
HC12A4EVBUM/D

May 1996

M68HC12A4EVB

EVALUATION BOARD

USER’S MANUAL

© MOTOROLA Inc., 1996; All Rights Reserved

Motorola reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. Motorola does not assume any liability arising out of the
application or use of any product or circuit described herein; neither does it convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or
authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part.

CONTENTS

HC12A4EVBUM/D iii

CONTENTS

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION .. 1-1
1.2 GENERAL DESCRIPTION AND FEATURES.. 1-1
1.3 PERFORMANCE NOTES... 1-4
1.4 FUNCTIONAL OVERVIEW... 1-5
1.5 EXTERNAL EQUPMENT REQUIREMENTS... 1-6
1.6 EVB SPECIFICATIONS.. 1-7
1.7 CUSTOMER SUPPORT.. 1-9

CHAPTER 2 CONFIGURATION AND SETUP

2.1 UNPACKING AND PREPARATION... 2-1
2.2 EVB CONFIGURATION... 2-2
2.3 EVB TO POWER SUPPLY CONNECTION .. 2-2
2.4 EVB TO TERMINAL CONNECTION.. 2-3
2.5 TERMINAL COMMUNICATIONS SETUP... 2-4

2.5.1 Communication Parameters... 2-4
2.5.2 Dumb-Terminal Setup ... 2-5
2.5.3 Host-Computer Setup .. 2-5
2.5.4 Changing the Baud Rate .. 2-5

2.6 USING FAST EXTERNAL RAM ... 2-6
2.6.1 Selecting and Replacing the RAM Chips .. 2-6
2.6.2 Reprogramming the RAM Chip Select.. 2-6

CHAPTER 3 OPERATION

3.1 STARTUP .. 3-1
3.2 RESET .. 3-2
3.3 PROGRAM ABORT.. 3-2
3.4 USING D-BUG12 COMMANDS.. 3-3

CONTENTS

HC12A4EVBUM/Div

CHAPTER 3 OPERATION (continued)

3.5 D-BUG12 COMMAND SET ... 3-5
Assembler/Disassembler.. 3-6
Set Baud Rate .. 3-9
Block Fill ... 3-10
Breakpoint Set ... 3-11
Bulk Erase On-Chip EEPROM ... 3-12
Call Subroutine .. 3-13
Go Execute a User Program... 3-14
Go Till.. 3-15
Onscreen Help Summary... 3-16
Load S-Record File.. 3-17
Memory Display .. 3-18
Memory Display, Word... 3-19
Memory Modify... 3-20
Memory Modify, Word.. 3-21
Move Memory Block... 3-22
Remove Breakpoints.. 3-23
Register Display... 3-24
Register Modify ... 3-25
Trace .. 3-26
Display Memory in S-Record Format.. 3-28
Verify S-Record File against Memory... 3-29
Modify Register Value... 3-30

3.6 ALTERNATE EXECUTION FROM EEPROM.. 3-32
3.7 OFF-BOARD CODE GENERATION... 3-32
3.8 MEMORY USAGE.. 3-33

3.8.1 Description... 3-33
3.8.2 Memory Map ... 3-34

3.9 OPERATIONAL LIMITATIONS.. 3-34
3.9.1 On-Chip RAM ... 3-34
3.9.2 SCI Port Usage... 3-35
3.9.3 Dedicated MCU Pins ... 3-35
3.9.4 Terminal Communications .. 3-35

CONTENTS

HC12A4EVBUM/D v

CHAPTER 4 HARDWARE REFERENCE

4.1 PCB DESCRIPTION.. 4-1
4.2 CONFIGURATION HEADERS AND JUMPER SETTINGS .. 4-1
4.3 POWER INPUT CIRCUITRY... 4-6
4.4 TERMINAL INTERFACE... 4-6
4.5 MICROCONTROLLER... 4-7
4.6 MEMORY .. 4-9

4.6.1 Memory Types and Sockets... 4-9
4.6.2 Chip Selects ... 4-11
4.6.3 Glue Logic ... 4-12

4.7 CLOCK CIRCUITRY .. 4-13
4.8 PHASE-LOCKED LOOP (PLL).. 4-14
4.9 RESET .. 4-14
4.10 LOW-VOLTAGE INHIBIT.. 4-14
4.11 ANALOG-TO-DIGITAL (A/D) CONVERTER.. 4-14
4.12 BACKGROUND DEBUG MODE (BDM) INTERFACE... 4-15
4.13 PROTOTYPE AREA ... 4-15
4.14 MCU CONNECTORS ... 4-17

APPENDIX A S-RECORD FORMAT

DESCRIPTION ...A-1
S-RECORD CONTENT..A-1
S-RECORD TYPES ..A-2
S-RECORD EXAMPLE..A-3

APPENDIX B COMMUNICATIONS PROGRAM EXAMPLES

INTRODUCTION ...B-1
PROCOMM FOR DOS — IBM PC..B-1

Setup ..B-1
S-Record Transfers to EVB Memory ..B-2

KERMIT FOR DOS — IBM PC...B-3
Setup ..B-3
S-Record Transfers to EVB Memory ..B-3

CONTENTS

HC12A4EVBUM/Dvi

APPENDIX B COMMUNICATIONS PROGRAM EXAMPLES
(continued)

KERMIT — SUN WORKSTATION..B-4
Setup ..B-4
S-Record Transfers to EVB Memory ..B-4

MACTERMINAL — APPLE MACINTOSH...B-5
Setup ..B-5
S-Record Transfers to EVB Memory ..B-5

RED RYDER — APPLE MACINTOSH..B-6
Setup ..B-6
S-Record Transfers to EVB Memory ..B-6

APPENDIX C D-BUG12 STARTUP CODE

APPENDIX D D-BUG12 CUSTOMIZATION DATA

APPENDIX E CUSTOMIZING THE EPROMS

APPENDIX F SDI CONFIGURATION

INDEX

CONTENTS

HC12A4EVBUM/D vii

FIGURES

1-1. EVB Layout and Component Placement.. 1-4
1-2. System Block Diagram... 1-5
2-1. EVB Power Connector J6... 2-3
4-1. Memory Sockets Configuration.. 4-10
4-2. Chip Select Header ... 4-12
4-3. RAM/ROM Logic Diagram.. 4-13
4-4. Prototype Area (Component-Side View).. 4-16
4-5. MCU Connector J8 (Component-Side View)... 4-17
4-6. MCU Connector J9 (Component-Side View)... 4-18

TABLES

1-1. EVB Specifications... 1-10
2-1. RS-232C Interface Cabling... 2-4
2-2. Communication Parameters.. 2-5
3-1. D-Bug12 Command-Set Summary... 3-4
3-2. M68HC11 to CPU12 Instruction Translation... 3-7
3-3. CPU12 Registers... 3-30
3-4. Condition Code Register Bits ... 3-31
3-5. Factory-Configuration Memory Map.. 3-34
4-1. Jumper-Selectable Functions .. 4-3
4-2. CPU Mode Selection .. 4-8
4-3. EVB Memories Supplied.. 4-11
4-4. BDM Connector J5 Pin Assignments ... 4-15
4-5. MCU Connector J8 Pin Assignments ... 4-19
4-6. MCU Connector J9 Pin Assignments ... 4-21

CONTENTS

HC12A4EVBUM/Dviii

GENERAL INFORMATION

HC12A4EVBUM/D 1-1

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual provides the necessary information for using the M68HC12A4EVB Evaluation
Board (the EVB), an evaluation, debugging, and code-generation tool for the MC68HC812A4
Microcontroller Unit (MCU) devices. The manual includes:

• A general description of the EVB

• Configuration and setup instructions

• Startup and operating instructions

• Detailed descriptions of the operating firmware’s command set

• A detailed hardware-reference section

• Appendices containing reference data

Additional reference items, such as schematic diagrams and parts lists, are shipped as part of the
EVB package.

1.2 GENERAL DESCRIPTION AND FEATURES

The EVB is an economical tool for designing and debugging code for, and evaluating the
operation of, the MC68HC12 MCU family. By providing the essential MCU timing and I/O
circuitry, the EVB simplifies user evaluation of prototype hardware and software.

The board consists of an 8-inch by 8-inch multi-layer printed circuit board (PCB) that provides
the platform for interface and power connections to the MC68HC812A4 MCU chip, which is
installed in a production socket.

Figure 1-1 shows the EVB’s layout and locations of the major components, as viewed from the
component side of the board.

The block diagram in Figure 1-2 depicts the logical relationships and interconnections within the
EVB and with external equipment.

Hardware features of the EVB include:

• Power, ground, and 4 signal planes

• Single-supply +3 to +5 Vdc power input (J6)

GENERAL INFORMATION

HC12A4EVBUM/D1-2

• Two RS-232C interfaces

• Two memory sockets populated with two 32Kx8 EPROMs (U7, U9A), containing the
D-Bug12 monitor program

• Two memory sockets populated with two 8Kx8 SRAMs (U4, U6A)

• Support for up to 1 MB of program space and 512 KB of data space using optional
memory configurations

• 16-MHz crystal-controlled clock oscillator (Y2) in a socket that can accommodate
optional 8- or 14-pin oscillator chips (XY2)

• Headers for jumper selection of hardware options:(1)

− Low-voltage inhibit (W1)

− RAM write-protection (W3)

− MCU chip selects for memory devices (W11)

− RAM function select (W12, W13)

− ROM function select (W22, W24, W29, W32, W33, W36)

− MCU mode control (W30, W34, W42)

− Alternate execution from on-chip EEPROM (W20)

− Serial Communications Interface (SCI) configuration (W10, W14, W21)

• Two 2x30 header connectors for access to the MCU’s I/O and bus lines (J8 and J9)

• Prototype expansion area for customized interfacing with the MCU

• Low-profile reset (S1) and program-abort (S2) push-button switches

• Low voltage inhibit protection (U1)

• LED power-on indicator (DS1)

• Test points for ground connections around the board (E1, E2, E3, E12, E13, E14)

• 2x3 header (J5) provides a connector for using background debug development tools
such as the Serial Debug Interface (SDI)

• Phase-Locked Loop (PLL) biasing circuitry for altering the MCU’s time base

(1)For full details of the jumper settings, refer to Table 4-1.

Firmware features include:

• The D-Bug12 monitor/debugger program, resident in external EPROM

• Full support for either dumb-terminal or host-computer terminal interface

• Single-line assembler/disasembler

• File-transfer capability from a host computer, allowing off-board code generation

GENERAL INFORMATION

HC12A4EVBUM/D 1-3

PROTOTYPE AREA

Figure 1-1. EVB Layout and Component Placement

GENERAL INFORMATION

HC12A4EVBUM/D1-4

Figure 1-2. System Block Diagram

1.3 PERFORMANCE NOTES

The M68HC12A4EVB’s external RAM memory chips, U4 and U6A, were chosen to emphasize
the EVB’s low-voltage and low-power operational capability over the range of +3.5 to +5.0 Vdc.

However, these parts are not fast enough to operate at the 16-MHz speed of the factory-supplied
clock oscillator. In order to use them at this external clock speed, the D-Bug12 startup code
programs the MCU’s RAM chip select to insert one “wait state” into each access of external
RAM. Thus, when programs are run from external RAM, performance is approximately 40%
slower than it would be if the RAM chips were fast enough to run without wait states. Typical
software performance improvements of 80% - 95% can be realized with faster external RAM.

GENERAL INFORMATION

HC12A4EVBUM/D 1-5

For high-speed performance, the factory-supplied RAM devices may be replaced with faster parts
that allow programs to execute at the full external clock speed. Two steps are required for this:

1. Replace the RAM devices, U4 and U6A, with faster parts.

2. Modify the RAM chip select to eliminate the wait state (E-clock stretch).

Detailed instructions for these procedures are found in 2.6 Using Fast External RAM.

