stack
size, up to the end of RAM

Length of the RAM program plus the stack area

TESTDAT $C0 Any byte value

Value of all bytes, except size bytes, used in
test mode instead of downloaded value. Set
at this value so that the first address used
($C0C0) is on a row boundary

PRGTRIES 20 Any value greater than 0
Number of attempts to program a page

of FLASH before giving up

VTPGM
 VHLFTER

VTKILL
VTHVD

 VTHVTV
VTVTP

1000
50,000

200
50
50

 150

See programming timing
specification in data book

Programming times

PLLCHK 0 1
Input port used to check if PLL is to be initiated;

initiated when port is high

P, E, NHI,
NLO, L, R

0, 1, 1,
$2C,

$80, 1

See PLL setup procedure
 in data book

PLL setup parameters; values used allow
external clock of 32.768 kHz to be stepped up
to 2.45-MHz bus frequency
AN1770 — Rev. 1.0

MOTOROLA 15

Application Note
Proper Clock
Selection

A constant called CPUSPD is set in the application-specific memory and
I/O (input/output) equates section of the program. Its purpose is to allow
the programmer to select one of three bus frequencies for this constant,
which directly affects how the SCI, the FLASH control register, and
timing constants are set up.

In particular, based on a CPUSPD setting of 2, 4, or 8, corresponding to
an internal frequency of 2.4576, 4.9152, or 8.0 MHz, the SCI is set to
communicate at 9600 baud (assuming the selection of the internal bus
clock as the SCI clock source (see SCI Setup) and the FDIV bit in the
FLASH control register is set to cause the closest to the optimum setting
of the charge pump frequency of 2 MHz.

If the external clock frequency is such that it causes a bus frequency
lower than required for proper charge pump operation, the PLL can be
enabled. The PLL is turned on upon initial program execution if port B,
bit 0 is set. In this event, the program assumes an external clock of
32.768 kHz and steps this up to 2.4576-MHz bus frequency. An
initialization routine sets the baud rate for the SCI to 9600 and the FDIV
divider to divide-by-1 for a charge pump frequency of 2.4576 MHz.

Make sure that the CPUSPD constant described earlier is set to 2 if the
PLL is enabled. Also, if an external clock frequency other than
32.768 kHz exists that would necessitate the use of the PLL (external
clock less than 8 MHz), then the PLL setup and this SCI/FDIV
initialization routine (SFINIT) will have to be modified for proper
communication and charge pump frequency requirements. (See note in
FLASH Control Register.)

PLL Setup Since this is not an application note on the use and control of the PLL,
the description here is brief. The settings used are justified with
calculations, and the means of making these settings are shown. The
significance of each bit in each register is not covered. Refer to the clock
generator module section in the GP20 data manual for details about
proper setup.

The six control and status registers for the GP20’s PLL are shown in
Figure 4.
AN1770 — Rev. 1.0

16 MOTOROLA

Application Note
Programming the MC68HC908GP20 in User Mode
Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0

$0036
PLL Control Register

(PCTL)

Read:
PLLIE

PLLF
PLLON BCS

PRE1 PRE0 VPR1 VPR0

Write:

Reset: 0 0 1 0 0 0 0 0

$0037
PLL Bandwidth Control

Register (PBWC)

Read:
AUTO

LOCK
ACQ

0 0 0 0
R

Write:

Reset: 0 0 0 0 0 0 0 0

$0038
PLL Multiplier Select High

Register (PMSH)

Read: 0 0 0 0
MUL11 MUL10 MUL9 MUL8

Write:

Reset: 0 0 0 0 0 0 0 0

$0039
PLL Multiplier Select Low

Register (PMSL)

Read:
MUL7 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0

Write:

Reset: 0 1 0 0 0 0 0 0

$003A
PLL VCO Select Range

Register (PMRS)

Read:
VRS7 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0

Write:

Reset: 0 1 0 0 0 0 0 0

$003B
PLL Reference Divider

Select Register (PMDS)

Read: 0 0 0 0
RDS3 RDS2 RDS1 RDS0

Write:

Reset: 0 0 0 0 0 0 0 1

= Unimplemented R = Reserved

Notes:
1. When AUTO = 0, PLLIE is forced clear and is read-only.
2. When AUTO = 0, PLLF and LOCK read as clear.
3. When AUTO = 1, ACQ is read-only.
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.
5. When PLLON = 1, the PLL programming register is read-only.
6. When BCS = 1, PLLON is forced set and is read-only.

Figure 4. PLL Control and Status Registers
AN1770 — Rev. 1.0

MOTOROLA 17

Application Note
The intention is to boost the external clock of 32.768 kHz up to 2.45 MHz
bus frequency. This is done through these steps:

• Set the desired VCO frequency to four times the desired bus
frequency.

fVCLKDES = 4 x fBUSDES = 4 x 2.4576 MHz = 9.83 MHz

• Let the reference divider, R, which is represented by RDS3–RDS0
in the PCTL register, be set to 1 (default).

• Let the power-of-two multiplier, P, which is represented by
PRE1–PRE0 in the PCTL register, be set to 0 (default) for this
VCO frequency.

• Calculate the VCO frequency multiplier, N, which is represented
by MUL11–MUL0 in the PMSH and PMSL registers, with this
formula:

N = round[R * fVCLKDES / fRCLK] = 300 (12 CH)

where fRCLK is the reference (external) frequency of 32.768 kHz

• Let the VCO power-of-two range multiplier, E, which is
represented by VPR1–VPR0 in the PCTL register, be set to 1 for
this VCO clock frequency.

• Calculate the center-of-range linear multiplier, L, which is
represented by VRS7–VRS0 in the PMRS register, with this
formula:

L = round[fVCLK / (2E * fNOM)] = round[9.83/(1*38.4 kHz)] = 128 (80 H)

where fNOM is the range nominal multiplier for all operating voltage

ranges

The previous settings will produce a VCO-programmed center-of-range
frequency of:

fVRS = L x 2E x fNOM = 128 x 2 x 38.4 kHz = 9.83 MHz

The only hardware requirements for using the PLL, aside from the
oscillator circuit, are a filter capacitor on the CGMXFC pin, a bypass
capacitor on the VDDA pin, and a pullup resistor of about 10 K on PB0.
Consult the data manual for recommended values for the capacitors.
AN1770 — Rev. 1.0

18 MOTOROLA

Application Note
SCI Setup
SCI Setup

Registers The SCI can be clocked from the external oscillator or from the internal
bus clock. Selecting the clock is done through software by programming
a bit, SCIBDSRC, in the CONFIG2 register. The default for this bit
selects the external oscillator as the SCI clock source. If the external
clock is very slow and is being stepped up by the PLL, as in this
application, then it is necessary to use the internal bus as the clock
source for the SCI to get a reasonably fast baud rate. This application
does this to be able to derive 9600 bps transfer rate when the oscillator
is at 32.768 kHz.

Figure 5 shows the structure and content of the CONFIG register.
Description of the other two bits in this register will not be addressed
here, other than to say that the PMPSGVLVEN bit must be kept at its
default state when operating with a VDD above 3.6 volts.

Several registers can be used to configure and monitor the SCI module.
Most of the settings do not need to be changed from the default values
for this application, so this discussion focuses on the values that need to
be set or changed from the default.

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0 PMPSGV-
LVEN

OSC-
STOPENB

SCIBD-
SRCWrite:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 5. Configuration Register 2 (CONFIG2)
AN1770 — Rev. 1.0

MOTOROLA 19

Application Note
The control and status registers for the SCI are shown in Figure 6.

Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0

$0013
SCI Control Register 1

(SCC1)

Read:
LOOPS ENSCI TXINV M WAKE ILTY PEN PTY

Write:

Reset: 0 0 0 0 0 0 0 0

$0014
SCI Control Register 2

(SCC2)

Read:
SCTIE TCIE SCRIE ILIE TE RE RWU SBK

Write:

Reset: 0 0 0 0 0 0 0 0

$0015
SCI Control Register 3

(SCC3)

Read: R8
T8 DMARE DMATE ORIE NEIE FEIE PEIE

Write:

Reset: U U 0 0 0 0 0 0

$0016
SCI Status Register 1

(SCS1)

Read: SCTE TC SCRF IDLE OR NF FE PE

Write:

Reset: 1 1 0 0 0 0 0 0

$0017
SCI Status Register 2

(SCS2)

Read: BKF RPF

Write:

Reset: 0 0 0 0 0 0 0 0

$0018
SCI Data Register

 (SCDR)

Read: R7 R6 R5 R4 R3 R2 R1 R0

Write: T7 T6 T5 T4 T3 T2 T1 T0

Reset: Unaffected by reset

$0019
SCI Baud Rate Register

(SCBR)

Read:
SCP1 SCP0 R SCR2 SCR1 SCR0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented R = Reserved U = Unaffected

Figure 6. SCI Control and Status Registers
AN1770 — Rev. 1.0

20 MOTOROLA

Application Note
SCI Setup
This procedure is used in the program to set up the SCI:

• Enable the SCI by setting the ENSCI bit in SCC1.

• Enable both transmitting and receiving by setting bits TE and RE
of SCC2.

• Set the baud rate for 9600 by writing to the baud rate register
(SCBR) with a value that is dependent on the bus frequency, as
shown in Table 7.

All other settings are left as the defaults. Note that the program selects
and programs the baud rate register based on the value of the CPUSPD
constant as described in Proper Clock Selection.

On-Board Circuitry
Required
for RS-232
Communication

To communicate to another device over an RS-232 line, voltage levels
need to be adjusted so that the 0- or 5-volt signal transmitted or received
by the GP20 controller gets converted to the ±12-volt signal used by the
programming device and vice versa. This is implemented by a level
translator IC (integrated circuit) and a few capacitors. A possible external
circuit for this interconnection is shown in Figure 7.

NOTE: If another controller or other device is used which uses 0-volt and 5-volt
signal levels for serial communication, then a level translator is not
needed.

Table 7. Baud Rate Register Settings

Bus Frequency SCP1 SCP0 SCR2 SCR1 SCR0 Written
 to SCBR

8.0 MHz 1 1 0 0 0 $30

4.9152 MHz 0 0 0 1 1 $03

2.4576 MHz 0 0 0 1 0 $02
AN1770 — Rev. 1.0

MOTOROLA 21

Application Note
Figure 7. RS-232 Circuit for SCI Serial Communication

Message Structure
to Communicate
between Host
and GP20

The structure of the data sent to the GP20 is simple, consisting of the
components in Table 8.