NOTES

Programs that execute exclusively from the MCU’s on-chip RAM
and EEPROM always run at the full clock speed. No wait states
are introduced when accessing these areas.

Table 3-5, the default memory map, depicts the addresses of the
EVB’s different memory areas.

1.4 FUNCTIONAL OVERVIEW

The EVB is factory-configured to execute D-Bug12, the EPROM-resident monitor program,
without further configuration by the user. It is ready for use with an RS-232C terminal for
writing and debugging user code. Follow the setup instructions in Chapter 2 to prepare for
operation.

Optionally, the EVB can accommodate various types and configurations of external memory to
suit a particular application’s requirements. These custom configurations are effected by
installing the appropriate memory chips in the EVB’s memory sockets and by setting jumpers on
the EVB to correctly establish the MC68HC812A4’s memory-access operations. Table 1-1 lists
the allowable sizes and types of memory. For the correct jumper settings, refer to 4.2
Configuration Headers and Jumper Settings.

NOTE

The D-Bug12 operating instructions in this manual presume the
factory-default memory configuration. Other configurations
require different operating-software arrangements.

The MC68HC812A4’s two Serial Communications Interface (SCI) ports are associated with
separate RS-232C interfaces. D-Bug12 uses one of the SCIs for communications with the user
terminal (jumper-selectable; SCI0 by default). The second SCI port is available for user
applications. For information on the ports and their connectors, refer to 2.4 EVB to Terminal
Connection and 4.4 Terminal Interface.

If the MCU’s single-wire background debug mode (BDM) interface serves as the user interface,
both of the SCI ports become available for user applications. This mode requires a background
debug development tool, such as Motorola’s Serial Debug Interface (SDI), and a host computer

GENERAL INFORMATION

HC12A4EVBUM/D1-6

with the appropriate interface software. For more information, refer to Appendix F and to the
Motorola Serial Debug Interface User’s Manual.

NOTE

D-Bug12 does not use the BDM interface.

Two methods may be used to generate EVB user code:

1. For small programs or subroutines, D-Bug12’s single-line assembler/disassembler
may be used to place object code directly into the EVB’s memory.

2. For larger programs, the Motorola MCUasm assembler may be used on a host
computer to generate S-Record object files, which can then be loaded into the EVB’s
memory using D-Bug12’s LOAD command.

The EVB features a prototype area, which allows custom interfacing with the MCU’s I/O and bus
lines. These connections are broken out via headers J8 and J9, which are immediately adjacent
to the prototype area as shown in Figure 1-1.

An on-board push-button switch, S1, provides for resetting the EVB hardware and restarting
D-Bug12. Another on-board switch, S2, allows aborting the execution of a user program —
useful in regaining control of a runaway program. Both of these switch functions are available
for customized use in the prototype area.

The EVB can begin operation in either of two jumper-selectable (W20) modes at reset. In
normal mode, D-Bug12 immediately issues its command prompt on the terminal display and
waits for a user entry. In the alternate mode, execution begins directly with the user code in on-
chip EEPROM. This hardware function is also available for customized use in the prototype
area.

D-Bug12 allows programming of the MC68HC812A4’s on-chip EEPROM through commands
that directly alter memory. For full details of all the commands, refer to 3.5 D-Bug12
Command Set.

Due to the fact that the MCU must manage the EVB hardware and execute D-Bug12 in addition
to serving as the user-application processor, there are a few restrictions on its use. For more
information, refer to 3.9 Operational Limitations.

1.5 EXTERNAL EQUPMENT REQUIREMENTS

In addition to the EVB, the following user-supplied external equipment is required:

• Power supply — see Table 1-1 for voltage and current requirements.

GENERAL INFORMATION

HC12A4EVBUM/D 1-7

NOTE

Table 1-1 indicates that EVB operation at +3.0 Vdc requires the
slower clock speed of 8 MHz. This limitation applies to programs
(including the operating firmware, D-Bug12) that use external
memory.

If an application program uses on-chip RAM and EEPROM
exclusively — i.e., if external memory is not used — the clock
speed can remain at 16 MHz with a supply voltage of +3.0 Vdc.

• User terminal — options:

− RS-232C dumb terminal — allows single-line on-board code assembly and
disassembly.

− Host computer with RS-232C serial port — allows off-board code assembly
that can be loaded into the EVB’s memory. Requires a user-supplied
communications program capable of emulating a dumb terminal. Examples of
acceptable communications programs are given in Appendix B.

− Host computer using the MCU’s BDM interface — frees both of the MCU’s
SCI ports for user applications. Requires a background debug development
tool, such as the Motorola Serial Debug Interface (SDI), and the appropriate
interface software.

• Power-supply and terminal interconnection cables as required

For full details of equipment setup, cabling, and special requirements, refer to Chapter 2.

1.6 EVB SPECIFICATIONS

Table 1-1 lists the EVB specifications.

GENERAL INFORMATION

HC12A4EVBUM/D1-8

Table 1-1. EVB Specifications

Characteristic Specifications

MCU MC68HC812A4

SRAM maximum memory:
Wide mode
Narrow mode

16, 64, 256, or 1024 Kbytes
8, 32, 128, or 512 Kbytes

ROM maximum memory:
EPROM:

Wide mode
Narrow mode

EEPROM:
Wide mode
Narrow mode

64, 128, 256, 512, or 1024 Kbytes
32, 64, 128, 256, or 512 Kbytes

64, 128, 256, or 512 Kbytes
32, 64, 128, or 256 Kbytes

MCU I/O ports HCMOS compatible

Background Debug Mode
interface

2x3 header

Communications ports Two RS-232C DCE ports

Power requirements:
16 MHz clock source
8 MHz clock source

+3.5 to +5.0 Vdc @ 150 mA (max.), fuse-protected @ 1.5 A
+3.0 to +5.0 Vdc @ 150 mA (max.), fuse-protected @ 1.5 A

Prototype area:
Area
Holes

2 x 8 in. (approx.)
79 wide x 20 high (0.1 in. centers)

Board dimensions 8 x 8 in.

GENERAL INFORMATION

HC12A4EVBUM/D 1-9

1.7 CUSTOMER SUPPORT

AUSTRALIA, JAPAN
Melbourne – (61-3)887-0711 Nagoya – 81-52-232-3500
Sydney – (61-2)906-3855 Osaka – 81-6-305-1802

BRAZIL Sendai – 81-22-268-4333
Sao Paulo – 55(11)815-4200 Takamatsu – 81-878-37-9972

CANADA Tokyo – 81-3-3440-3311
B.C., Vancouver – (604)293-7650 KOREA
ONTARIO, Toronto – (416)497-8181 Pusan – 82(51)4635-035
ONTARIO, Ottawa – (613)226-3491 Seoul – 82(2)554-5118
QUEBEC, Montreal – (514)333-3300 MALAYSIA

CHINA Penang – 60(4)374514
Beijing – 86-505-2180 MEXICO

FINLAND Mexico City – 52(5)282-0230
Helsinki – 358-0-351 61191 Guadalajara – 52(36)21-8977

FRANCE NETHERLANDS
Paris – 33134 635900 Best – (31)4998 612 11

GERMANY PUERTO RICO
Langenhagen/Hannover – 49(511)786880 San Juan – (809)793-2170
Munich – 49 89 92103-0 SINGAPORE – (65)4818188
Nuremberg – 49 911 96-3190 SPAIN
Sindelfingen – 49 7031 79 710 Madrid – 34(1)457-8204
Wiesbaden – 49 611 973050 SWEDEN

HONG KONG Solna – 46(8)734-8800
Kwai Fong – 852-6106888 SWITZERLAND
Tai Po – 852-6668333 Geneva – 41(22)799 11 11

INDIA Zurich – 41(1)730-4074
Bangalore – (91-812)627094 TAIWAN

ISRAEL Taipei – 886(2)717-7089
Herzlia – 972-9-590222 THAILAND

ITALY Bangkok – 66(2)254-4910
Milan – 39(2)82201 UNITED KINGDOM

JAPAN Aylesbury – 44(296)395-252
Fukuoka – 81-92-725-7583 UNITED STATES
Gotanda – 81-3-5487-8311 Phoenix, AZ – 1-800-441-2447

For a list of the Motorola sales offices and distributors: http://freeware.aus.sps.mot.com/

CONFIGURATION AND SETUP

HC12A4EVBUM/D 2-1

CHAPTER 2

CONFIGURATION AND SETUP

2.1 UNPACKING AND PREPARATION

Verify that the following items are present in the EVB package:

• The M68HC12A4EVB board assembly

• Warranty and registration cards

• EVB schematic diagram and parts list

• M68HC12A4EVB User’s Manual

• MC68HC812A4 Technical Summary

• CPU12 Reference Manual

• MC68HC12 Family Brochure

• Demo software

• Assembly Language Development Toolset

• Using D-Bug12 Callable Routines

Save all packing materials for storing and shipping the EVB.

Remove the EVB from its anti-static shipping bag.

Carefully remove the protective case and conductive foam that cover the MCU and its socket
during shipment.

Inspect the alignment of the MCU’s pins within its socket. If it appears necessary to reseat the
MCU,

1. press down on two opposite sides of the MCU socket

2. gently press the MCU chip into place

3. release the MCU socket.

Verify that all other socketed parts are correctly seated.

CONFIGURATION AND SETUP

HC12A4EVBUM/D2-2

2.2 EVB CONFIGURATION

Because the EVB has been factory-configured to operate with D-Bug12, it is not necessary to
change any of the jumper settings to begin operating immediately.

Only one jumper (header W20) should be changed during the course of factory-default EVB
operation with D-Bug12:

pins 2-3 jumpered (default) — Normal execution mode. D-Bug12 is executed from
external EPROM upon reset. The D-Bug12 prompt appears
immediately on the terminal display.

pins 1-2 jumpered — Alternate execution mode. User code is executed from on-chip
EEPROM upon reset. For more information, refer to 3.6
Alternate Execution from EEPROM.

Other jumper settings affect the hardware setup and/or MCU operational modes. For an
overview of all jumper-selectable functions, refer to 1.2 General Description and Features.
For details of the settings, see Table 4-1.

2.3 EVB TO POWER SUPPLY CONNECTION

The EVB requires a user-provided external power supply. See Table 1-1 for the voltage and
current specifications. For full details of the EVB’s power-input circuitry, refer to 4.3 Power
Input Circuitry.

Although fuse protection is built into the EVB, a power supply with current-limiting capability is
desirable. If this feature is available on the power supply, set it to 200 mA.

Connect the external power supply to connector J6 on the EVB as shown in Figure 2-1, using 20
AWG or smaller insulated wire. Strip each wire’s insulation 1/4 in. from the end, lift the J6
contact lever to release tension on the contact, insert the bare end of the wire into J6, and close
the lever to secure the wire. Observe the polarity carefully.

CAUTION

Do not use wire larger than 20 AWG in connector J6. Larger wire
could damage the connector.

CONFIGURATION AND SETUP

HC12A4EVBUM/D 2-3

Figure 2-1. EVB Power Connector J6

2.4 EVB TO TERMINAL CONNECTION

For factory-default operation, connect the terminal to J3 or J4 on the EVB, as shown in
Table 2-1. This setup uses the MCU’s SCI port 0 (SCI0) and its associated RS-232C interface
for communications with the terminal device.

To use SCI1 and the second RS-232C interface for the terminal, the EVB’s hardware setup must
be modified. For details, refer to 4.4 Terminal Interface.

Standard, commercially available cables may be used in most cases. Note that the EVB uses
only three of the RS-232C signals. Table 2-1 lists these signals and their pin assignments.

The EVB’s RS-232C connectors, J2 (default) and J3 (unpopulated footprint), are wired as Data
Circuit-terminating Equipment (DCE) and employ 9-pin subminiature D (DB-9) receptacles.
The equivalent 3-pin headers, J1 and J4, serve the same purposes and may be used for
customized cabling.

Most terminal devices — whether dumb terminals or the serial ports on host computers — are
wired as Data Terminal Equipment (DTE) and employ 9- or 25-pin subminiature D (DB-9 or
DB-25) plugs. In these cases, normal straight-through cabling is used between the EVB and the
terminal. Adapters are readily available for connecting 9-pin cables to 25-pin terminal
connectors.

If the terminal device is wired as DCE, the RXD and TXD lines must be cross-connected, as
shown in Table 2-1. Commercial “null modem” adapter cables are available for this purpose.

J6

CONFIGURATION AND SETUP

HC12A4EVBUM/D2-4

Table 2-1. RS-232C Interface Cabling

EVB Pins (always DCE) DTE Signal Terminal Pins

J3(1) / J2(2)

DB-9
Receptacle

J4(1) / J1(2)

3-Pin
Header

 DTE(3)

Plug
DCE(4)

Receptacle

DB-9 DB-25 DB-9 DB-25

2 2 Receive Data (RXD) 2 2 3 3

3 3 Transmit Data (TXD) 3 3 2 2

5 1 Ground (GND) 5 7 5 7

(1) Factory default (terminal interface uses SCI0)
(2) Optional (terminal interface uses SCI1). Hardware modifications are required. For details,

refer to 4.4 Terminal Interface.
(3) Normal (DCE-to-DTE) cable connections
(4) Null modem (DCE-to-DCE) cable connections

Optionally, the MCU’s background debug mode (BDM) interface can serve as the user interface.
This setup makes both of the SCI ports available for user applications. Additional hardware and
software are required. For more information, refer to the documentation for the background
debug development tool being used, such as Motorola’s Serial Debug Interface.

NOTE

D-Bug12 does not use the BDM interface.

2.5 TERMINAL COMMUNICATIONS SETUP

2.5.1 Communication Parameters

The EVB’s serial communications ports use the communication parameters listed in Table 2-2.
Of these, only the baud rate can be changed. For instructions on changing it, refer to 2.5.4
Changing the Baud Rate.

CONFIGURATION AND SETUP

HC12A4EVBUM/D 2-5

Table 2-2. Communication Parameters

Baud Rate 9600

Data Bits 8

Stop Bits 1

Parity none

2.5.2 Dumb-Terminal Setup

Configuring a dumb terminal for use with the EVB consists of setting its parameters as shown in
Table 2-2. Many terminals are configurable with externally accessible switches, but the
procedure differs between brands and models. Consult the manufacturer’s instructions for the
terminal being used.

2.5.3 Host-Computer Setup

One advantage of using a host computer as the EVB’s terminal is the ability to generate code off-
board, for subsequent loading into the EVB’s memory. It is thus desirable for the host to be
capable of running programs such as Motorola’s MCUasm assembler. For more information,
refer to 3.7 Off-Board Code Generation.

To serve as the EVB’s terminal, the host computer must have an RS-232C serial port and an
installed communications program capable of operating with the parameters listed in Table 2-2.

Setting up the parameters is normally done within the communications program, after it has been
started on the host. Usually, the setup can be saved in a configuration file so that it does not have
to be repeated. Procedures vary between programs; consult the user’s guide for the specific
program.

Appendix B provides examples of using some of the commonly available communications
programs.

2.5.4 Changing the Baud Rate

The EVB’s default baud rate for the RS-232C ports is 9600. This can be changed in two ways:

• For temporary changes, use the D-Bug12 BAUD command. This change remains in
effect only until the next reset or power-up, at which time the baud rate returns to
9600.

• For permanent changes, the D-Bug12 baud-rate initialization value stored in EPROM
must be modified. For instructions, refer to Appendix D and Appendix E.

CONFIGURATION AND SETUP

HC12A4EVBUM/D2-6

2.6 USING FAST EXTERNAL RAM

To replace the two factory-supplied SRAM chips with parts capable of operation at the full 16-
MHz external clock speed (8-MHz E-clock) with no wait states, two operations are required:

1. Replace the SRAM chips with suitably fast parts — section 2.6.1.

2. Reprogram the SRAM chip select, CSD*, for zero-wait-state operation — section
2.6.2.

2.6.1 Selecting and Replacing the RAM Chips

The replacement 8K x 8 SRAM devices should have a chip-select access time of less than 60
nanoseconds. An example of a device that has been used successfully is the Integrated Device
Technologies part number IDT7164L25P (8K x 8, 25 ns.).

When installing the replacement SRAM devices, make sure that their pins align with the
rightmost ends of sockets U4 and U6A, as viewed in Figure 1-1.

2.6.2 Reprogramming the RAM Chip Select

Either of two methods may be used to reprogram the RAM chip select, CSD*, to eliminate the
wait state.

NOTE

Before attempting either of the following methods, ensure that the
EVB is operating properly by following the startup instructions in
section 3.1.

Method A — modifying the CSSTR0 register in memory (temporary)

This method may be used without altering the D-Bug12 startup code in EPROM. However, it
must be repeated each time the EVB is powered up or reset.

Using D-Bug12’s MM command, change the value at memory location $003E from $05 to $04.

Method B — modifying the D-Bug12 startup code in EPROM (permanent)

This method is accomplished by reprogramming a single byte in the factory-supplied, one-time-
programmable (OTP) EPROM, U7. An EPROM programmer is required.

CONFIGURATION AND SETUP

HC12A4EVBUM/D 2-7

NOTES

This method does not work in reverse. If U7 has already been
reprogrammed using this technique, it cannot be restored to its
original state.

If the EPROMs are to be customized in some other way — for
example, to add a user program or to modify another aspect of
D-Bug12 — the change to register CSSTR0 can be made in the
startup source code. For more information, refer to Appendix C,
D-Bug12 Startup Code, and Appendix E, Customizing the
EPROMs.

To permanently reprogram U7 for zero RAM wait states, follow these steps:

1. Remove power from the EVB.

2. Being careful not to bend any pins, remove U7 from its socket on the EVB and install
it in the appropriate socket on the EPROM programmer.

3. Following the instructions and using the software for the EPROM programmer,
perform the steps in Procedure 1 or Procedure 2, as described below.

Some EPROM programmers do not have an editable RAM buffer capable of holding the entire
contents of U7. Instead, they program EPROMs directly from the contents of a disk file.

If the programmer being used has an editable RAM buffer large enough to hold the contents of
U7, use Procedure 1. Otherwise, to reprogram U7 from a disk file, use Procedure 2.

Procedure 1

1. Select the Atmel device type AT27LV256R.

2. Read the contents of U7 into the EPROM programmer’s editable RAM buffer.

3. Before modifying U7, save a copy of its contents to a disk file for backup purposes.

4. Change the contents of the programmer’s editable RAM buffer at location $7ED6
from $05 to $ 04.

5. Reprogram U7 with the edited contents of the programmer’s RAM buffer.

6. Reinstall U7 in its socket on the EVB. Be sure that its pins align with the rightmost
end of its socket, as viewed in Figure 1-1.

7. Apply power to the EVB and press S1, the reset switch. The D-Bug12 prompt should
appear on the terminal display.

8. Ensure that the modification was performed properly by using D-Bug12’s MD
command to examine the CSSTR0 register at memory location $003E. It should
contain the value $04.

CONFIGURATION AND SETUP

HC12A4EVBUM/D2-8

Procedure 2

1. Create a text file containing the following two lines:

 S1047E6D040C
 S9030000FC

2. Select the Atmel device type AT27LV256R.

3. Before modifying U7, save a copy of its contents to a disk file for backup purposes.

4. Reprogram U7 with the contents of the text file created in Step 1.

5. Reinstall U7 in its socket on the EVB. Be sure that its pins align with the rightmost
end of its socket, as viewed in Figure 1-1.

6. Apply power to the EVB and press S1, the reset switch. The D-Bug12 prompt should
appear on the terminal display.

7. Ensure that the modification was performed properly by using D-Bug12’s MD
command to examine the CSSTR0 register at memory location $003E. It should
contain the value $04.

OPERATION

HC12A4EVBUM/D 3-1

CHAPTER 3

OPERATION

3.1 STARTUP

The following startup procedure includes a checklist of configuration and setup items from
Chapter 2. To begin operating the M68HC12A4EVB, follow these steps:

1. Configure the EVB if required — section 2.2.

2. Determine whether execution should begin with the D-Bug12 monitor program
(factory default) or with user code in on-chip EEPROM. Set the jumper on header
W20 accordingly — sections 2.2 and 3.6.

3. Connect the EVB to the external power supply — section 2.3.

4. Connect the EVB to the terminal — section 2.4.

5. Configure the terminal communications interface — section 2.5.

6. Apply power to the EVB and to the terminal. If the terminal is a host computer,

a. Verify that it has booted correctly.

b. Start the communications program for terminal emulation — section 2.5.3 and
Appendix B.

7. Reset the EVB by pressing and releasing the on-board reset switch (S1).

If the EVB is configured to execute D-Bug12 upon reset (factory default — startup step 2), the
D-Bug12 sign-on banner and prompt should appear on the terminal’s display as follows:

D-Bug12 v1.0.2
Copyright 1995 - 1996 Motorola Semiconductor
For Commands type “Help”
>

If the prompt does not appear, check all connections and verify that startup steps 1 through 7
above have been performed correctly.

When the prompt appears, D-Bug12 is ready to accept commands from the terminal as described
in sections 3.4 and 3.5.

OPERATION

HC12A4EVBUM/D3-2

If the EVB is configured to execute user code upon reset (startup step 2), the code in on-chip
EEPROM is executed immediately. For more information, refer to 3.6 Alternate Execution
from EEPROM. Control can be returned to the D-Bug12 terminal prompt by doing one of the
following:

1. Terminating the user code with appropriate instructions — see section 3.6.

2. Activating the program-abort function — see section 3.3.

3.2 RESET

EVB operation can be restarted at any time by activating the hardware reset function. Do this in
one of two ways:

1. Press and release the on-board reset switch, S1 (always applicable).

2. If the hardware reset input has been customized in the prototype area, activate it in
accordance with the custom circuitry.

Note that the EVB’s reset circuitry is associated with the low-voltage inhibit protection. For
more information, refer to 4.9 Reset and 4.10 Low-Voltage Inhibit.

3.3 PROGRAM ABORT

During software development, bugs in the code can cause a program to get stuck in an endless
loop, thereby preventing proper response (i.e., a “crash”). In these situations, use the EVB’s
program-abort function to return control of execution to D-Bug12, which then displays the
register contents at the point where the user program was terminated.

Activating the program-abort function asserts the MCU’s XIRQ* hardware interrupt line. There
are restrictions on its use under certain circumstances; refer to 3.9 Operational Limitations.

Activate the program-abort function by doing one of the following:

1. Press and release the on-board program-abort switch, S2.

2. If the program-abort input has been customized in the prototype area, activate it in
accordance with the custom circuitry.

OPERATION

HC12A4EVBUM/D 3-3

NOTE

If the EVB is configured to begin execution from on-chip
EEPROM, D-Bug12 jumps to the starting EEPROM address
without before performing all of its initialization and is thus not
operable. Do not activate the program-abort function under these
conditions. Instead, move the jumper on header W20 to pins 2-3
and activate the reset function to return control to D-Bug12.