Be aware that only the number of bytes specified in the first byte will be
downloaded, so if byte 4, which specifies the number of bytes to be
programmed is greater than the value in byte 1, erroneous data will be
programmed. Also, if fewer than the number of bytes specified in byte 4
are included in the data block, erroneous data will be programmed.

NOTE: If byte 4 is equal to 0, then nothing will be programmed. But the content
of the row referenced by the first address bytes will be uploaded to the

+

+

+
MC145407

6

5

2

4

3

1

DB-25
2

3

7

20

18

17

19

16

15

VDD10 µF

10 µF10 µF

10 µF
+

MC68HC908GP20

RxD
TxD

Table 8. Message Structure

Message Byte
Location Description Final RAM

Location

1
Count of the total number of bytes

to be downloaded, including this byte
$50

2–3
First address where the following data is

to be programmed
$51–$52

4

Number of bytes to be programmed, or $00
to just dump this referenced row, or a value
between $80 and $FF to erase the entire
FLASH array

$53

5–68 Locations for 64 bytes of data to be programmed $54–$93
AN1770 — Rev. 1.0

22 MOTOROLA

Application Note
SCI Setup
host. This first address, in this case, need not be the starting address for
this row, but the 64 bytes downloaded will be within the row boundary.
For example, if address $B3B3 is downloaded with byte 4 being 0, then
the 64 bytes in the range $B380–$B3BF will be downloaded. This may
be useful when performing host verification without programming.

Note also that if byte 4 is a value between $80 and $FF, then the entire
FLASH array will be erased. In this case, the first row of the erased
FLASH ($B000–$B03F) is uploaded.

Uploads will not have header bytes. Instead, they will contain only 64
data bytes. The host message format should be sent with the same
protocol for which the SCI has been initialized, namely 9600 baud, one
start bit, one stop bit, and no parity.

Host Program Any host program can be used to program a GP20 that is executing this
FLASH programming program, provided that it conforms to the
communication and message structure requirements specified in the
Message Structure to Communicate between Host and GP20. A
Windows-based program has been developed for in-circuit
programming of the GP20 specifically for this program and this
application note. It can be downloaded at no cost from the Motorola web
site http://mot-sps.com/csic/techhelp/appsw/appsw.htm.

CAUTION: The installation and use of this host program is self-explanatory and, in
fact, an explanation will not be offered. That is, since it is not a Motorola
development tool product, no support is provided for the use of this
program, and its use is at the user’s risk.
AN1770 — Rev. 1.0

MOTOROLA 23

Application Note
Programming the MC68HC908GP20 in Monitor Mode

General The MC68HC908GP20, like all other HC08 Familiy devices, contains a
monitor utility which allows a host to control the device. Only a few very
basic, low-level instructions are necessary and available to support this
remote control. With the use of the six supported instructions, any
location in the memory map can be read, any RAM location can be
written to, or a small program can be loaded into and executed from the
RAM area. One of the six instructions, READSP, allows for the reading
of the stack pointer location, thereby giving the host control of where
execution commences upon issuance of another instruction, RUN.
Monitor mode is necessary for programming a blank device, since user
mode programming requires an initial program in FLASH to load up the
FLASH programming routines in RAM and jump to them for execution.

These monitor commands can be used to program the FLASH in the
GP20. A couple of approaches can be adopted to implement monitor
mode programming. One can use a host program to directly control the
reading and writing of control registers, write to specific locations in
FLASH, and cause the necessary delays during the FLASH
programming cycle by only using the six monitor mode commands by a
host program or user interface. The overhead here is the serial
transmission time for each command. An alternate approach is to load a
RAM program and then start its execution using the monitor mode
commands. The RAM program monitors the same I/O (input/output)
port, port A bit 0, for serial data/address transfers as that used when
communicating with the monitor. Because of its inherent efficiency and
its similarity to the user mode RAM program, this latter approach is what
is used in this application note.

Serial communication between host and the GP20 in monitor mode is
half-duplex where both transmission and reception of data is through a
single bit port. The following sections discuss the circuit,
communications, and security requirements to enter and use the GP20’s
monitor.

Circuit
Requirements

The schematic in Figure 8 shows the recommended circuit to enable
entry into monitor mode for the 908GP20.
AN1770 — Rev. 1.0

24 MOTOROLA

Application Note
Programming the MC68HC908GP20 in Monitor Mode
Figure 8. Monitor Mode Circuit Requirements

+

+

+

VDDA

MC145407

MC74HC125

RST

IRQ

VDDA

CGMXFC

OSC1

OSC2

PTA7
VSS

VDD

PTA0

VDD

10 kΩ

0.1 µF

10 kΩ

6

5

2

4

3

1

DB-25
2

3

7

20

18

17

19

16

15

VDD

VDD

VDD10 µF

10 µF10 µF

10 µF

1

2

4

7

14

3

0.1 µF

PTC3VDD

B

A
(SEE NOTE 1)

56

+

VDD

PTC0

PTC1

68HC08

$FFFF

$FFFE

RESET VECTORS

VSSAD/VREFL

VSSA

VDDAD/VREFH

D

C

C

C

D

D

6–30 pF

6–30 pF

32.768 kHz XTAL

10
M

Ω

SW2

SW1

SW4

SW3
(SEE NOTE 2)

(SEE NOTES 2

(SEE NOTE 2)

(SEE NOTE 3)

Notes:
1. For monitor mode entry when IRQ = VTST:

SW1: Position A — Bus clock = CGMXCLK ÷ 4 or CGMVCLK ÷ 4
SW1: Position B — Bus clock = CGMXCLK ÷ 2

2. SW2, SW3, and SW4: Position C — Enter monitor mode using external oscillator
SW2, SW3, and SW4: Position D — Enter monitor mode using external XTAL and internal PLL

3. See Table 9 for IRQ voltage level requirements.

10 k

0.
01

µF

0.47 µF

VTST

330 kΩ

AND 3)

C

AN1770 — Rev. 1.0

MOTOROLA 25

Application Note
Table 9 shows the requirements and options for entering monitor mode.
In short, to enter monitor mode when the reset vector is not blank, PTC0
must be set high and PTC1 must be low. If the reset vector
($FFFE–$FFFF) is blank, then monitor mode can be entered without
having high voltage (VTST = VDD + 2.5 V) on the IRQ pin and any special
configuration of port C pins. In this situation, the monitor checks to see
if IRQ is low and if so, initializes the PLL for 2.4576-MHz bus frequency
based on a 32.768-kHz oscillator frequency.

If the reset vectors are non-zero, then high voltage on IRQ is necessary
and the automatic initialization of the PLL is not performed. This means
that if the device is already programmed, then not only is test voltage
required to get into monitor mode, but port C pins must be correctly
configured and an external clock must be provided that can generate the
desired internal bus frequency and baud rate without the use of the PLL.
Of course, one could use the monitor commands to initiate the PLL, but
this presupposes that a host can communicate with the device to set up
the PLL. If an external clock of 32.768 kHz is used, the initial baud rate
will be 64 bps.
AN1770 — Rev. 1.0

26 MOTOROLA

A
N

177

M
O

T
O

R
O

LA
27

A
pplication N

ote
P

rogram
m

ing the M
C

68H
C

908G
P

20 in M
onitor M

ode

rial
ication

Comment
Baud

Rate(2) (3)

0 No operation until
reset goes high

9600 PTC0 and PTC
 voltages only
required if
IRQ = VTST;
PTC3 determines
frequency divider

DNA

9600 PTC0 and PTC1
voltages only
required if
IRQ = VTST;
PTC3 determines
frequency divider

DNA

9600 External frequency
always divided by 4

DNA

9600 PLL enabled
(BCS set)
in monitor codeDNA

— Enters user
mode — will
encounter an illegal
address reset

— Enters user mode
0 —
 R

ev. 1.0

Table 9. Monitor Mode Signal Requirements and Options

IRQ RESET
$FFFE/
$FFFF

PLL PTC0 PTC1 PTC3
External

Clock(1) CGMOUT
Bus

Frequency
COP

For Se
Commun

PTA0 PTA7

X GND X X X X X X 0 0 Disabled X X

VTST VDD
or

VTST

X OFF 1 0 0 4.9152
MHz

4.9152
MHz

2.4576
MHz

Disabled 1 0

X 1

VTST VDD
or

VTST

X OFF 1 0 1 9.8304
MHz

4.9152
MHz

2.4576
MHz

Disabled 1 0

X 1

VDD VDD $0000 OFF X X X 9.8304
MHz

4.9152
MHz

2.4576
MHz

Disabled 1 0

X 1

GND VDD $0000 ON X X X 32.768
kHz

4.9152
MHz

2.4576
MHz

Disabled 1 0

X 1

VDD
or

 GND

VTST $0000 OFF X X X X — — Enabled X X

VDD
or

GND

VDD
or

VTST

Non-zero OFF X X X X — — Enabled X X

Notes:
1. External clock is derived by a 32.768-kHz crystal or a 4.9152/9.8304-MHz off-chip oscillator.
2. PTA0 = 1 if serial communication; PTA0 = X if parallel communication
3. PTA7 = 0 → serial, PTA7 = 1 → parallel communication for security code entry
4. DNA = does not apply, X = don’t care

Application Note
Communication Protocol

The communication format which must be used when communicating
with the GP20 in monitor mode is a non-return-to-zero mark/space
format. The data format is one start bit, eight data bits, and one stop bit.
Since the device probably will be set up to communicate at 9600 bps, the
host should be set up to do the same.

Whatever the source of the reference clock, remember that the baud
rate at which the device communicates is always the bus frequency
divided by 256. This requires that if 9600 bps is desired, then the internal
bus frequency must be 2.4576 MHz.

This frequency can be achieved by one of three means:

• Using an external oscillator at a frequency of 4.9152 MHz with
PTC3 low

• Using an external oscillator at a frequency of 9.8304 MHz with
PTC3 high

• Using an external oscillator at a frequency of 32.768 kHz with the
IRQ pin low during reset to turn on the PLL; only offered when
reset vector is low

NOTE: The monitor mode serial interface uses a “bit banged” serial bit stream
instead of the dedicated SCI protocol. This constrains the monitor mode
baud rate, and, therefore, the bus frequency, to identically match the
host baud rate. For example, a bus frequency of 2.5 MHz would yield a
baud rate of 9766, which is within tolerance for the SCI but will not work
with the monitor mode. This is the reason monitor mode frequencies are
multiples of 2.4576 MHz.