3.4 USING D-BUG12 COMMANDS

D-Bug12, the EVB’s firmware-resident monitor program, provides a self-contained operating
environment that allows writing, evaluation, and debugging of user programs.

Commands are typed on the terminal’s D-Bug12 prompt line and executed when the carriage-
return (ENTER) key is pressed. D-Bug12 then displays either the appropriate response to the
command or an error indication.

The D-Bug12 command-line prompt is the greater-than sign (>). Type the command and any
other required or optional fields immediately after the prompt, as follows:

command-line syntax:

<command> [<parameter>] ...[<parameter>]<ENTER>

where:

<command> is the command mnemonic.

<parameter> is an expression or address.

<ENTER> is the terminal keyboard’s carriage-return or enter key.

NOTES

1. The command-line syntax is illustrated using the following special characters for
clarification. Do not type these characters on the command line:

< > required syntactical element

[] optional field

...[] repeated optional fields

2. Fields are separated by any number of space characters.

3. All numeric fields, unless noted otherwise, are interpreted as hexadecimal.

4. Command-line entries are case-insensitive and may be typed using any combination
of upper- and lower-case letters.

OPERATION

HC12A4EVBUM/D3-4

5. A maximum of 80 characters, including the terminating carriage return, may be
entered on the command line. After the 80th character, D-Bug12 automatically
terminates the command-line entry and processes the characters entered to that point.

6. Before the <ENTER> key is pressed, the command line may be edited using the
backspace key. Receiving the backspace character causes D-Bug12 to delete the
previously-received character from its input buffer and erase the character from the
display.

Table 3-1 summarizes the D-Bug12 commands. For detailed descriptions of each command,
refer to 3.5 D-Bug12 Command Set.

Table 3-1. D-Bug12 Command-Set Summary

Command Description

ASM <address> Single-line assembler/disassembler

BAUD <BAUDRate> Set the SCI communications baud rate

BF <StartAddress><EndAddress> [<Data>] Block Fill user memory with data

BR [<Address><Address>...] Set/display user breakpoints

BULK Bulk erase on-chip EEPROM

CALL [<Address>] Execute a user subroutine; return to D-Bug12 when
finished

G [<Address>] Go — begin execution of user program

GT <Address> Go Till — set a temporary breakpoint and begin execution
of user program

HELP Display D-Bug12 command set and command syntax

LOAD [<AddressOffset>] Load user program in S-Record format*

MD <StartAddress> [<EndAddress>] Memory Display — display memory contents in hex
bytes/ASCII format

MDW <StartAddress> [<EndAddress>] Memory Display Word — display memory contents in hex
words/ASCII format

MM <Address> [<data>] Memory Modify — interactively examine/change memory
contents

MMW <address> [<data>] Memory Modify Word — interactively examine/change
memory contents

MOVE <StartAddress> <EndAddress>
<DestAddress>

Move a block of memory

NOBR [<Address> <Address>...] Remove individual user breakpoints

OPERATION

HC12A4EVBUM/D 3-5

Table 3-1. D-Bug12 Command-Set Summary (continued)

Command Description

RD Register Display — display the CPU register contents

RM Register Modify — interactively examine/change CPU
register contents

T [<Count>] Trace — execute an instruction, disassemble it, and
display the CPU registers

UPLOAD <StartAddress> <EndAddress> Display memory contents in S-Record format*

VERF [<AddressOffset>] Verify memory contents against S-Record Data

<RegisterName> <RegisterValue> Set CPU <RegisterName> to <RegisterValue>

* Refer to Appendix A for S-record information.

3.5 D-BUG12 COMMAND SET

In the following command descriptions, the examples represent what is seen on the terminal
display. For clarity, the user’s entry is underlined. This underlining does not actually appear
onscreen.

A typical example looks like this:

>baud 9600 user’s entry

Change Terminal BR, Press Return D-Bug12’s response

> D-Bug12 prompt for next entry

OPERATION

HC12A4EVBUM/D3-6

ASM Assembler/Disassembler ASM

syntax:

ASM <Address>

where:

<Address> is a 16-bit hexadecimal number.

The assembler/disassembler is an interactive memory editor that allows memory contents to be
viewed and altered using assembly language mnemonics. Each entered source line is translated
into object code and placed into memory at the time of entry. When displaying memory contents,
each instruction is disassembled into its source mnemonic form and displayed along with the
hexadecimal object code and any instruction operands.

Assembler mnemonics and operands may be entered in any mix of upper and lower case letters.
Any number of spaces may appear between the assembler prompt and the instruction mnemonic
or between the instruction mnemonic and the operand. Numeric values appearing in the operand
field are interpreted as signed decimal numbers. Placing a $ in front of any number will cause
the number to be interpreted as a hexadecimal number.

When an instruction is disassembled and displayed, the D-Bug12 prompt is displayed following
the disassembled instruction. If a carriage return is the first non-space character entered
following the prompt, the next instruction in memory is disassembled and displayed on the next
line.

If a CPU12 instruction is entered following the prompt, the entered instruction is assembled and
placed into memory. The line containing the new entry is erased and the new instruction is
disassembled and displayed on the same line. The next instruction location is then disassembled
and displayed on the screen.

The instruction mnemonics and operand formats accepted by the assembler follows the syntax as
described in the CPU12 Reference Manual.

There are a number of M68HC11 instruction mnemonics that appear in the CPU12 Reference
Manual that do not have directly equivalent CPU12 instructions. These mnemonics, listed in
Table 3-2, are translated into functionally equivalent CPU12 instructions. To aid the current
M68HC11 users who may desire to continue using the M68HC11 mnemonics, the disassembler
portion of the assembler/disassembler recognizes the functionally equivalent CPU12 instructions
and disassembles those instructions into the equivalent M68HC11 mnemonics.

When entering branch instructions, the number placed in the operand field should be the absolute
destination address of the instruction. The assembler calculates the two’s-complement offset of
the branch and places the offset in memory with the instruction

OPERATION

HC12A4EVBUM/D 3-7

The assembly/disassembly process may be terminated by entering a period (.) as the first non-
space character following the assembler prompt.

restrictions:

None.

Table 3-2. M68HC11 to CPU12 Instruction Translation

M68HC11 Mnemonic CPU12 Instruction M68HC11 Mnemonic CPU12 Instruction

CLC ANCC # $FE INS LEAS 1, S

CLI ANCC # $EF TAP TFR A, CC

CLV ANCC # $FD TPA TFR CC, A

SEC ORCC # $01 TSX TFR S, X

SEI ORCC # $10 TSY TFR S, Y

SEV ORCC # $02 XGDX EXG D, X

ABX LEAX B, X XGDY EXG D, Y

ABY LEAY B, Y SEX R8, R16 TFR R8, R16

DES LEAS -1, S

example:

>ASM 800

0800 CC1000 LDD #$1000
0803 1803123401FE MOVW #$1234,$01FE
0809 0EF9800001F1 BRSET -32768,PC,$01,$0700
080F 18FF TRAP $FF
0811 183FE3 ETBL <Illegal Addr Mode> >.
>

assembly operand format:

This section describes the operand format used by the assembler when assembling CPU12
instructions. The operand format accepted by the assembler is described separately in the CPU12
Reference Manual. Rather than describe the numeric format accepted for each instruction, some
general rules are used. Exceptions and complicated operand formats are described separately.

In general, anywhere the assembler expects a numeric value in the operand field, either a decimal
or hexadecimal value may be entered. Decimal numbers are entered as signed constants having a
range of -32768 to 65535. A leading minus sign (-) indicates negative numbers, the absence of a
leading minus sign indicates a positive number. A leading plus sign (+) is not allowed.

OPERATION

HC12A4EVBUM/D3-8

Hexadecimal numbers must be entered with a leading dollar sign ($) followed by one to four
hexadecimal digits. The default number base is decimal.

For all branching instructions (Bcc, LBcc, BRSET, BRCLR, DBEQ, DBNE, IBEQ, IBNE,
TBEQ, and TBNE), the number entered as the branch address portion of the operand field is the
absolute address of the branch destination. The assembler calculates the two’s-complement
offset to be placed in the assembled object code.

disassembly operand format:

The operand format used by the disassembler is described separately in the CPU12 Reference
Manual. Rather than describing the numeric format used for each instruction, some general rules
are applied. Exceptions and complicated operand formats are described separately.

All numeric values disassembled as hexadecimal numbers are preceded by a dollar sign ($) to
avoid being confused with values disassembled as signed decimal numbers.

For all branch (Bcc, LBcc, BRSET, BRCLR, DBEQ, DBNE, IBEQ, IBNE, TBEQ, TBNE)
instructions the numeric value of the address portion of the operand field is displayed as the
hexadecimal absolute address of the branch destination.

All offsets used with indexed addressing modes are disassembled as signed decimal numbers.

All addresses, whether direct or extended, are disassembled as four digit hexadecimal numbers.

All 8-bit mask values (BRSET/BRCLR/ANDCC/ORCC) are disassembled as two-digit
hexadecimal numbers.

All 8-bit immediate values are disassembled as hexadecimal numbers.

All 16-bit immediate values are disassembled as hexadecimal numbers.

OPERATION

HC12A4EVBUM/D 3-9

BAUD Set Baud Rate BAUD

syntax:

BAUD <BAUDRate>

where:

<BAUDRate> is an unsigned 16-bit decimal number.

The BAUD command is used to change the communications rate of the SCI used by D-Bug12 for
the terminal interface.

restrictions:

Because the <BAUDRate> parameter supplied on the command line is a 16-bit unsigned integer,
BAUD rates greater than 65535 baud cannot be set using this command. The SCI BAUD rate
divider value for the requested BAUD rate is calculated using the M clock value supplied in the
Customization Data area. Because the SCI BAUD rate divider is a 13-bit counter, certain BAUD
rates may not be supported at particular M clock frequencies. If the value calculated for the
SCI’s BAUD rate divider is equal to zero or greater than 8191, command execution is terminated
and the communications BAUD rate is not changed.

example:

>BAUD 50

Invalid BAUD Rate
>BAUD 38400
Change Terminal BR, Press Return
>

OPERATION

HC12A4EVBUM/D3-10

BF Block Fill BF

syntax:

BF <StartAddress> <EndAddress> [<Data>]

where:

<StartAddress> is a 16-bit hexadecimal number.

<EndAddress> is a 16-bit hexadecimal number.

<Data> is an 8-bit hexadecimal number.

The Block Fill command is used to place a single 8-bit value into a range of memory locations.
<StartAddress> is the first memory location written with <data> and <EndAddress> is the last
memory location written with <data>. If the <data> parameter is omitted, the memory range is
filled with the value $00.

restrictions:

None.

example:

>BF 6400 6fff 0
>BF 6f00 6fff 55
>

OPERATION

HC12A4EVBUM/D 3-11

BR Breakpoint Set BR

syntax:

BR [<Address> <Address> ...]

where:

<Address> are optional 16-bit hexadecimal numbers.

The BR command is used to set a software breakpoint at a specified address or to display any
previously set breakpoints. The function of a breakpoint is to halt user program execution when
the program reaches the breakpoint address. When a breakpoint address is encountered,
D-Bug12 disassembles the instruction at the breakpoint address, prints the CPU12’s register
contents, and waits for a D-Bug12 command to be entered by the user.

Breakpoints are set by typing the breakpoint command followed by one or more breakpoint
addresses. Entering the breakpoint command without any breakpoint addresses will display all
the currently set breakpoints.

A maximum of 10 user breakpoints may be set at one time.

restrictions:

D-Bug12 implements the breakpoint function by replacing the instruction opcode at the
breakpoint address in the users program with an SWI instruction. For this reason, a breakpoint
may not be set on a user SWI instruction. Breakpoints may only be set at an opcode address, and
breakpoints may only be placed at memory addresses in modifiable memory.