The monitor understands and processes six different commands.
Table 10 lists the commands, their functions, their opcode, and the total
number of bytes required to send the command.

.

AN1770 — Rev. 1.0

28 MOTOROLA

Application Note
Communication Protocol
It is important to note a couple of things regarding the host-to-monitor
communication. They are:

• First, if using the circuit described in the prior section to connect to
port A bit 0, then there will be a loop-back of the data from the
host’s transmit port to its receive port. This needs to be dealt with.

• Second, each command or data byte sent to the GP20 is echoed
back to the host exactly one bit time after the stop bit for that byte
is received. Therefore, adequate delay must be built into the host
program to ensure that the next byte transmitted is sent at least
one bit time after the echoed byte is received.

If at any time the received byte does not match what was sent, the
command to abort execution of the last command can be sent by the
host. This command is in the form of a break signal, which consists of 10
low bits including the start bit sent within 11 bit times of having received
the echo of the last byte of the command to be aborted.

A complete command, with any follow-on address and/or data, must be
sent before a break can be sent. Therefore, if an error is perceived after
the echo of any byte of a command, the transmission of the entire
command should be completed, followed by the transmission of the
break signal. A full break signal will be echoed back to the host after a
2-bit time delay of having received one.

Also, note that the break signal sent by the host does not have to be
10 bits long and does not have to start exactly one bit time after a data

Table 10. Monitor Mode Command Set

Command Function Opcode Number of
Bytes Sent Returned

READ Read memory $4A 3 Value read; 1 byte

WRITE Write to memory $49 4 None

IREAD Indexed read of memory $1A 1 Two values read; 2 bytes

IWRITE Indexed write to memory $19 2 None

READSP Read stack pointer $0C 1 Address of stack pointer; 2 bytes

RUN Run user program $28 1 None
AN1770 — Rev. 1.0

MOTOROLA 29

Application Note
byte echo is received. All that is necessary is that at least one low bit,
like the start bit of a transmitted byte, is sent within1-bit time and within
the 11-bit time period following the reception of the echo of the last byte
of a command. At this point, the monitor code waits for the host to
relinquish PTA0 by sensing a high signal after the low duration, and then
it echoes a complete break signal to the host.

Refer to the GP20 data book, Motorola document order number
HC908GP20GRS/D, for timing diagrams and further description of each
of the six commands and break signal. Most of the commands are easily
understood, but the sequence of operation to start execution of a
program via the RUN command is worth discussing.

Follow this procedure to set up the stack and start execution of a loaded
RAM program. This procedure assumes that the start of the RAM routine
resides in the first page of RAM.

1. Issue the read stack pointer command ($0C).

2. Monitor returns the high byte and then the low byte of the (SP+1)
location. Ignore the high byte (it will be 0, since the stack pointer
will be in the first page of memory) and add 4 to the low byte to
determine the location to write the high byte of the RAM routine
start address. Add 1 to this location value to determine the
locations to write the low byte of the RAM routine start address.

3. Registers may be preloaded by writing their intended value to
these locations:

4. Write each of the values in step 3 to the appropriate locations
using WRITE and IWRITE commands.

5. Issue the RUN command.

X (MSB) (SP+1)

CCR (SP+1) + 1

ACC (SP+1) + 2

X (LSB) (SP+1) + 3
AN1770 — Rev. 1.0

30 MOTOROLA

Application Note
Security Requirements
Example sequence:

To start execution of a RAM routine with a start location of $A8, with all
registers preloaded to $00, and the condition code register preloaded
with $68:

1. Read stack pointer to get (SP+1) high byte
and (SP+1) low byte ($0C)

2. Write $00 to (SP+1) low byte ($49, $00, [(SP+1) low byte], $00)

3. Indexed write $68 to (SP+1) low byte+1 ($19, $68)

4. Indexed write $00 to (SP+1) low byte+2 ($19, $00)

5. Indexed write $00 to (SP+1) low byte+3 ($19, $00)

6. Indexed write $00 to (SP+1) low byte+4 ($19, $00)

7. Indexed write $A8 to (SP+1) low byte+5 ($19, $A8)

8. Issue RUN command. ($28)

Security Requirements

The monitor has a security feature which requires the host to input a
correct string of data before it can gain access to, and control of, the
GP20. Without entering the exact sequence of data, which must match
the data contained at locations $FFF6–$FFFD, access to the FLASH
memory is disabled.

The 8-byte data stream may be entered any time after 256 cycles have
elapsed following the rising edge of reset. The data and timing
constraints must conform to the same protocol as stated in the previous
section. The monitor will echo each byte input after a 1-bit time delay and
the following byte entry must be at least two bit times after transmission
of the echoed byte.

After all eight bytes have been received, the monitor sends out a break
signal. If the received bytes match the eight bytes in FLASH, commands
can then be sent for processing. If the received bytes do not match those
in FLASH, monitor mode will continue, but access to the FLASH is
AN1770 — Rev. 1.0

MOTOROLA 31

Application Note
denied. In this case, any attempt to reference data in FLASH will return
indeterminate data, and any attempt to execute from FLASH will result
in an illegal address reset.

NOTE: To try another security code sequence, remember to power down then
power up the microcontroller before sending the new data string.

Program Algorithm

The program included in this applications note is loaded into, and
executed from, RAM. It can be used to fully or partially erase the FLASH
and then reprogram the device while the device is running in monitor
mode. This monitor mode RAM program is from the same program as
the user mode RAM program described in Programming the
MC68HC908GP20 in User Mode. It is assembled with the MONMODE
assembler directive set to signal that certain code specific to monitor
mode programming be assembled.

The two modes of this program are similar in these respects:

• They both adhere to the same programming and erasing
constraints as defined in Program Algorithm.

• They both use the same six RAM modules, assembler directives,
variables, and constants.

• RAM utilization is almost identical for the two programs.

• They both use the same message format as described in
Programming the MC68HC908GP20 in User Mode.

The primary differences are:

• Port A bit 0 is used for bidirectional communication in the monitor
mode program instead of the SCI, for both RAM program loading
as well as subsequent data downloading and device memory
dumps/acknowledgments. The monitor mode program, of course,
conforms to the communication protocol dictated by the monitor,
rather than direct message passing used in the user mode
program.
AN1770 — Rev. 1.0

32 MOTOROLA

Application Note
Host Program
• The monitor mode program assumes an internal bus frequency of
2.45 MHz to generate the 9600 baud communication rate. If the
bus frequency is different from this, then the baud rate will be
proportionately different.

• The monitor mode program does not contain a module to set up
the PLL, as the user mode program does, because of the built-in
capability of the monitor to turn the PLL on.

• Instead of a load routine residing in FLASH and copying the
necessary modules to RAM for execution, the monitor mode
programs load the program into RAM from the host with the
command set available in monitor mode. The program is first
compiled and an S-record file is generated which the host program
parses for downloading to the proper addresses in RAM.

Host Program

The host program for monitor mode programming used in this
application note is the same as that used for user mode programming,
that is, a Windows-based program executed on the PC. The only
difference is that the host is put into an alternate mode in which it
communicates with the target device in conformance with the monitor
mode protocol requirements.

The basic functions of a suitable host program, including the one used
in this application note, are:

• Allows entry of the eight security bytes and sends them to the
GP20 in accordance with monitor mode timing requirements.

• Downloads the file (FP4.S19) containing the RAM program that
the GP20 will utilize to receive serial data, program the FLASH,
and dump its memory. This is done with a series of indexed write
instructions.

• Initiates execution of the RAM program by configuring the data on
the stack and then issuing the RUN command.
AN1770 — Rev. 1.0

MOTOROLA 33

Application Note
• Loads an S-record file with which to program the device.
Alternatively, specifying the data to be programmed from within
the program environment is also supported.

• Provides control logic to allow the operator to specify the range of
FLASH to be programmed or erased and to communicate
program data to the GP20 conforming to the message protocol
that the RAM program expects. Additionally, the host should be
able to provide verification of the data that is programmed and
echoed back to it.

Conclusion

This application note describes a method of performing in-circuit serial
programming of the FLASH memory in the MC68HC908GP20. The
same general approach is followed for initial device programming, when
monitor mode must be used, as when re-programming the device in user
mode. In both situations, a program can be loaded into, and executed
from, RAM which facilitates serial communication of data and
commands from a host.

There are, of course, other ways of implementing FLASH programming.

One often-asked question is, “How many wires does it take to program
the device?" Unfortunately, the answer to this question is not absolute,
as it depends on how the user’s target system is configured. In the best
scenario, it takes only three wires to communicate with the target to
program its FLASH.

This pre-supposes several existing or configurable conditions:

• The internal clock is adequate to generate an acceptable data rate
to match the host’s.

• The internal clock is high enough to create a charge pump
frequency close to 2 MHz.

• Programming voltage can be generated on-board and can be
applied to IRQ when necessary (when block protection is not set
and when the reset vectors are not $00).
AN1770 — Rev. 1.0

34 MOTOROLA

Application Note
Conclusion
• Communication data levels are at VDD and ground potentials or
RS-232 level translation is implemented on-board.

• For initial (blank-part) programming or reprogramming in monitor
mode, monitor mode requirements can be met.

If any of these conditions cannot be met, then off-board circuitry, usually
in the form of an interface board, is required and the number of
connections to the target board increases.

This application note assumes that the above conditions can be met and
that a PC is available which can serve as the host programmer. If this is
the case, then nothing else is needed to do in-circuit serial programming.
AN1770 — Rev. 1.0

MOTOROLA 35

Application Note
Figure 9. Main Program Flowchart

INITIALIZE PORTS,
 DISABLE COP

 (MAIN IN FLASH)

PORT B,
BIT 0
SET?

CONFIGURE AND
ENABLE THE PLL

(PLLINIT)
NO

CONFIGURE SCI,
FDIV BIT MASK

(SFINIT)

YES

LOAD
PROGRAMMING

ROUTINES
INTO RAM

(LDRAMPR)

RECEIVE DATA
BLOCK, START

ADDRESS
(LDDATA)

PROGRAM DATA
INTO FLASH

STARTING AT
ADDRESS
SPECIFIED
(PRGFLSH)

DUMP CURRENT
ROW DATA OUT

SCI
(DUMPROW)

MONITOR MODE USER MODE

START
AN1770 — Rev. 1.0

36 MOTOROLA

Application Note
Conclusion
Figure 10. LDDATA Routine Flowchart

START

DATASIZ
BYTE
= 0?

PUT FIRST
ADDRESS
OF RAM IN

X REGISTER

YES

NO

INCREMENT X
(DEST. ADDR.

COUNTER)

STORE DATA
 IN LOCATION

SPECIFIED
BY X

GET BYTE OF
SERIAL DATA

FROM PTA0 OR
FROM SCI

XFERSIZE
 = 0?

ADDR = 1ST
ADDR?

DATA = 0?

DUMP THIS
ROW OF DATA
(DUMPROW)

DECREMENT
TRANSFER SIZE

(XFERSIZE)
BYTE

PROGRAM FLASH
WITH RECEIVED
DATA/ADDRESS

(PRGFLSH)

YES

YES

YES

NO

NO

NO DATASIZE
BYTE

 > $7F?

ERASE ALL OF
FLASH

NO

YES

CLEAR
PORT A
AN1770 — Rev. 1.0

MOTOROLA 37

Application Note
Figure 11. ERACHK Routine Flowchart

INCREMENT ADDRESS
COUNTER

START FDIV BITS ALREADY
SET IN FLCR; VALID

ADDRESS WITHIN THIS
RANGE LOADED IN H:X

DELAY FOR TKILL
TIME

SET HVEN BIT IN
FLCR

WRITE ANYTHING
TO A LOCATION
WITHIN ROW TO

BE ERASED

READ BLOCK
PROTECTION

REGISTER

SET BLK1/BLK0 BITS FOR ROW
ERASEAND ERASE BIT IN FLCR

LOAD DATA AT FIRST/NEXT
ADDRESS

STORE SIZE OF DATA
ARRAY(DOWNLOADED)

IN COUNTER BYTE

ADDRESS
ERASED?

DELAY FOR TERA
TIME

DELAY FOR THVD
TIME

CLEAR ERASE BIT
IN FLCR

END OF SUBROUTINE

YES

NO

END OF
ADDRESS
RANGE?

YES

NO

CLEAR HVEN BIT
IN FLCR
AN1770 — Rev. 1.0

38 MOTOROLA

Application Note
Conclusion
Figure 12. PRGFLSH Routine Flowchart

START

SET FDIV MASK

WRITE TO FLCR
WITH FDIV MASK

SEE IF PAGE TO BE
PROGRAMMED IS ERASED

ERASE ROW IN
 WHICH PAGE TO BE

PROGRAMMED
RESIDES

ERASED?
PAGE

LOAD 1ST/NEXT 8 BYTES
OF DATA ARRAY INTO

PROGRAM BUFFER

CALL PAGE
PROGRAMMING ROUTINE

 (PRGPAGE)

LOAD 1ST/NEXT
ADDRESS IN H:X

SIGNAL END OF PROGRAMMING AND
VERIFICATION SUCCESS/FAIL

OF DATA BUFFER
PROGRAMMED?

YES

NO

NO

YES

 ALL PAGES
AN1770 — Rev. 1.0

MOTOROLA 39

Application Note
Figure 13. PRGPAGE Routine Flowchart

PRGPAGE –
PROGRAM A
PAGE; 1ST

ADDR IN H:X

DELAY FOR
TPGM TIMECLEAR REPRO-

GRAM FLAG AND
BYTECOUNT

SET NUMBER OF
PROGRAMMING

ATTEMPTS

INCREMENT
BYTECOUNT AND
CHECK FOR END

OF PAGE

SET HVEN
BIT IN FLCR

SET BAD
 VERIFY FLAG

IN STATUS
BYTE

WRITE DATA TO
ADDRESS IN H:X

LOAD A BYTE
OF DATA FROM

BUFFER

READ FROM THE
BLOCK PROTECT

REGISTER

SET FDIV AND
PGM BITS IN FLCR

END OF
PAGE?

ADJUST
ATTEMPT

COUNTER AND
COMPARE TO

ATTEMPT LIMIT

CLEAR
MARG BIT IN

FLCR

RELOAD H:X
WITH FIRST
ADDRESS

SET
REPROGRAM

FLAG

READ A BYTE OF
DATA FROM

PROGRAMMED
PAGE & COMPARE
TO DATA BUFFER

DELAY FOR
THVD TIME

CLEAR PGM
BIT IN FLCR

DELAY FOR
TVTP TIME

SET MARG
BIT IN FLCR

DELAY FOR
THVTV TIME

CLEAR HVEN BIT
IN FLCR

VERIFY
OK?

ALL
BYTES
READ?

REPROG
FLAG SET?

LIMIT
REACHED?

SET ADDRESS
IN H:X TO FIRST

ADDRESS OF
NEXT PAGE

NO

YES

NO

YES

NO

YES

NO

YES

YES

NO

RETURN
AN1770 — Rev. 1.0

40 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
Source Code for FLASH Programming RAM Program

**
* LISTING NO.: 1
*
* FILE NAME: FP4.ASM
* PURPOSE: To provide a FLASH erase, program and verify program
* TARGET DEVICE: HC908GP20
*
* MEMORY USAGE - RAM: 1A0H BYTES
* ROM: 280H BYTES
*
* ASSEMBLER: CASM08
* VERSION: 1.02
*
* PROGRAM DESCRIPTION:
* This program loads a RAM routine with instructions/data
* located in FLASH memory that:
* Receives data over the SCI or Port A, bit 0
* Row-erases FLASH block if necessary
* Programs FLASH with received data
* Dumps specified row out comm port
* Bulk erases device upon command
*
* The program has assembler directives to be able to program in
* both user and monitor modes. In monitor mode, the generated S-record
* file will contain all of the necessary programming routines in RAM. It
* will not have any code that would reside out of RAM. In user mode, load
* routines are incorporated so that it could be contained in a user's
* application. The load routines load the programming routines into RAM and
* from there it looks just like the RAM routine executed in monitor mode.
*
*
* AUTHOR: Grant Whitacre
* LOCATION: Austin, Texas
*
* UPDATE HISTORY:
* REV AUTHOR DATE DESCRIPTION OF CHANGE
* === ============ ======== =====================
* 0.0 GRANT WHITACRE 03/04/98 INITIAL VERSION
* 0.1 GRANT WHITACRE 04/15/98 SECOND VERSION (FP2.ASM)-
* LOADS ALL RTNS INTO RAM
* SO RE-ENTRY INTO FLASH IS
* NOT NECESSARY. ALLOWS
* REPROGRAMMING OF ENTIRE
* FLASH ARRAY.
AN1770 — Rev. 1.0

MOTOROLA 41

Application Note
* 0.2 GRANT WHITACRE 06/22/98 CONSOLIDATES PROGRAM TO
* ALLOW BOTH USER MODE AND
* MONITOR MODE PROGRAMMING
* SELECTABLE BY ASSEMBLER
* DIRECTIVES
*
*
* GENERAL CODING NOTES:
* Bit names are labeled with <port name><bit number> and are
* used in the commands that operate on individual bits, such
* as BSET and BCLR. A bit name followed by a dot indicates
* a label that will be used to form a bit mask.
*
* FOR TESTING, HAD TO ADD AN ASSEMBLER SWITCH (TESTMOD) TO
* KEEP FROM TRIPPING ON AN ILLEGAL MEMORY WRITE BREAK IN
* THE DEBUGGER. OTHER SWITCHES ARE INSTALLED FOR EASE OF
* TESTING.
*
**
* ASSEMBLER DIRECTIVES
* (INCLUDES, BASE, MACROS, SETS, CONDITIONS, RAM DEFS, ETC.)
**
BASE 10D ;DEFAULT TO BASE 10 NUMBER DESIGNATION

;Remember: ACTIVE LOW!!!!!!!!!!!!!!!!!!
MONPROG: SET 0 ;IF SET, ALL (NECESSARY) ROUTINES WILL

;BE ADDRESSED IN RAM INITIALLY; THIS
;VERSION WOULD BE USED AS THE S19 RECORD
;FILE THAT IS DOWNLOADED INTO RAM IN
;MONITOR MODE FOR FLASH PROGRAMMING

*Be sure to manually set addresses of GET_PUT and PUT_BYTE if TESTMOD set!!
TESTMOD: SET 1 ;SINCE WE GET AN ILLEGAL WRITE ERROR

;USING THE MMDS WHEN WE TRY TO WRITE TO
;EMULATED MEMORY, TESTMOD CAUSES A READ
;FROM FLASH LOCATION INSTEAD OF A WRITE
;TO IT. OF COURSE VERIFY NEVER WORKS
;UNDER THESE CIRCUMSTANCES. TURN OFF
;TEST MODE FOR REAL TARGET EXECUTION.