Even though D-Bug12 supports a maximum of 10 user defined breakpoints, a maximum of 9
breakpoints may be set on the command line at one time. This restriction is due to the limitation
of the command line processor, which allows a maximum of 10 command line arguments
including the command string.

example:

>BR 35ec 2f80 c592
Breakpoints: 35EC 2F80 C592

>BR
Breakpoints: 35EC 2F80 C592

>

OPERATION

HC12A4EVBUM/D3-12

BULK Bulk Erase On-Chip EEPROM BULK

syntax:

BULK

The BULK command is used to erase the entire contents of the on-chip EEPROM in a single
operation. After the bulk erase operation has been performed, each on-chip EEPROM location is
checked for an erased condition.

restrictions:

None.

example:

>BULK

>

OPERATION

HC12A4EVBUM/D 3-13

CALL Call Subroutine CALL

syntax:

CALL [<Address>]

where:

<Address> is an optional 16-bit hexadecimal number.

The CALL command is used to execute a subroutine and return to the D-Bug12 monitor program
when the final RTS of the subroutine is executed. When control is returned to D–Bug12, the
CPU register contents are displayed. All CPU registers contain the values at the time the final
RTS instruction was executed, with the exception of the program counter (PC). The PC contains
the starting address of the subroutine. If a subroutine address is not supplied on the command
line, the current value of the Program Counter (PC) is used as the starting address.

NOTE:

No user breakpoints are placed in memory before execution is
transferred to user code.

restrictions:

If the called subroutine modifies the value of the stack pointer during its execution, it MUST
restore the stack pointer’s original value before executing the final RTS of the called subroutine.
This restriction is required because a return address is placed on the user’s stack that returns to
D-Bug12 when the final RTS of the subroutine is executed. Obviously, any subroutine must
obey this restriction to execute properly.

example:

>CALL 820
Subroutine Call Returned

 PC SP X Y D = A:B CCR = SXHI NZVC
0820 0A00 057C 0000 0F:F9 1001 0000
>

OPERATION

HC12A4EVBUM/D3-14

GO Go Execute a User Program GO

syntax:

G [<Address>]

where:

<Address> is an optional 16-bit hexadecimal number.

The G command is used to begin the execution of user code in real time. Before beginning
execution of user code, any breakpoints that were set with the BR command are placed in
memory. Execution of the user program continues until a user breakpoint is encountered, a CPU
exception occurs, or the EVB’s reset or program-abort switch is pressed.

When user code halts for any of these reasons (except reset, which wipes the slate clean) and
control is returned to D-Bug12, a message is displayed explaining the reason for user program
termination. In addition, D-Bug12 disassembles the instruction at the current PC address, prints
the CPU12’s register contents, and waits for the next D-Bug12 command to be entered by the
user.

If a starting address is not supplied in the command line parameter, program execution will begin
at the address defined by the current value of the Program Counter.

restrictions:

None.

example:

>G 800
User Breakpoint Encountered

 PC SP X Y D = A:B CCR = SXHI NZVC
0820 09FE 057C 0000 00:00 1001 0100
0820 08 INX
>

OPERATION

HC12A4EVBUM/D 3-15

GT Go Till GT

syntax:

GT <Address>

where:

<Address> is a 16-bit hexadecimal number.

The GT command is similar to the G command except that a temporary breakpoint is placed at
the address supplied on the command line. Any breakpoints that were set by the use of the BR
command are NOT placed in the user code before program execution begins. Program execution
begins at the address defined by the current value of the Program Counter. When user code
reaches the temporary breakpoint and control is returned to D-Bug12, a message is displayed
explaining the reason for user program termination. In addition, D-Bug12 disassembles the
instruction at the current PC address, prints the CPU12’s register contents, and waits for a
command to be entered by the user.

restrictions:

None.

example:

>GT 820
Temporary Breakpoint Encountered

 PC SP X Y D = A:B CCR = SXHI NZVC
0820 09FE 057C 0000 00:00 1001 0100
0820 08 INX
>

OPERATION

HC12A4EVBUM/D3-16

HELP Onscreen Help Summary HELP

syntax:

HELP

The HELP command is used to display a summary of the D-Bug12 command set. Each
command is shown along with its command line format and a brief description of its function.

restrictions:

None.

example:
>HELP
ASM <Address> Single line assembler/disassembler
 <CR> Disassemble next instruction
 < . > Exit assembly/disassembly
BAUD <baudrate> Set communications rate for the terminal
BF <StartAddress> <EndAddress> [<data>] Fill memory with data
BR [<Address>] Set/Display user breakpoints
BULK Erase entire on-chip EEPROM contents
CALL [<Address>] Call user subroutine at <Address>
G [<Address>] Begin/continue execution of user code
GT <Address> Set temporary breakpoint at <Address> & execute user code
HELP Display this D-Bug12 command summary
LOAD [<AddressOffset>] Load S-Records into memory
MD <StartAddress> [<EndAddress>] Memory Display Bytes
MDW <StartAddress> [<EndAddress>] Memory Display Words
MM <StartAddress> Modify Memory Bytes
 < CR > Examine/Modify next location
 < / > or < = > Examine/Modify same location
 < ^ > or < – > Examine/Modify previous location
 < . > Exit Modify Memory command
MMW <StartAddress> Modify Memory Words (same subcommands as MM)
MOVE <StartAddress> <EndAddress> <DestAddress> Move a block of memory
NOBR [<address>] Remove One/All Breakpoint(s)
RD Display all CPU registers
RM Modify CPU Register Contents
T [<count>] Trace <count> Instructions
UPLOAD <StartAddress> <EndAddress> S-Record Memory display
VERF [<AddressOffset>] Verify S-Records against memory contents
<Register Name> <Register Value> Set register contents
 Register Names: PC, SP, X, Y, A, B, D
 CCR Status Bits: S, XM, H, IM, N, Z, V, C
>

OPERATION

HC12A4EVBUM/D 3-17

LOAD Load S-Record File LOAD

syntax:

LOAD [<AddressOffset>]

{Send File}

where:

<AddressOffset> is an optional 16-bit hexadecimal number.

{Send File} is the host-computer communications program’s utility for sending
an ASCII (text) file. Refer to Appendix B for examples.

The Load command is used to load S-Record object files into memory from an external device.
The address offset, if supplied, is added to the load address of each S-Record before its data bytes
are placed in memory. Providing an address offset other than zero allows object code or data to
be loaded into memory at a location other than that for which it was assembled. During the
loading process, the S-Record data is not echoed to the control console. However, for each ten
S-Records that are successfully loaded, an ASCII asterisk character (*) is sent to the control
console, When an S-Record file has been successfully loaded, control returns to the D-Bug12
prompt.

The Load command is terminated when D-Bug12 receives an ‘S9’ end of file record. If the
object file being loaded does not contain an ‘S9’ record, D–Bug12 does not return its prompt and
continues to wait for the end of file record. Pressing the Reset switch returns D–Bug12 to its
command line prompt.

restrictions:

None.

example:

>LOAD 1000

>

OPERATION

HC12A4EVBUM/D3-18

MD Memory Display MD

syntax:

MD <StartAddress> [<EndAddress>]

where:

<StartAddress> is a 16-bit hexadecimal number.

<EndAddress> is an optional 16-bit hexadecimal number.

The Memory Display command displays the contents of memory as both hexadecimal bytes and
ASCII characters, 16-bytes on each line. The <StartAddress> parameter must be supplied; the
<EndAddress> parameter is optional. When the <EndAddress> parameter is not supplied, a
single line is displayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower
multiple of 16, while the number supplied as the <EndAddress> parameter is rounded up to the
next higher multiple of 16 - 1. This causes each line to display memory in the range of $xxx0
through $xxxF. For example, if $205 is entered as the start address and $217 as the ending
address, the actual memory range displayed would be $200 through $21F.

restrictions:

None.

example:
>MD 800
0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 0D - B7 56 78 20 ..7j..’.5.x..Vx

>MD 800 87f
0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 0D - B7 56 78 20 ..7j..’.5.x..Vx
0810 B6 36 27 F9 - 35 AE 27 F9 - 35 9E 27 F9 - 35 BE B5 28 .6’.5.’.5.’.5..(
0820 27 F9 35 D6 - 37 B8 00 0F - 37 82 01 0A - 37 36 FF F0 ’.5.7...7...76..
0830 7C 10 37 B3 - 00 00 37 B6 - 00 0F AA 04 - A5 02 37 B6 |.7...7.......7.
0840 00 0F 27 78 - 37 6A 00 06 - 27 F9 35 78 - 27 F9 35 56 ..’x7j..’.5x’.5V
0850 78 0D B7 10 - 78 3B 37 86 - 00 DC 27 F9 - 35 48 78 57 x...x;7...’.5HxW
0860 37 86 00 DE - F5 01 EA 09 - 37 B5 0D 0A - 27 F9 36 2A 7.......7...’.6*
0870 A5 00 37 65 - 00 02 27 F9 - 35 E8 37 9C - 37 4C F5 02 ..7e..’.5.7.7L..
>

OPERATION

HC12A4EVBUM/D 3-19

MDW Memory Display, Word MDW

syntax:

MDW <StartAddress> [<EndAddress>]

where:

<StartAddress> is a 16-bit hexadecimal number.

<EndAddress> is an optional 16-bit hexadecimal number.

The Memory Display Word command displays the contents of memory as hexadecimal words
and ASCII characters, 16-bytes on each line. The <StartAddress> parameter must be supplied;
the <EndAddress> parameter is optional. When the <EndAddress> parameter is not supplied, a
single line is displayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower
multiple of 16, while the number supplied as the <EndAddress> parameter is rounded up to the
next higher multiple of 16 - 1. This causes each line to display memory in the range of $xxx0
through $xxxF. For example, if $205 is entered as the start address and $217 as the ending
address, the actual memory range displayed would be $200 through $21F.

restrictions:

None.

example:
>MDW 800
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j..’.5.x..Vx

>MDW 800 87f
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j..’.5.x..Vx
0810 B636 27F9 - 35AE 27F9 - 359E 27F9 - 35BE B528 .6’.5.’.5.’.5..(
0820 27F9 35D6 - 37B8 000F - 3782 010A - 3736 FFF0 ’.5.7...7...76..
0830 7C10 37B3 - 0000 37B6 - 000F AA04 - A502 37B6 |.7...7.......7.
0840 000F 2778 - 376A 0006 - 27F9 3578 - 27F9 3556 ..’x7j..’.5x’.5V
0850 780D B710 - 783B 3786 - 00DC 27F9 - 3548 7857 x...x;7...’.5HxW
0860 3786 00DE - F501 EA09 - 37B5 0D0A - 27F9 362A 7.......7...’.6*
0870 A500 3765 - 0002 27F9 - 35E8 379C - 374C F502 ..7e..’.5.7.7L..
>

OPERATION

HC12A4EVBUM/D3-20

MM Memory Modify MM

syntax:

MM <Address> [<Data>]

where:

<Address> is a16-bit hexadecimal number.

<Data> is an optional 8-bit hexadecimal number.

The Memory Modify command allows the contents of memory to be examined and/or modified
as 8-bit hexadecimal data. If the 8-bit data parameter is present on the command line, the byte at
memory location <Address> is replaced with <Data> and the command is terminated. If not,
D-Bug12 enters the interactive memory modify mode. In the interactive mode, each byte is
displayed on a separate line following the data’s address. Once the memory modify command
has been entered, single-character sub-commands are used for the modification and verification
of memory contents. These sub-commands have the following format:

[<Data>] <CR> Optionally update current location and display the next location.