ERSDTST: SET 1 ;SET TO FORCE A GOOD VERIFICATION OF
;ERASED STATE

**
* PORT AND I/O REGISTER EQUATES
**
PORTA EQU $00 ;I/O PORT A
PORTB EQU $01 ;I/O PORT B
PORTC EQU $02 ;I/O PORT C
PORTD EQU $03 ;I/O PORT D
PORTE EQU $07 ;I/O PORT E

P7 EQU 7 ;BIT #7 OF PORT
P6 EQU 6
P5 EQU 5
P4 EQU 4
P3 EQU 3
AN1770 — Rev. 1.0

42 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
P2 EQU 2
P1 EQU 1
P0 EQU 0
P7. EQU $80 ;BIT POSITION P7
P6. EQU $20
P4. EQU $10
P3. EQU $08
P2. EQU $04
P1. EQU $02
P0. EQU $01

****** DATA DIRECTION REGISTERS A-E **
DDRA EQU $04 ;PORT A DATA DIRECTION REGISTER
DDRB EQU $05 ;PORT B DATA DIRECTION REGISTER
DDRC EQU $06 ;PORT C DATA DIRECTION REGISTER
DDRD EQU $07 ;PORT D DATA DIRECTION REGISTER
DDRE EQU $0C ;PORT E DATA DIRECTION REGISTER

****** CONFIG 1 REGISTER ***
CONFIG1 EQU $001F ;CONFIG1 REGISTER
COPRS EQU 7
LVISTOP EQU 6
LVIRSTD EQU 5
LVIPWRD EQU 4
LVI5OR3 EQU 3
SSREC EQU 2
STOP EQU 1
COPD EQU 0
COPRS. EQU $80
LVISTOP. EQU $40
LVIRSTD. EQU $20
LVIPWRD. EQU $10
LVI5OR3. EQU $08
SSREC. EQU $04
STOP. EQU $02
COPD. EQU $01

****** CONFIG 2 REGISTER ***
CONFIG2 EQU $001E ;CONFIG2 REGISTER
* EQU 7
* EQU 6
* EQU 5
SEC EQU 4 ;Security
* EQU 3
* EQU 2
OSCSTOPEN EQU 1 ;Enable Oscillator during

;STOP mode
SCIBDSRC EQU 0 ;SCI baud rate clock source
* . EQU $80 ;BIT POSITION 7
* . EQU $40
* . EQU $20
SEC. EQU $10
* . EQU $08
* . EQU $04
OSCSTOPEN. EQU $02
SCIBDSRC. EQU $01
AN1770 — Rev. 1.0

MOTOROLA 43

Application Note
****** FLASH CONTROL REGISTER **
FLCR EQU $FE08 ;FLASH CONTROL REGISTER
FDIV1 EQU 7
FDIV0 EQU 6
BLK1 EQU 5
BLK0 EQU 4
HVEN EQU 3
VERF EQU 2 ;FOR 908GP20 ONLY
MARG EQU 2 ;FOR 908XL36 ONLY
ERASE EQU 1
PGM EQU 0
FDIV1. EQU $80
FDIV0. EQU $40
BLK1. EQU $20
BLK0. EQU $10
HVEN. EQU $08
VERF. EQU $04
MARG. EQU $04
ERASE. EQU $02
PGM. EQU $01

****** BLOCK PROTECTION REGISTER ***
FLBPR EQU $FF80 ;FLASH BLOCK PROTECTION

;REGISTER
* EQU 7
* EQU 6
* EQU 5
* EQU 4
BPR3 EQU 3
BPR2 EQU 2
BPR1 EQU 1
BPR0 EQU 0
* . EQU $80
* . EQU $40
* . EQU $20
* . EQU $10
BPR3. EQU $08
BPR2. EQU $04
BPR1. EQU $02
BPR0. EQU $01
****** SCI REGISTERS ***
SCC1 EQU $13 ;SCI CONTROL REGISTER 1
LOOPS EQU 7 ;BIT #7
ENSCI EQU 6
TXINV EQU 5
M EQU 4
WAKE EQU 3
ILTY EQU 2
PEN EQU 1
PTY EQU 0
LOOPS. EQU $80 ;BIT POSITION 7
ENSCI. EQU $40
TXINV. EQU $20
M. EQU $10
WAKE. EQU $08
ILTY. EQU $04
AN1770 — Rev. 1.0

44 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
PEN. EQU $02
PTY. EQU $01

SCC2 EQU $14 ;SCI CONTROL REGISTER 2
TIE EQU 7 ;Transmit interrupt enable
TCIE EQU 6
RIE EQU 5
ILIE EQU 4 ;Idle line interrupt enable
TE EQU 3 ;Transmit enable
RE EQU 2 ;Receive enable
RWU EQU 1 ;Receiver wakeup enable
SBK EQU 0 ;Send break
TIE. EQU $80
TCIE. EQU $40
RIE. EQU $20
ILIE. EQU $10
TE. EQU $08
RE. EQU $04
RWU. EQU $02
SBK. EQU $01

SCC3 EQU $15 ;SCI CONTROL REGISTER 3
R8 EQU 7 ;Bit 8 receive (for 9-bit characters)
T8 EQU 6 ;Bit 8 transmit
DMARE EQU 5
DMATE EQU 4
ORIE EQU 3
NEIE EQU 2
FEIE EQU 1
PEIE EQU 0
R8. EQU $80
T8. EQU $40
DMARE. EQU $20
DMATE. EQU $10
ORIE. EQU $08
NEIE. EQU $04
FEIE. EQU $02
PEIE. EQU $01

SCS1 EQU $16 ;SCI STATUS REGISTER 1
SCTE EQU 7 ;BIT #7
TC EQU 6
SCRF EQU 5
IDLE EQU 4
OR EQU 3
NF EQU 2
FE EQU 1
PE EQU 0
SCTE. EQU $80 ;BIT POSITION 7
TC. EQU $40
SCRF. EQU $20
IDLE. EQU $10
OR. EQU $08
NF. EQU $04
FE. EQU $02
PE. EQU $01
AN1770 — Rev. 1.0

MOTOROLA 45

Application Note
SCS2 EQU $17 ;SCI STATUS REGISTER 2
* EQU 7 ;BIT #7
* EQU 6
* EQU 5
* EQU 4
* EQU 3
* EQU 2
BKF EQU 1
RPF EQU 0
*. EQU $80 ;BIT POSITION 7
*. EQU $40
*. EQU $20
*. EQU $10
*. EQU $08
*. EQU $04
BKF. EQU $02
RPF. EQU $01

SCDR EQU $18 ;SCI Data
RDR EQU $18 ;SCI Receive Data (same as SCDR)
TDR EQU $18 ;SCI Transmit Data (same as SCDR)

SCBR EQU $19 ;SCI BAUD RATE REGISTER
* EQU 7
* EQU 6
SCP1 EQU 5 ;SCI prescaler sel bit 1 00=clk/1,

;01=clk/3
SCP0 EQU 4 ;SCI prescaler sel bit 0 10=clk/4,

;11=clk/13
RES EQU 3
SCR2 EQU 2 ;SCI baud rate sel bit 2

;000=/1...111=/128
SCR1 EQU 1 ;SCI baud rate sel, bit 1
SCR0 EQU 0 ;SCI baud rate sel, bit 0
*. EQU $80
*. EQU $40
SCP1. EQU $20
SCP0. EQU $10
RES. EQU $08
SCR2. EQU $04
SCR1. EQU $02
SCR0. EQU $01

**
* APPLICATION-SPECIFIC MEMORY AND I/O EQUATES
**
* THE VALUE FOR CPUSPD DRIVES THE FDIV SETTING AND THE BAUD RATE
* PRESCALER FOR THE SCI.
* MAKE SURE THAT CPUSPD IS SET TO 2 IF THE PLL IS TO BE USED.
CPUSPD EQU 2 ;2 = 2.45 MHZ OPER. FREQ.

;4 = 4.92 MHZ, 8 = 8.0 MHZ

* ABS. ADDRESS OF MONITOR ROUTINES COMMENTED OUT IN TEST VERSION
GET_PUT EQU $FE97 ;MON RTN TO GET A BYTE ON

;PTA0 AND ECHO BACK
AN1770 — Rev. 1.0

46 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
PUT_BYTE EQU $FEAA ;SEND A BYTE OUT PTA0
MONRTNS EQU $B300 ;MONITOR ROUTINES INCLUDED IN

;PROGRAM FOR TESTING
RSTVLOC EQU $FFFE ;RESET VECTOR LOCATION

RAM EQU $50 ;FIRST ADDRESS OF RAM, ACTUALLY
;$40 BUT WILL START AT $50

NXTPAGE EQU $100
STCKSIZ EQU $18
PRGSTRT EQU $F000 ;START OF FLASH PROGRAM
LASTBYT EQU $F0F0
NXFPAGE EQU $F100
RAMPRG EQU RAM+$58 ;START OF RAM ROUTINE

RAMPRSZ EQU $197 ;320 BYTES (MAX)

TESTDAT EQU $C0
XFRCODE EQU PRGSTRT+RAMPRG
STUBINT EQU PRGSTRT+$240 ;PUT HERE FOR NOW -

;SHOULD BE SAFE
VECSTRT EQU $FFDC ;START OF USER VECTOR AREA

PRGTRIES EQU 25 ;MAX. NUMBER OF PROGRAM TRIES

* MASKS FOR ERASE RANGE
FARMASK EQU $00 ;FULL ARRAY
HARMASK EQU $10 ;HALF ARRAY
RW8MASK EQU $20 ;8 ROWS
ROWMASK EQU $30 ;1 ROW

* PROGRAMMING TIMES - CHANGE THESE VALUES IF NECESSARY TO
* CHANGE TIMES! ALL TIMES ARE IN MICROSECONDS
VTPGM EQU 1000 ;1000 - PROGRAM TIME
VHLFTER EQU 50000 ;1/2 ERASE TIME
VTKILL EQU 200 ;HIGH-VOLTAGE KILL TIME
VTHVD EQU 50 ;RETURN TO READ TIME
VTHVTV EQU 50 ;HVEN LOW TO VERF HIGH TIME
VTVTP EQU 150 ;VERF HIGH TO PGM LOW TIME

* INTERMEDIATE PROGRAMMING TIMES (CALCULATION PURPOSES ONLY)
CTPGM EQU (VTPGM/6) ;DIVIDE BY 6 HERE TO NORMALIZE
CHLFTER EQU (VHLFTER/6) ;FOR NEXT STEP. PADDED FROM
CTKILL EQU (VTKILL/6) ;8 TO 6 TO COMPENSATE FOR ODD
CTHVD EQU (VTHVD/6) ;FREQUENCIES (2.45 AND 4.92 MHZ)
CTHVTV EQU (VTHVTV/6) ;AND TRUNCATION.
CTVTP EQU (VTVTP/6)

* CPU SPEED-CORRECTED PROGRAMMING TIMES (TIMES ACTUALLY USED)
TPGM EQU (CPUSPD*CTPGM) ;Program time = 1000 µs @ 8 MHz
HLFTERA EQU (CPUSPD*CHLFTER) ;Half of Erase time = 50 µs @ 8 MHz
TKILL EQU (CPUSPD*CTKILL) ;HV Kill time = 200 µs
THVD EQU (CPUSPD*CTHVD) ;Return to read time = 50 µs
THVTV EQU (CPUSPD*CTHVTV) ;HVEN low to VERF high time = 50 µs
TVTP EQU (CPUSPD*CTVTP) ;VERF high to PGM low time = 150 µs
AN1770 — Rev. 1.0

MOTOROLA 47

Application Note
* PLL EQUATES
PLLCHK EQU 0 ;PLL CHECK BIT ON PORT B

* 908GP20 PLL REGISTERS
PCTL EQU $0036 ;PLL Control Register
PBWC EQU $0037 ;PLL Bandwidth Control Register
PMSH EQU $0038 ;PLL Multiplier Select Register High
PMSL EQU $0039 ;PLL Multiplier Select Register Low
PVRS EQU $003A ;PLL VCO Range Select Register
PRDS EQU $003B ;PLL Reference Divider Select Register

* Initial Settings for 32.768 kHz crystal clock to produce a 2.4576 MHz
*internal clock
P EQU 0 ;PLL Prescaler Program Bits (PRE)

;value of PCTL (def = 0)
E EQU 1 ;PLL VCO Power-of-Two Range Select Bits

;(VCR) value of PCTL (def = 0)
NHI EQU 1 ;PLL Multiplier Select Bits (MUL)

;value of PMSH (def = 0)
NLO EQU $2C ;PLL Multiplier Select Bits (MUL)

;value of PMSL (def = 0)
L EQU $80 ;PLL VCO Range Select Bits (VRS)
R EQU 0 ;PLL Reference Divider Select Bits

;(RDS) value of PRDS (def=1)
;0 value for R or N is
;interpreted as a 1

AUTO EQU 7 ;Bit 7 of PBWC
LOCK EQU 6 ;Bit 6 of PBWC
PLLON EQU 5 ;Bit 6 of PCTL
BCS EQU 4 ;Bit 4 of PCTL

**
* VARIABLE DEFINITIONS & RAM SPACE USAGE
**
* $40-$4F NOT USED (16 BYTES)
* $50 TRANSFER SIZE (1 BYTE)
* $51-$52 FIRST ADDRESS TO BE PROGRAMMED(2 BYTES)
* $53 DATA SIZE (DATASIZ) (1 BYTE)
* $54-$93 DATA ARRAY (64 BYTES)
* $94-$A7 VARIABLES (20 BYTES)
* $A8-$EF RAM PROGRAM (72 BYTES)
* $F0-$FF STACK (16 BYTES)
* $100-$23F RAM PROGRAM (320 BYTES)
* $50-$23F TOTAL (512 BYTES)

 ORG RAM
XFRSIZE RMB 1 ;NUMBER OF BYTES TO BE TRANSFERRED
FRSTADR RMB 2 ;FIRST ADDR TO BE PROGRAMMED
DATASIZ RMB 1 ;NUMBER OF BYTES TO PROGRAM
DATARAY RMB 64 ;RESERVE 64 BYTES FOR DATA
DATA1 RMB 8 ;DATA TO BE PROGR. IN PAGE-8 BYTES
REPROG RMB 1 ;A $01 HERE SIGNALS NEED TO REPROGRAM
TEMPH RMB 1 ;RAM COUNTER (HI BYTE)
TEMPL RMB 1 ;RAM COUNTER (LOW BYTE)
TEMP2 RMB 1 ;TEMP. HOLDING LOC. FOR TRANSFERS/PR

;TRIES
AN1770 — Rev. 1.0

48 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
FDIVMSK RMB 1 ;FDIV OF FLCR BIT MASK
BYTECNT RMB 1 ;BYTE COUNT USED DURING PAGE PROG.
ARAYIDX RMB 1 ;INDEX INTO THE DATA ARRAY
CURRBYT RMB 1 ;CURRENT BYTE BEING READ/WRITTEN (0-7)
STATBYT RMB 1 ;STATUS OF PROGRAM SUCCESS -

;BIT 7 = FAILED; BIT 6 = SUCCEEDED
**
* Program Algorithm (User Mode Programming)
* 1. Initialize all variables and ports, PLL (if selected) and
* SCI.
* 2. Monitor SCI port for input of block of data to be
* programmed and the start address. Load RAM with the data
* array (up to 64 bytes), the start address and length of
* data array.
* 3. Transfer the following subroutines to
* RAM at address RAMPRG
* A. LDDATA
* B. MAINPRG
* C. ERABLK
* D. DELNUS
* E. PRGPAGE
* 4. Jump to first byte of main RAM program (RAMPRG).
* 5 Execute RAM program MAINPRG and then return to SCI
* port monitoring loop in RAM.
*
* Program Algorithm - Monitor Mode Programming
* 1. Monitor PTA0 for input of block of data to be
* programmed and the start address. Load RAM with the data
* array (up to 64 bytes), the start address and length of
* data array.
* 2. Execute RAM program MAINPRG and then return to PTA0
* monitoring loop in RAM.
**
*
* START OF PROGRAM
**
IFNE MONPROG
 ORG PRGSTRT
START EQU *

CLR PORTA
CLR PORTB
MOV #$02,DDRB ;USING PTB1 AS outPUT FOR PLL INIT.
MOV #$31,CONFIG1 ;DISABLE THE COP AND LVI
BRSET PLLCHK,PORTB,STFDV ;(IF PB0 = 1 THEN PLL OFF)
JSR PLLINIT

STFDV JSR SFINIT ;SET FDIV BITS ACCORDING TO CPU SPEED
;ALSO INITIALIZES THE SCI

JSR LDRAMPR ;LOAD ENTIRE RAM PROGRAM

* If testing code in FLASH to retain labels, then take following jump...
* JMP XFRCODE ;LOAD DATA INTO RAM FROM SCI
* ...otherwise jump to RAM to execute

JMP RAMPRG

**
AN1770 — Rev. 1.0

MOTOROLA 49

Application Note
* NAME: PLLINIT
* PURPOSE: INITIALIZES THE PLL
* ENTRY CONDITIONS: NONE
* EXIT CONDITIONS: NONE
* SUBROUTINES CALLED:
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF FLASH
* THE FOLLOWING INITIALIZES THE PLL FOR 2.4576 MHZ INTERNAL CLOCK
* BASED ON 32.768 KHZ EXTERNAL CRYSTAL CLOCK SO WE CAN CREATE A
* STANDARD BAUD RATE (9600) FOR COMMUNICATION AND AN ACCEPTABLE
* CHARGE PUMP FREQUENCY.

PLLINIT:
* Instruction Setup for 32.768 kHz => 2.4576 MHz (31 bytes total)
* P = 0, R = 1, E = 1, NHI = 1, NLO = 2CH, PVRS(L) = 80H

CLR PCTL ;turn PLL off (on by default)
BSET 0,PCTL ;set E=1 (VPR0=1)
BSET 0,PMSH ;N (hi byte) = 1
MOV #NLO,PMSL ;N (lo byte) = predefined
MOV #L,PVRS ;bit 6 on by default, L=80H
BSET PLLON,PCTL
BSET AUTO,PBWC ;put in auto bandwidth mode
BRCLR LOCK,PBWC,*
BSET BCS,PCTL

* TEST CODE FOR PLL SETUP
* Following tests the above PLL settings to see if the internal
* clock is set at the desired rate. Internal clock rate is 16x
* frequency sensed at bit 1 of port A.
*TESTPLL BSET 1,DDRB ;bit 1 set as output
*BITOFF BCLR 1,PORTB ;4 cycles
* NOP
* NOP
* NOP ;3 cycles
*BITON BSET 1,PORTB ;4 cycles
* BRCLR 0,PORTB,BITOFF ;5 CYCLES
* ;16 cycles

 RTS

* NAME: SFINIT
* PURPOSE: INITIALIZES THE SCI FOR DATA RECEPTION;
* INITIALIZES THE FDIV BITS
* ENTRY CONDITIONS:
* EXIT CONDITIONS:
* SUBROUTINES CALLED:
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF FLASH
* DATA SHOULD BE IN THE FORM OF 1 START-BIT, 8 DATA-BITS,
* 1 STOP-BIT. BAUD RATE IS SET FOR 9600, BASED ON CPUSPD

SFINIT

BSET SCIBDSRC,CONFIG2
LDA #CPUSPD ;SET FDIV MASK FOR CURRENT CPU SPEED
NSA
LSLA
AN1770 — Rev. 1.0

50 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
BCC NOT8MH
MOV #$30,SCBR ;fX/64/9600 = 13 (SCBR=$30)
MOV #$C0,FDIVMSK
BRA XSCINIT

NOT8MH LSLA
BCC NOT4MH
MOV #$03,SCBR ;fX/64/9600 = 8 (SCBR=$03)
MOV #$80,FDIVMSK
BRA XSCINIT

NOT4MH MOV #$02,SCBR ;fB/64/9600 = 4 (SCBR=$02)
CLR FDIVMSK

XSCINIT
BSET ENSCI,SCC1 ;TURN THE SCI ON
MOV #$0C,SCC2 ;SET SCCR2 INITIAL VALUE

;TURNS ON TE & RE
RTS

**

**
* NAME: LDRAMPR
* PURPOSE: LOADS MAIN RAM PROGRAM AND ALL NEC. SUBROUTINES
* ENTRY CONDITIONS: NONE
* EXIT CONDITIONS: NONE
* SUBROUTINES CALLED:
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF FLASH
**
LDRAMPR LDHX #RAMPRG ;STORE THE START LOCATION IN RAM

STHX TEMPH ;WHERE CODE IS TO BE TRANSFERRED
LDHX #XFRCODE ;LOAD 1ST ADDR OF FLASH CODE TO BE

NXTMOVE MOV X+,TEMP2 ;TRANSFER LOCATION IN RAM
PSHH ;
PSHX ;PUSH CURRENT FLASH ADDDR TO STACK
LDHX TEMPH ;LOAD ADDRESSES THAT HOLD THE DEST.
MOV TEMP2,X+ ;TRANSFER DATA FROM TRANSFER LOCATION

NEXT STHX TEMPH
CPHX #RAMPRG+RAMPRSZ ;TO NEXT LOCATION AT RAM DESTINATION
PULX ;POP CURRENT FLASH ADDR FROM STACK
PULH
BEQ XLDRAMP
CPHX #LASTBYT ;SEE IF RAM DESTINATION IS LAST BYTE
BNE NXTMOVE ;IN PAGE 1 AND IF SO, INCREMENT THE
LDHX #NXFPAGE
PSHH ;DEST. REGISTERS (TEMPH-TEMPL) BY
PSHX ;THE VALUE OF THE STACK SIZE (STCKSIZ)
LDHX TEMPH
LDHX #NXTPAGE
STHX TEMPH
PULX
PULH
BRA NXTMOVE ;IF NOT DONE, CONTINUE