[<Data>] </> or <=> Optionally update current location and redisplay the current
location.

[<Data>] <^> or <-> Optionally update current location and display the previous
location.

[<Data>] <.> Optionally update current location and exit Memory Modify.

With the exception of the carriage return, the sub-command must be separated from any entered
data with at least one space character. If an invalid sub-command character is entered, an
appropriate error message is issued and the contents of the current memory location are
redisplayed.

restrictions:

None.

example:
>MM 800
0800 00 <CR>
0801 F0 FF
0802 00 ^
0801 FF <CR>
0802 00 <CR>
0803 08 55 /
0803 55 .
>

OPERATION

HC12A4EVBUM/D 3-21

MMW Memory Modify, Word MMW

syntax:

MMW <Address> [<Data>]

where:

<Address> is a 16-bit hexadecimal number.

<Data> is an optional 16-bit hexadecimal number.

The Memory Modify Word command allows the contents of memory to be examined and/or
modified as 16-bit hexadecimal data. If the 16-bit data parameter is present on the command
line, the word at memory location <Address> is replaced with <Data> and the command is
terminated. If not, D-Bug12 enters the interactive memory modify mode. In the interactive
mode, each word is displayed on a separate line following the data’s address. Once the memory
modify command has been entered, single-character sub-commands are used for the modification
and verification of memory contents. These sub-commands have the following format:

[<Data>] <CR> Optionally update current location and display the next location.

[<Data>] </> or <=> Optionally update current location and redisplay the current
location.

[<Data>] <^> or <-> Optionally update current location and display the previous
location.

[<Data>] <.> Optionally update current location and exit Memory Modify.

With the exception of the carriage return, the sub-command must be separated from any entered
data with at least one space character. If an invalid sub-command character is entered, an
appropriate error message is issued and the contents of the current memory location are
redisplayed.

restrictions:

None.

example:

>MMW 800
0800 00F0 <CR>
0802 0008 AA55 /
0804 843F ^
0802 AA55 <CR>
0804 843F <CR>
0806 C000 .
>

OPERATION

HC12A4EVBUM/D3-22

MOVE Move Memory Block MOVE

syntax:

MOVE <StartAddress> <EndAddress> <DestAddress>

where:

<StartAddress> is a 16-bit hexadecimal number.

<EndAddress> is a 16-bit hexadecimal number.

<DestAddress> is a 16-bit hexadecimal number.

The MOVE command is used to move a block of memory from one location to another, one byte
at a time. The number of bytes moved is one more than the <EndAddress> - <StartAddress>.
The block of memory beginning at the destination address may overlap the memory block
defined by the <StartAddress> and <EndAddress>.

One of the uses of the MOVE command might be to copy a program from RAM into the on-chip
EEPROM memory.

restrictions:

A minimum of one byte may be moved if the <StartAddress> is equal to the <EndAddress>. The
maximum number of bytes that may be moved is 2

16
 - 1.

example:

>MOVE 800 8ff 1000
>

OPERATION

HC12A4EVBUM/D 3-23

NOBR Remove Breakpoints NOBR

syntax:

NOBR [<Address> <Address> ...]

where:

<Address> is an optional 16-bit hexadecimal number.

The NOBR command can be used to remove one or more previously entered breakpoints. If the
NOBR command is entered without any arguments, all user breakpoints are removed from the
breakpoint table.

restrictions:

None.

example:

>BR 800 810 820 830
Breakpoints: 0800 0810 0820 0830

>NOBR 810 820
Breakpoints: 0800 0830

>NOBR
All Breakpoints Removed

>

OPERATION

HC12A4EVBUM/D3-24

RD Register Display RD

syntax:

RD

The Register Display command is used to display the CPU12’s registers.

restrictions:

None.

example:

>RD
 PC SP X Y D = A:B CCR = SXHI NZVC
0206 03FF 1000 3700 27:FF 1001 0001
>

OPERATION

HC12A4EVBUM/D 3-25

RM Register Modify RM

syntax:

RM

The Register Modify command is used to examine and/or modify the contents of the CPU12’s
registers in an interactive manner. As each register and its contents is displayed, D-Bug12 allows
the user to enter a new value for the register in hexadecimal. If modification of the displayed
register is not desired, entering a carriage return will cause the next CPU12 register and its
contents to be displayed on the next line. When the last of the CPU12’s registers has been
examined and/or modified, the RM command displays the first register, giving the user an
opportunity to make additional modifications to the CPU12’s register contents. Typing a period
(.) as the first non space character on the line will exit the interactive mode of the register modify
command and return to the D-Bug12 prompt. The registers are displayed in the following order,
one register per line: PC, SP, X, Y, A, B, CCR.

restrictions:

None.

example:

>RM
PC=0206 200
SP=03FF <CR>
X=1000 1004
Y=3700 <CR>
A=27 <CR>
B=FF <CR>
CCR=D0 D1
PC=0200 .
>

OPERATION

HC12A4EVBUM/D3-26

T Trace T

syntax:

T [<Count>]

where:

<Count> is an optional 8-bit decimal number in the range 1 to 255.

The Trace command is used to execute one or more user program instructions beginning at the
current Program Counter (PC) location. As each program instruction is executed, the CPU12’s
register contents are displayed and the next instruction to be executed is displayed. A single
instruction may be executed by entering the trace command immediately followed by a carriage
return.

restrictions:

Because of the method used to execute a single instruction, branch instructions (Bcc, LBcc,
BRSET, BRCLR, DBEQ/NE, IBEQ/NE, TBEQ/NE) that contain an offset that branches back to
the instruction opcode DO NOT execute. The terminal appears to become stuck at the branch
instruction and does not execute the instruction even if the condition for the branch instruction is
satisfied. This limitation can be overcome by using the GT (Go Till) command to set a
temporary breakpoint at the instruction following the branch instruction.

When the CPU12 is not operating in background debug mode, there is no specialized hardware
available to execute a single instruction. The Trace command makes use of temporary software
breakpoints as a means to control CPU execution. For this reason, only instructions that reside in
alterable memory may be executed with the Trace command.

example:

>T

 PC SP X Y D=A:B CCR=SXHI NZVC
0803 09FE 057C 0000 10:00 1001 0000
0803 830001 SUBD #$0001
>T 3

 PC SP X Y D=A:B CCR=SXHI NZVC
0806 09FE 057C 0000 0F:FF 1001 0000
0806 26FB BNE $0803

 PC SP X Y D=A:B CCR=SXHI NZVC
0803 09FE 057C 0000 0F:FF 1001 0000
0803 830001 SUBD #$0001

OPERATION

HC12A4EVBUM/D 3-27

 PC SP X Y D=A:B CCR=SXHI NZVC
0806 09FE 057C 0000 0F:FE 1001 0000
0806 26FB BNE $0803
>

OPERATION

HC12A4EVBUM/D3-28

UPLOAD Display Memory in S-Record Format UPLOAD

syntax:

UPLOAD <StartAddress> <EndAddress>

where:

<StartAddress> is a 16-bit hexadecimal number.

<EndAddress> is a 16-bit hexadecimal number.

The UPLOAD command is used to display the contents of memory in Motorola S-Record
format. In addition to displaying the specified range of memory, the UPLOAD command also
outputs an S9 end-of-file record. The output of this command may be captured by the users
terminal program and saved to a disk file.

restrictions:

None.

example:
>upload 400 5ff
S123040000F0000843FC0000F50F379F37BF43FCF50F27FA757F177AFA047504177AFA21C5
S123042037B500FF37FAFB0437B5400037FAFB061735FB0037B500C137FAFA003715379C01
S1230440F50F379D37BC012C37BD400085009A003C023D02377C0140B6EE7A0F400037B583
S1230460000337FAFA4C37FAFA5037FAFA5437B5502037FAFA4E37B5302037FAFA5237B58A
S1230480682037FAFA5637BD014037BC000095008A003C023D02377D0172B6EE37BD017259
S12304A037BC020095008A003C023D02377D018EB6EE27F937B0F50F379C37BC00CE27F901
S12304C000FC27F9104C27F90E68378000BE0A0D442D42756731362056312E3033202D20E3
S12304E04465627567204D6F6E69746F7220466F7220546865204D363848433136204661ED
S12305006D696C790A0D2843292031393932204D6F746F726F6C612053656D69636F6E64BD
S12305207563746F7220496E632E000037B5FF0237FAFA4837B578B037FAFA4A7A0F005E52
S12305400000000000000000020002040208020C021000000000000000000000000002144F
S12305600000000000000000000000000000000002187A0F3BAC7A0F3BBC7A0F11E87A0F62
S12305803C727A0F3C847A0F3C967A0F3CA8F50F379C379D379E27FAF50F379F37BF43FCE8
S12305A07501177A4054173540523604361C27F90088B0D637BC01BC360227F70A0D3E00A9
S12305C04500B70427F936BC3C01B0F027F7277537BC400017BC405027F936CC780DB60477
S12305E027F936A0274A27F77803B6FEB03A7808B6162776B7DE3730000127F93686752002
S9030000FC
>

OPERATION

HC12A4EVBUM/D 3-29

VERF Verify S-Record File against Memory VERF

syntax:

VERF [<AddressOffset>]

{Send File}

where:

<AddressOffset> is an optional 16-bit hexadecimal number.

{Send File} is the host-computer communications program’s utility for sending
an ASCII (text) file. Refer to Appendix B for examples.

The VERF command is used to compare the data contained in an S-Record object file to the
contents of EVB memory. The address offset, if supplied, is added to the load address of each S-
Record before an S-Record’s data bytes are compared to the contents of memory. Providing an
address offset other than zero allows the S-Record’s object code or data to be compared against
memory other than that for which the S-Record was assembled.

During the verification process, an ASCII asterisk character (*) is sent to the control console for
each ten S-Records that are successfully verified. When an S-Record file has been successfully
verified, control returns to the D-Bug12 prompt.

If the contents of EVB memory do not match the corresponding data in the received S-Records,
an error message is displayed and the Verify command is terminated. D-Bug12 then returns to its
command-line prompt. If the host computer continues to send S-Records to the EVB, D-Bug12
tries to interpret each S-Record as a command and issues error message for each S-Record
received.

If the contents of EVB memory match the contents of the received S-Records, the Verify
command terminates when D-Bug12 receives an S9 end-of-file record. If the object file being
verified does not contain an S9 record, D-Bug12 continues to wait for an S9 record without
returning to the command-line prompt. Pressing the reset switch, S1, returns D-Bug12 to its
command-line prompt.

restrictions: None.

example:

>VERF 1000

>

OPERATION

HC12A4EVBUM/D3-30

<Register Name> Modify Register Value <Register Name>

syntax:

<RegisterName> <RegisterValue>

where:

<RegisterName> is one of the CPU12 registers listed in Table 3-3.

<RegisterValue> is an 8- or 16-bit hexadecimal number.

Table 3-3. CPU12 Registers

Register Name Description Legal Range

PC Program Counter $0 to $FFFF

SP Stack Pointer $0 to $FFFF

X X-Index Register $0 to $FFFF

Y Y-Index Register $0 to $FFFF

A A Accumulator $0 to $FF

B B Accumulator $0 to $FF

D D Accumulator (A:B) $0 to $FFFF

CCR Condition Code Register $0 to $FF

Each of the fields in the Condition Code Register (CCR) may be modified by using the bit names
in Table 3-4.