XLDRAMP RTS
ENDIF
AN1770 — Rev. 1.0

MOTOROLA 51

Application Note
* START OF CODE TO BE TRANSFERRED TO RAM
IFNE MONPROG

ORG XFRCODE ;CURRENTLY $B0A8
 ENDIF

* OR - START OF THE MONITOR PROGRAM WHICH WE'LL ORG IN RAM
IFEQ MONPROG

ORG RAMPRG ;CURRENTLY $A8
START:
 ENDIF
**
* NAME: LDDATA
* PURPOSE: LOAD RAM WITH USER'S DATA AND START ADDRESS VIA THE SCI;
* PROGRAMS AND THEN DUMPS DATA THAT IS DOWNLOADED; ONLY DUMPS DATA
* IN ROW SPECIFIED IF NUMBER OF BYTES TO BE PROGRAMMED (DATASIZ) IS 0.
* ENTRY CONDITIONS:
* EXIT CONDITIONS:
* SUBROUTINES CALLED: PRGFLSH, DUMPROW
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF RAM
* THE STRUCTURE OF THE DATA RECEIVED IS AS FOLLOWS:
* LOCATION DESCRIPTION RAM LOC.
* ======== ================================== ========
* 1 COUNT OF THE TOTAL NUMBER OF $40
* BYTES TO BE SENT (INCL. THAT BYTE)
* 2-3 THE FIRST ADDRESS WHERE THE $41-$42
* FOLLOWING DATA IS TO BE PROGRAMMED
* 4 NUMBER OF BYTES TO BE PROGRAMMED $43
* 5-68 ARRAY SPACE FOR DATA TO BE PROGRAMMED $44-$83
*
* IF A COUNT IS USED THAT IS GREATER THAN (PROGRAM LENGTH + 1)
* THEN THE ROUTINE WILL HANG AFTER THE LAST PROGRAM BYTE IS SENT.
* CONTINUOUSLY LOOPS LOOKING FOR NEW DATA ON THE SCI. MUST RESET
* AFTER THE LAST ROW DOWNLOAD.
* IF A DATA ARRAY IS RECEIVED WITH A NUMBER OF BYTES TO BE PROGRAMMED OF >= $80
* THEN PROGRAM WILL CONSTRUE THIS AS A SIGNAL TO ERASE THE ENTIRE ARRAY. THIS
* WAS THE MOST CONVENIENT WAY TO IMPLEMENT BULK ERASE WITHOUT HAVING TO HAVE
* A COMMAND BYTE IN THE DATA STRUCTURE.
**
LDDATA CLRH

CLRA
LDX #RAM ;POINT TO START OF RAM

IFEQ MONPROG
CLR FDIVMSK

ENDIF

WAITRX:
IFEQ MONPROG

JSR GET_PUT
NOP
NOP

ENDIF
IFNE MONPROG

BRCLR SCRF,SCS1,* ;WAIT FOR RX REGISTER TO FILL
LDA SCS1 ;PART 1 OF CLEARING THE SCRF BIT
LDA SCDR ;PART 2 OF CLEARING THE SCRF BIT

;READ DATA BYTE FROM RX REGISTER
ENDIF
AN1770 — Rev. 1.0

52 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
CHKCHK CPX #RAM ;IF VALUE OF 1ST BYTE IS ZERO, THEN
BNE STORNOW ;BAD START - KEEP LOOPING FOR NON-
TSTA
BEQ WAITRX ;ZERO FIRST BYTE

STORNOW STA ,X ;STORE THE DATA IN RAM
INCX ;MOVE TO NEXT RAM LOCATION
DBNZ RAM,WAITRX ;DEC. PROG SIZE CNTR (1st BYTE)

;IF ENTIRE PROG NOT LODED, CONT.
LDA DATASIZ ;IF SIZE OF DATA TO BE PROGRAMMED
BEQ DUMP ;IS 0, THEN ONLY DUMP THIS ROW.
BPL JUSTPRG
CLRA
ORA #FARMASK
BSR JERASE ;ERASEIT
BRA DUMP

JUSTPRG BSR PRGFLSH
DUMP BSR DUMPROW

BRA LDDATA

**
* NAME: DUMPROW
* PURPOSE: DUMPS THE ENTIRE 64-BYTE ROW THAT THE START ADDR IS IN
* ENTRY CONDITIONS: H-X CONTAINS THE NEXT ADDR TO BE PROGRAMMED
* EXIT CONDITIONS: NONE
* SUBROUTINES CALLED: ERACHK
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF RAM
**
DUMPROW LDHX FRSTADR ;PUT FIRST ADDR IN H-X

TXA
AND #$C0 ;PUT ON ROW BOUNDARY
TAX

RDBYTE LDA ,X

WAITTX
IFEQ MONPROG

JSR PUT_BYTE ;SEND OUT PTA0
NOP
NOP
NOP
NOP
NOP
NOP

ENDIF

IFNE MONPROG
BRCLR SCTE,SCS1,WAITTX ;WAIT FOR TRANSMIT REG. TO EMPTY
PSHA
LDA SCS1
PULA
STA SCDR ;SEND EEPROM DATA TO SERIAL OUTPUT

ENDIF
INCX ;MOVE TO NEXT ADDRESS
TXA
AND #$3F
BNE RDBYTE ;IF NOT FINISHED, CONTINUE

ENDDUMP RTS
AN1770 — Rev. 1.0

MOTOROLA 53

Application Note
**
* FOLLOWING IS RELOCATABLE, DEPENDING ON WHERE THE PAGE BREAK FOR THE
* STACK IS TO BE LOCATED. MUST PLACE IT SO THAT THE BRANCH TO THE NEXT
* PAGE IS AT LEAST PAST $FF.
JERASE BSR ERASEIT ;NEED A 1/2 BRANCH HERE
LASTBYTE RTS

ORG LASTBYTE+STCKSIZ ;STCKSIZ NEEDS TO BE SET AS EQUATE
**

**
* NAME: PRGFLSH
* PURPOSE: ERASES (IF NECESSARY), PROGRAMS DATA IN DATA ARRAY
* AT LOCATION SPECIFIED, AND THEN VERIFIES.
* DATA MUST BE WITHIN A ROW BOUNDARY.
* ENTRY CONDITIONS: NONE
* EXIT CONDITIONS: NONE
* SUBROUTINES CALLED: JERACH (ERACHK), JPRGPAG (PRGPAGE)
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF FLASH
* PROGRAMMING ALGORITHM
* 1. LOAD FIRST ADDRESS; CLEAR BYTCNTR
* 2. SEE IF ADDRESS IS ON PAGE BOUNDARY. IF NOT,
* LOAD EXISTING DATA FROM CORRECT LOCATIONS IN FLASH
* TO FILL IN THE BEGINNING OF THE PAGE.
* 3. LOAD DATA FROM DATA BUFFER TO FILL (REST OF) PAGE OR
* UNTIL THE END OF THE DATA ARRAY IS REACHED, WHICHEVER
* COMES FIRST.
* 4. IF DATASIZ WAS NOT BIG ENOUGH TO COMPLETE CURRENT PAGE,
* THEN LOAD EXISTING DATA FROM CORRECT LOCATIONS IN
* FLASH TO FILL IN THE END OF THE PAGE.
* 5. INCREMENT BYTECNT ACCORDING TO HOW MANY BYTES OF DATA
* WERE USED FOR CURRENT PAGE.
* 6. PROGRAM PAGE WITH THE EIGHT BYTES OF LOADED DATA.
* 7. PERFORM VERIFICATION CHECK TO SEE IF PAGE WAS PROGRAMMED.
* IF NOT, THEN SEND A HIGH OUT THE "VERIFICATION FAILED" PORT
* AND RETURN TO FLASH.
* 8. CHECK TO SEE IF BYTECNT = DATASIZ. IF SO THEN RETURN
* TO FLASH. IF NOT, GO TO 3.
* THIS ROUTINE CHECKS TO SEE IF THE FIRST ADDRESS OF THE DATA
* TO BE PROGRAMMED IS ON A PAGE BOUNDARY, AND THE LAST ADDRESS
* OF DATA TO BE PROGRAMMED IN AT THE END OF A PAGE. SINCE WE PROGRAM
* WHOLE PAGES AT A TIME, WE'LL JUST REPROGRAM THOSE BYTES IN THE
* PAGE BEFORE THE FIRST ADDRESS (IF NECESSARY) AND THOSE BYTES IN
* THE PAGE AFTER THE LAST ADDRESS (IF NECESSARY) WITH THE VALUE
* THAT ALREADY EXISTS THERE IN FLASH.
**
PRGFLSH

BSET 1,PORTB
CLRA
ORA FDIVMSK
STA FLCR
BSR ERACHK
CLR BYTECNT
LDHX FRSTADR
PSHX
PSHH
AN1770 — Rev. 1.0

54 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
NOSTUFF
* FOLLOWING LOADS REST OF OR ALL 8 BYTES INTO THE DATA BUFFER

CLR ARAYIDX
NXTLOAD CLRH

LDX ARAYIDX
CPX DATASIZ ;SEE IF ALL DATA IN

;ARRAY HAS BEEN LOADED
BEQ NOMODAT
LDA DATARAY,X ;WHERE X CONTAINS INDEX INTO ARRAY
INC ARAYIDX
LDX BYTECNT
STA DATA1,X
INCX
STX BYTECNT
CPX #08
BNE NXTLOAD
PULH
PULX
BSR JPRGPAG
PSHX
PSHH
CLR BYTECNT
BRA NXTLOAD

NOMODAT PULH
PULX
RTS

**
* NAME: ERACHK
* PURPOSE: CHECKS TO SEE IF RANGE TO BE PROGRAMMED NEEDS TO BE
* ERASED FIRST, AND ERASES IF NECESSARY. ERASE BITS (BLK0, BLK1)
* AND FDIV BITS ALREADY SET IN FPCR; VALID ADDRESS FOR THIS RANGE
* LOADED IN H:X. THIS ROUTINE DOES NOT VERIFY ERASE, AND THEN DO A NUMBER
* OF ATTEMPTS TO RE-ERASE. MAYBE LATER IF ENOUGH ROOM.
* ENTRY CONDITIONS: NONE
* EXIT CONDITIONS: NONE
* SUBROUTINES CALLED: DELNUS
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF RAM
* IF THE RANGE TO BE PROGRAMMED IS NOT ALREADY ERASED, THIS
* ROUTINE WILL AUTOMATICALLY ERASE THE ROW THAT THIS DATA IS IN.
**
ERACHK MOV DATASIZ,BYTECNT ;WANT TO KEEP THIS VALUE

;USED AS A COUNTER HERE
LDHX FRSTADR ;LOAD THE FIRST ADDR IN H:X

NXTCHK LDA ,X ;LOAD THE DATA AT THIS ADDR
IFEQ ERSDTST

CLRA
ENDIF

BNE ERAROW ;IF NOT ZERO, THEN ERASE ROW
AIX #01
DBNZ BYTECNT,NXTCHK
BRA XERACHK

ERAROW CLRA
ORA #ROWMASK

ERASEIT LDHX FRSTADR ;RELOAD ADDRESS IN CASE ENTRY WAS AT ERASEIT
AN1770 — Rev. 1.0

MOTOROLA 55

Application Note
ORA FDIVMSK
ORA #ERASE.
STA FLCR ;SET FDIV MASK BASED ON CPU SPEED

ERABLK LDA FLBPR
IFEQ TESTMOD

LDA ,X
ENDIF
IFNE TESTMOD

STA ,X
ENDIF

LDHX #FLCR ;FOLLOWING SETS THE HVEN BIT IN FLCR
LDA ,X
ORA #HVEN.
STA ,X
LDHX #HLFTERA ;DELAY FOR 1/2 OF TERA
BSR DELNUS
LDHX #HLFTERA ;DELAY FOR 1/2 OF TERA
BSR DELNUS
LDHX #FLCR ;CLEARS THE HVEN BIT
LDA ,X
EOR #HVEN.
STA ,X
LDHX #TKILL ;DELAY FOR TKILL
BSR DELNUS
LDHX #FLCR ;CLEAR ERASE BIT
LDA ,X
EOR #ERASE.
STA ,X
LDHX #THVD ;DELAY FOR THVD
BSR DELNUS

XERACHK RTS
JPRGPAG BSR PRGPAGE ;NEEDED TO STAY IN RANGE

RTS

* NAME: DELNUS
* PURPOSE: DELAY N µs
* ENTRY CONDITIONS: H-X CONTAINS THE TIME DELAY (IN µs.)
* EXIT CONDITIONS: PRESERVES THE CONTENTS OF ACC
* SUBROUTINES CALLED: NONE
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF RAM

DELNUS PSHA

PSHH
PULA

* FOLLOWING LOOP EXECUTES H-X NUMBER OF TIMES; 99.6% OF THE
* TIME THIS LOOP IS 8 CYCLES IN DURATION WHICH IS 1 uS @ 8 MHz
D1US TSTX ;(1) X

BNE NOADEC ;(3) X
TSTA ;(1)
BEQ XDELNUS ;(3)
DECA ;(1)

NOADEC DECX ;(1) X
BRA D1US ;(3) X

XDELNUS PULA
RTS ;(4) RETURN AFTER WANTED DELAY
AN1770 — Rev. 1.0

56 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
**
* NAME: PRGPAGE
* PURPOSE: PROGRAMS A PAGE (8 BYTES) OF FLASH
* ENTRY CONDITIONS: H-X REG. LOADED WITH FIRST ADDRESS TO BE
* PROGRAMMED; DATA1-DATA8 HAS BEEN LOADED
* EXIT CONDITIONS: NONE
* SUBROUTINES CALLED: DELNUS
* EXTERNAL VARIABLES USED:
* DESCRIPTION: EXECUTED OUT OF RAM
**
PRGPAGE PSHA ;(A) SAVE CONTENTS OF ACCUMULATOR

MOV #PRGTRIES,TEMP2
PRGLOOP CLR REPROG

LDA FDIVMSK ;SET FDIV MASK FOR CURRENT CPU SPEED
ORA #PGM. ;SET PGM BIT
STA FLCR ;WRITE THIS TO THE FLASH CONTROL REG.
LDA FLBPR ;READ FROM BLOCK PROT. REG.
PSHH ;(B)
PSHX ;(C) PUSH LO BYTE OF ADDR TO STACK
CLR BYTECNT ;SET BYTE COUNT TO 0
CLRX

LDNOTHR CLRH
LDA DATA1,X
PULX ;(C') POP LO BYTE OF ADDR BACK INTO X
PULH ;(B')

IFEQ TESTMOD ;READ INSTEAD OF WRITE DURING TESTING
LDA ,X ;TO PREVENT ILLEGAL ADDRESS ACCESS

ENDIF
IFNE TESTMOD

STA ,X ;STORE DATA TO ADDR SPEC. BY H-X
ENDIF

AIX #$01 ;INCREMENT THE ADDRESS
PSHH ;(B) PUSH LO BYTE OF ADDR BACK TO STACK
PSHX ;(C)
INC BYTECNT ;INCREMENT THE BYTE COUNTER
LDX BYTECNT ;LOAD X WITH BYTE COUNT
CPX #$08
BNE LDNOTHR
PULX ;C'
PULH ;B'
AIX #-1
PSHH ;B
PSHX ;C
LDHX #FLCR ;FOLLOWING SETS THE HVEN BIT IN FLCR
LDA ,X
ORA #HVEN.
STA ,X
PSHX ;(D) PUSH FLCR (LO BYTE) TO STACK
PSHH ;(E) PUSH FLCR (HI BYTE) TO STACK
LDHX #TPGM
BSR DELNUS

;FOLLOWING CLEARS THE HVEN BIT
PULH ;(E') POP FLCR (HI BYTE) FROM STACK
PULX ;(D') POP FLCR (LO BYTE) FROM STACK
LDA ,X
EOR #HVEN.
AN1770 — Rev. 1.0

MOTOROLA 57

Application Note
STA ,X
PSHX ;(D) PUSH FLCR (LO BYTE) TO STACK
PSHH ;(E) PUSH FLCR (HI BYTE) TO STACK

LDHX #THVTV ;DELAY FOR THVTV
BSR DELNUS

;SET THE MARG BIT
PULH ;(E') POP FLCR (HI BYTE) FROM STACK
PULX ;(D') POP FLCR (LO BYTE) FROM STACK
LDA ,X
ORA #MARG.
PSHX ;(D) PUSH FLCR (LO BYTE) TO STACK
PSHH ;(E) PUSH FLCR (HI BYTE) TO STACK
LDHX #TVTP ;DELAY FOR TVTP
BSR DELNUS
BRA CLRPGM

HALFBRA BRA PRGLOOP
;CLEAR THE PGM BIT

CLRPGM PULH ;(E') POP FLCR (HI BYTE) FROM STACK
PULX ;(D') POP FLCR (LO BYTE) FROM STACK
LDA ,X
EOR #PGM.
STA ,X
LDHX #THVD ;DELAY FOR THVD
BSR DELNUS

* NOW READ WHAT'S BEEN PROGRAMMED AND CHECK IT WITH DATA1-DATA8
* BYTECNT IS ALREADY SET AT 8 SO LEAVE IT

PULX ;(C') POP PG LST ADDR (LO-B) FRM STACK
PULH ;(B') POP PG LST ADDR (HI-B) FRM STACK
MOV #DATA1+7,CURRBYT

RDNOTHR LDA ,X ;NOW READ DATA AND STORE THEM
DECX ;DEC THIS ADDR NOW BEFORE PUSHING IT
PSHX ;(B) PUSH PG ADDR (LO-B) TO STACK
PSHH ;(C)
CLRH
LDX CURRBYT
CMP ,X
PULH ;(C')
PULX ;(B') POP PG ADDR (LO-B) FR STACK
BNE FAILVER
DEC CURRBYT
DBNZ BYTECNT,RDNOTHR ;DECREMENT THE BYTE COUNTER
BRA PASSVER

FAILVER MOV #$01,REPROG ;STORE A VALUE IN REPROG TO SIGNAL A
;REPROG OF PAGE

PASSVER INCX
TXA ;PUT ADDR OF 1ST BYTE OF THIS PAGE
AND #$F8 ;INTO H:X REGARDLESS OF FAIL/PASS
TAX
PSHH ;(B) PUSH PG 1ST ADDR (LO-B) TO STACK
PSHX ;(C)
LDHX #FLCR ;FOLLOWING CLEARS THE MARG BIT IN FLCR
LDA ,X
EOR #MARG.
LDA REPROG
AN1770 — Rev. 1.0

58 MOTOROLA

Application Note
Source Code for FLASH Programming RAM Program
BEQ PASSED
PTPA DEC TEMP2

PULX ;(C') POP PG 1ST ADDR (LO-B) FR STACK
PULH ;(B') POP PG 1ST ADDR (HI-B) FR STACK
BNE HALFBRA ;TRY IT AGAIN
BRA FAILJMP

PASSED PULX ;(C')
PULH ;(B')

FAILJMP AIX #08 ;INDEX TO NEXT PAGE
XPRGPAG PULA ;(A') RESTORE ACCUM
ENDRAMP RTS

IFNE MONPROG
**
* INTERRUPT SERVICE ROUTINES
**

ORG STUBINT
CLRINT RTI
**
* INTERRUPT AND RESET VECTORS
**

ORG RSTVLOC
RSTVEC FDB START
**
ENDIF ;PUT HERE TO TAKE OUT VECTOR

;IN MONPROG S19 FILE
AN1770 — Rev. 1.0

MOTOROLA 59

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/
AN1770/D

© Motorola, Inc., 1999

Mfax is a trademark of Motorola, Inc.

	Introduction
	Description of FLASH Memory in the MC68HC908GP20
	Memory Map FLASH Location
	FLASH Control Register
	Block Protection

	Procedure for Erasing the FLASH
	Procedure for Programming the FLASH
	Practical Considerations for Programming, Verifying, and Erasing
	Life Expectancy in Terms of Program/Erase Cycling
	Margin Programming

	Programming the MC68HC908GP20 in User Mode
	Program Algorithm
	RAM Utilization and Program Execution
	Assembler Directives
	Other Application- Specific Memory and I/O Equates
	Proper Clock Selection
	PLL Setup

	SCI Setup
	Registers
	On-Board Circuitry Required for RS-232 Communication
	Message Structure to Communicate between Host and GP20

	Host Program

	Programming the MC68HC908GP20 in Monitor Mode
	General
	Circuit Requirements

	Communication Protocol
	Security Requirements
	Program Algorithm
	Host Program
	Conclusion
	Source Code for FLASH Programming RAM Program