OPERATION

HC12A4EVBUM/D 3-31

Table 3-4. Condition Code Register Bits

CCR Bit Name Description Legal Values

S STOP Enable 0 or 1

H Half Carry 0 or 1

N Negative Flag 0 or 1

Z Zero Flag 0 or 1

V Two’s Complement Overflow Flag 0 or 1

C Carry Flag 0 or 1

IM IRQ Interrupt Mask 0 or 1

XM XIRQ Interrupt Mask 0 or 1

This set of “commands” uses a CPU12 register name as the command name to allow changing
the register’s contents. Each register name or CCR bit name is entered on the command line
followed by a space, then followed by the new register or bit contents. After successful alteration
of a CPU register or CCR bit, the entire CPU register set is displayed.

restrictions:

None.

example:

>PC 700e

 PC SP X Y D=A:B CCR=SXHI NZVC
700E 0A00 7315 7D62 47:44 1001 0000
>X 1000

 PC SP X Y D=A:B CCR=SXHI NZVC
700E 0A00 1000 7D62 47:44 1001 0000
>C 1

 PC SP X Y D=A:B CCR=SXHI NZVC
700E 0A00 1000 7D62 47:44 1001 0001
>Z 1

 PC SP X Y D=A:B CCR=SXHI NZVC
700E 0A00 1000 7D62 47:44 1001 0101
>D adf7

 PC SP X Y D=A:B CCR=SXHI NZVC
700E 0A00 1000 7D62 AD:F7 1001 0101
>

OPERATION

HC12A4EVBUM/D3-32

3.6 ALTERNATE EXECUTION FROM EEPROM

In this hardware-configured mode (pins 1-2 jumpered on header W20), the EVB begins operation
out of reset by executing the user program in on-chip EEPROM starting at address $1000, as
shown in Table 3-5.

This mode is effected using the MCU’s PAD0 line, which is broken out in J9 for possible custom
use in the prototype area.

Control can be returned to D-Bug12 in the following ways:

1. Move the jumper on W20 to pins 2-3 and reset the EVB. Do not activate the
program abort function — see note in section 3.3.

2. Terminate the user program with code that returns to D-Bug12 after execution has
finished.

To return to D-Bug12 after a user program has finished, include the following lines as the last
instructions to be executed in the program:

STACKTOP: equ $0c00 ; stack at top of on-chip RAM
DEBUG12: equ $FD90
;
 lds #STACKTOP
 jmp DEBUG12 ; jump to start of D-Bug12 code

3.7 OFF-BOARD CODE GENERATION

To generate a user program on a host computer and load it into the EVB’s memory, follow these
steps:

NOTE

For steps 2 and 3, follow the instructions in the Motorola
Microcontroller Families MCUasm User’s Manual.

1. Set up the EVB system with a host computer as the terminal — see section 2.5.3.

2. In the host computer’s native operating mode — i.e., before starting the
communications program that allows it to serve as the EVB’s terminal — write and
assemble the program using Motorola’s MCUasm assembler.

3. Using the MCUasm assembler’s HEX utility, generate a Motorola S-Record file from
the object (.HEX) file. Appendix A contains detailed information about the S-Record
formats.

4. Start the EVB with D-Bug12 as the default operating mode, using the procedure in
section 3.1.

OPERATION

HC12A4EVBUM/D 3-33

5. At the D-Bug12 prompt, issue D-Bug12’s LOAD command with any parameters.
Note that this requires interaction with the terminal communications program’s “send
file” utility — see Appendix B for examples.

3.8 MEMORY USAGE

3.8.1 Description

The EVB’s memory usage and requirements are described below and summarized in Table 3-5.
Note that this memory mapping applies only to the factory-default memory configuration.

The monitor program, D-Bug12, occupies 24 Kbytes in the two 32 Kbyte EPROMs, U7 and
U9A. The remaining 8 Kbytes are available for user programs and utilities, but since this ROM
area cannot be directly written, special techniques are required to take advantage of it. For
information on using it, refer to Appendix E Customizing the EPROMs.

Since the MCU must manage the execution of D-Bug12 and other EVB functions, 512 bytes of
on-chip RAM, from $0A00 to $0BFF, are required for stack and variable storage. The remaining
512 bytes of on-chip RAM, from $0800 to $09FF, are available for variable storage and stack
space by user programs.

NOTE

D-Bug12 sets the default value of the user’s stack pointer to
$0A00. This is not a mistake. The M68HC12’s stack pointer
points to the last byte that was pushed onto the stack, rather than to
the next available byte on the stack, as the M68HC11 does. The
M68HC12 first decrements its stack pointer, then stores data on the
stack. The M68HC11 stores data on the stack and then decrements
its stack pointer.

The 16 Kbytes of external RAM, from $4000 to $7FFF, are available for user code and data.

OPERATION

HC12A4EVBUM/D3-34

3.8.2 Memory Map

Table 3-5. Factory-Configuration Memory Map

Address Range Description Location

$0000 - $01FF CPU registers on-chip (MCU)

$0800 - $09FF

$0A00 - $0BFF

user code/data

reserved for D-Bug12

1K on-chip RAM (MCU)

$1000 - $1FFF user code/data 4K on-chip EEPROM (MCU)

$4000 - $7FFF user code/data 16K external RAM (U4, U6A)

$8000 - $9FFF

$A000 - $FD7F

$FD80 - $FDFF

$FE00 - $FE7F

$FE80 - $FEFF

$FF00 - $FF7F

$FF80 - $FFFF

available for user programs*

D-Bug12 program

D-Bug12 startup code*

user-accessible functions

D-Bug12 customization data*

available for user programs*

reserved for interrupt and reset vectors

32K external EPROM (U7, U9A)

*Code in these areas may be modified. Requires reprogramming of the EPROMs — refer to

Appendix E Customizing the EPROMs.

3.9 OPERATIONAL LIMITATIONS

D-Bug12 and other EVB functions require some of the MC68HC812A4’s resources for
management. For this reason, the EVB cannot provide true emulation of a target system. These
limitations are described in the following sections.

3.9.1 On-Chip RAM

D-Bug12 requires 512 bytes of on-chip RAM for stack and variable storage. This usage is shown
in Table 3-5.

OPERATION

HC12A4EVBUM/D 3-35

3.9.2 SCI Port Usage

D-Bug12 requires one of the MCU’s Serial Communications Interface (SCI) ports for the
terminal interface. The SCI port used for this purpose is jumper-selectable (W14), but the one
selected is unavailable for other uses.

3.9.3 Dedicated MCU Pins

As used on the EVB with D-Bug12, the following MCU lines perform specific functions. If an
application requires their use, the EVB hardware and/or operating software must be custom-
configured, or special precautions must be taken in the application code to avoid conflicts with
the D-Bug12 usage.

PE0/XIRQ* — program-abort function (S2). Additionally, there are two software
limitations on the program-abort function:

1. D-Bug12 enables the hardware XIRQ* interrupt by initializing
the XM bit in the Condition Code Register (see Table 3-4). If
this interrupt is subsequently disabled in software, for example
with the D-Bug12 RM command, it cannot be directly enabled
again.

2. If the user code replaces the D-Bug12 interrupt handler with
one of its own, the program-abort function is effectively
disabled.

PAD0 — selects normal or alternate execution mode (W20)

PAD1 — selects the SCI port used for the terminal interface (W14).

PF4/CSD* and PF5/CSP0* — dedicated to chip-select usage. Not available for I/O in
the default configuration.

Ports A, B, C, D, and G — dedicated to address/data bus usage. Not available as I/O
ports in the default configuration.

3.9.4 Terminal Communications

High baud rates occasionally result in dropped characters on the terminal display. This is not the
result of a baud rate mismatch; it is due to the host processor being too busy or too slow to
process incoming data at the selected baud rate. The D-Bug12 MD, MDW, T, and HELP
commands may be affected by this problem. Sometimes the problem can be ignored without
harm. If it requires correcting, try the following:

• Use a slower baud rate.

• Try a different communications program.

OPERATION

HC12A4EVBUM/D3-36

• In multitasking environments such as Windows 3.1 and the MacIntosh System 7, the
problem can occur when several applications are running at once. Try closing
unnecessary applications or exiting Windows.

• When using the MD, MDW, or T commands, try displaying fewer address locations
or tracing fewer instructions at a time.

HARDWARE REFERENCE

HC12A4EVBUM/D 4-1

CHAPTER 4

HARDWARE REFERENCE

4.1 PCB DESCRIPTION

The EVB printed circuit board (PCB) is an 8-inch by 8-inch board with six layers — one power,
one ground, and four signal layers. The signal layers containing cut-trace header footprints,
described in section 4.2, comprise the top and bottom layers for accessibility.

Most of the connection points on the EVB are headers on 1/10-inch centers, with the following
exceptions:

• Subminiature D connectors for the SCI RS-232C interfaces

• Loop-style hardware connections for test points

• External power-supply connections

4.2 CONFIGURATION HEADERS AND JUMPER SETTINGS

The EVB is designed for maximum flexibility — there are 45 PCB footprints available for
configuration headers. These are of two types:

Factory-installed headers are those most likely to be used for configuration without
major alteration of the EVB’s hardware operation. These headers
are populated, and the factory-installed jumpers on them are preset
for the default EVB hardware and firmware (D-Bug12)
configurations. Table 4-1 lists these headers by function and
describes their default and optional jumper settings.

Cut-trace header footprints offer EVB hardware options that are less likely to be
changed. These footprints are not populated. The default
connection between pins is a trace on the PCB. To change a cut-
trace footprint, the PCB trace must be cut. To return to the original
configuration, a header and a jumper must be installed to re-
establish the shunt

NOTE

Use of the cut-trace header footprints requires a thorough
understanding of the MCU and of the EVB hardware. Refer to the
MC68HC812A4 Technical Summary and to the EVB schematic
diagram for design information.

HARDWARE REFERENCE

HC12A4EVBUM/D4-2

CAUTION

When cutting a PCB trace to customize a header footprint, be
careful not to cut adjacent traces. Do not damage the underlying
PCB layers by cutting too deeply.

Key to Table 4-1:

2-pin header with no jumper installed

2-pin header with jumper installed

3-pin header with no jumper installed

3-pin header with jumper installed on left 2 pins

1-2 bold pin numbers indicate factory-default settings

HARDWARE REFERENCE

HC12A4EVBUM/D 4-3

Table 4-1. Jumper-Selectable Functions

Diagram Setting Description

W1 Low-Voltage Inhibit (LVI)

1

2

1-2

off

low-voltage inhibit is enabled

low-voltage inhibit is disabled

W3 RAM Write-Protection

 1 2 3

1-2

2-3

RAM write-protection is disabled

RAM write-protection is enabled

W10 TXD1 — RS-232C Transmit Data (TXD) Enable, SCI Port 1

1 2 3

1-2

2-3

TXD on SCI port 1 is enabled

TXD on SCI port 1 is disabled

W11 ROM and RAM Chip Select (CS)

1 2 3

CS0*

CS1*

CS2*

CS3*

CSD*

CSP0*

CSP1*

ROM RAM

1-2

2-3

connects an MCU chip select to the devices installed in the ROM sockets

connects an MCU chip select to the devices installed in the RAM sockets

DEFAULT: CSP0* is the ROM chip select

CSD* is the RAM chip select

W12(1) RAM Pin Assignment — pin 30 of 32-pin package or pin 28 of 28-pin package

 1 3 5

2 4 6 1-2

3-4

5-6

pin is connected to MCU address line A17 — for Narrow modes

pin is connected to MCU address line A18 — for Wide modes

pin is connected to VDD — for 28-pin devices

W13(1) RAM Pin Assignment — pin 28 of 32-pin package or pin 26 of 28-pin package

 1 3 5

 2 4 6 1-2

3-4

5-6

pin is connected to MCU address line A13 — for Narrow modes

pin is connected to MCU address line A14 — for Wide modes

pin is connected to VDD — for the device’s chip enable (CE2)

HARDWARE REFERENCE

HC12A4EVBUM/D4-4

Table 4-1. Jumper-Selectable Functions (continued)

Diagram Setting Description

W14 SCI Port Assignment to Terminal Interface

1

2

3

1-2

2-3

SCI port 0 serves as the D-Bug12 terminal interface

SCI port 1 serves as the D-Bug12 terminal interface

W20 D-Bug12 (normal) or EEPROM (alternate) Execution Mode

 1

 2

 3

1-2

2-3

the code in on-chip EEPROM is executed out of reset

D-Bug12 is executed out of reset

W21 TXD0 — RS-232C Transmit Data (TXD) Enable, SCI Port 0

1 2 3

1-2

2-3

TXD on SCI port 0 is enabled

TXD on SCI port 0 is disabled

W22(2) ROM Pin Assignment — pin 31 of 32-pin package

 1 3 5

 2 4 6 1-2

3-4

5-6

pin is connected to MCU address line A18 — for Narrow modes

pin is connected to MCU address line A19 — for Wide modes

pin is connected to VDD — to disable the device’s write enable (WE*)

W24(2) ROM Pin Assignment —pin 30 of 32-pin package or pin 28 of 28-pin package

 1 3 5

2 4 6 1-2

3-4

5-6

pin is connected to MCU address line A17 — for Narrow modes

pin is connected to MCU address line A18 — for Wide modes

pin is connected to VDD — for 28-pin devices

W29(2) ROM Pin Assignment —pin 29 of 32-pin package or pin 27 of 28-pin package

 1 3 5

 2 4 6 1-2

3-4

5-6

pin is connected to MCU address line A14 — for Narrow modes

pin is connected to MCU address line A15 — for Wide modes

pin is connected to VDD — to disable the device’s write enable (WE*)

W30(3) MCU Background Mode Select

 3 2 1

1-2

2-3

MCU’s BKGD pin is connected to VSS

MCU’s BKGD pin is connected to VDD

HARDWARE REFERENCE

HC12A4EVBUM/D 4-5

Table 4-1. Jumper-Selectable Functions (continued)

Diagram Setting Description

W32(2) ROM Pin Assignment —pin 28 of 32-pin package or pin 26 of 28-pin package

 1 3 5

 2 4 6 1-2

3-4

5-6

pin is connected to MCU address line A13 — for Narrow modes

pin is connected to MCU address line A14 — for Wide modes

pin is connected to VDD — to enable the device’s chip enable (CE2)

W33(2) ROM Pin Assignment —pin 3 of 32-pin package or pin 1 of 28-pin package

 1 3 5

2 4 6 1-2

3-4

5-6

pin is connected to MCU address line A15 — for Narrow modes

pin is connected to MCU address line A16 — for Wide modes

pin is connected to VDD — for ROM program voltage (VPP)

W34(3) MCU MODB Select

 3 2 1

1-2

2-3

MCU’s PE6/MODB pin is connected to VSS

MCU’s PE6/MODB pin is connected to VDD

W36(2) ROM Pin Assignment — pin 2 of 32-pin package

 1 3 5

 2 4 6 1-2

3-4

5-6

pin is connected to MCU address line A16 — for Narrow modes

pin is connected to MCU address line A17 — for Wide modes

pin is connected to VDD

W42(3) MCU MODA Select

 3 2 1

1-2

2-3

MCU’s PE5/MODA pin is connected to VSS

MCU’s PE5/MODA pin is connected to VDD

NOTES:

(1) W12 and W13 together select the type of RAM installed.
(2) W22, W24, W29, W32, W33, and W36 together select the type of ROM installed.
(3) W30, W34, and W42 together determine the MCU’s mode of operation.

HARDWARE REFERENCE

HC12A4EVBUM/D4-6

4.3 POWER INPUT CIRCUITRY

The input power connector on the EVB is a 2-pin, lever-actuated connector (J6), illustrated in
Figure 2-1. Fuse F1 (1.5 amp), Zener diode VR1, and diode CR1 provide over-voltage and
reverse-polarity protection. Decoupling capacitors filter ripple and noise from the supply
voltage. A red LED (DS1) serves as the power-on indicator.

Cut-trace header footprints (see section 4.2) on the EVB allow isolating the VSS (ground) and
VDD (+Vdc) power circuits for different functional areas. These individually filtered circuits can
then be connected to separate power sources. This can be helpful for purposes such as power-
usage analysis. The following power circuits can be isolated:

• VSSI / VDDI — MCU core usage

• VSSEX0 / VDDEX0, VSSEX1 / VDDEX1, VSSEX2 / VDDEX2 — three separate circuits for MCU
I/O pins

• VSSPLL / VDDPLL — Phase-Locked Loop (PLL)

• VSSA / VDDA, VRL / VRH — A/D Converter power and reference voltages

Refer to the EVB schematic diagram to locate the cut-trace header footprint that isolate these
circuits.

4.4 TERMINAL INTERFACE

An RS-232C transceiver (U5B) links the MCU’s two Serial Communications Interfaces (SCI0
and SCI1) with separate RS-232C ports on the EVB. One of these ports (SCI0 by default) serves
as the terminal interface for D-Bug12 operation. The other port is available for user applications.
The communications parameters for these ports are described in 2.5 Terminal Communications
Setup.

.There are two possible connectors for each port — a right-angle DB-9 receptacle wired as DCE
(for standard RS-232C cabling) and a functionally equivalent 3-pin header (for customized
cabling). SCI0 uses connectors J3 or J4; SCI1 uses connectors J1 or J2. The pin assignments for
these connectors are listed in Table 2-1. Note that the EVB’s serial ports use only three of the
RS-232C signals: Receive Data (RXD), Transmit Data (TXD), and Ground (GND).

To change the D-Bug12 terminal port from SCI0 (the factory default) to SCI1, move the jumper
on header W14 to pins 2-3, as shown in Table 4-1. Header J1 can then be used for the terminal
port connection without further hardware modification. If a standard RS-232C cable connection
is needed for this port, install a right-angle DB-9 receptacle in the footprint for J2 (not populated
at the factory).

The EVB’s RS-232C output signals (Transmit Data) can be disabled by setting the jumpers on
headers W10 and W21, as shown in Table 4-1.

HARDWARE REFERENCE

HC12A4EVBUM/D 4-7

4.5 MICROCONTROLLER

The MC68HC812A4 is the first of a family of next generation M68HC11 microcontrollers with
on-chip memory and peripheral functions. The CPU12 is a high-speed, 16-bit processing unit.
The programming model and stack frame are identical to those of the standard M68HC11 CPU.
The CPU12 instruction set is a proper superset of the M68HC11 instruction set. All M68HC11
instruction mnemonics are accepted by CPU12 assemblers with no changes.

The EVB-resident MC68HC812A4 (U8) has seven modes of operation. These modes are
determined at reset by the state of three mode pins — BKGD, MODB, and MODA — as shown
in Table 4-2.

The EVB is factory-configured for MCU operation in the Normal Expanded Wide (x16) mode.
In this mode of operation, the expanded bus is present with a 16-bit data bus. Port D is the low
byte data bus and Port C is the high byte data bus. Table 3-5, the Factory-Configuration Memory
Map, lists the MCU resource usage in this default configuration.

In the Normal Expanded Narrow (x8) mode of operation, the expanded bus is present with an 8-
bit data bus. Port C functions as the data bus in this mode. Port D is available for general
purpose I/O.

In the Normal Single Chip mode of operation, no external bus is available. All program and data
fetches are from on-chip memory or peripheral registers. Ports A, B, C, and D are available for
general purpose I/O.

The Special Peripheral mode of operation is a test mode. The CPU is not active. On-chip
peripherals may be accessed directly by an external bus master. It is not possible to change from
or to this mode without going through reset.

HARDWARE REFERENCE

HC12A4EVBUM/D4-8

The Special Expanded Wide, Special Expanded Narrow, and Special Single Chip modes provide
basically the same functionality as the respective normal modes. These special modes are
primarily for testing and provide access to several key features, including:

Special Expanded Narrow — to view 16-bit accesses without changing the instruction
cycle times, port D may be used to view the upper 8 bits of the data
bus.

Special Single Chip — background debug mode is immediately active out of reset.
Execution begins from the background debug ROM. Commands
are sent to the CPU through the background debug interface pin. A
background debug interface is required, as described in section
4.12.

For more information on the CPU, refer to the CPU12 Reference Manual.

Table 4-2. CPU Mode Selection

BKGD

Header W30

MODB

Header W34

MODA

Header W42

Mode Description

0 (2) 0 (2) 0 (2) Special Single Chip

0 (2) 0 (2) 1 (1) Special Expanded Narrow

0 (2) 1 (1) 0 (2) Special Peripheral

0 (2) 1 (1) 1 (1) Special Expanded Wide

1 (1) 0 (2) 0 (2) Normal Single Chip

1 (1) 0 (2) 1 (1) Normal Expanded Narrow

1 (1) 1 (1) 0 (2) Reserved (currently defaults to
peripheral mode)

1 (1) 1 (1) 1 (1) Normal Expanded Wide

(1) Install jumper on header pins 2 and 3.

(2) Install jumper on header pins 1 and 2.

HARDWARE REFERENCE

HC12A4EVBUM/D 4-9

4.6 MEMORY

4.6.1 Memory Types and Sockets

The EVB has footprints for two SRAM sockets (U4, U6A) and two ROM sockets (U7, U9A).
The ROM sockets hold memory for D-Bug12, the EVB operating firmware, or for user programs.
The SRAM sockets hold memory for user data or programs. The 8-bit memory arrangement
allows MCU operation in both single-byte and double-byte modes. The RAM and ROM
footprints support different memory device types (SRAM, EPROM, and EEPROM) and sizes
(28- and 32-pin, 8 to 512 Kbytes, 300 or 600-mil spacing). Figure 4-1 shows how the external
memory sockets are used.

Table 3-5 depicts the EVB’s default memory usage. Note that the map is valid only for the
factory-supplied memory configuration.

Note that the user-available area in factory-supplied EPROM requires that the ROM chips be
reprogrammed with the custom code. For more information, refer to Appendix E Customizing
the EPROMs.

HARDWARE REFERENCE

HC12A4EVBUM/D4-10

300-MIL

600-MIL 600-MIL

300-MIL

ROM/RAM

NARROW MODES

WIDE MODES

HIGH LOW

Figure 4-1. Memory Sockets Configuration

Because the EVB is factory-configured for the MCU’s Normal Expanded Wide mode, the two
RAM and the two ROM sockets are populated with 8-bit memory devices. Only the 600-mil
footprints are populated with sockets. There are two RAM and six ROM jumper headers that
allow configuration of the memory sockets for use with various types and sizes of memory.
These headers are preset for the factory-supplied memories. The default and optional settings are
described in Table 4-1. Table 4-3 provides information about the supplied memories.

HARDWARE REFERENCE

HC12A4EVBUM/D 4-11

Table 4-3. EVB Memories Supplied

Type EPROM SRAM

Manufacturer Atmel Dallas

Part Number AT27LV256R-20PC DS2064

Size 256K bits (32K x 8) 64K bits (8K x 8)

Package Width 600 MIL 600 mil

Pin Count 28 pin 28 pin

Power Supply +3.0 to +5.5 Vdc +2.7 to +5.5 Vdc

Access Times 200 ns 150 ns @ 5V, 300 ns @ 3V

Wait States Required
(E-clock stretches)

1 1

4.6.2 Chip Selects

Header W11 connects an MCU chip select signal to memory devices in the ROM (U7, U9A,
U9B) and RAM (U4, U6A, U6B) sockets. Pins in columns 1 and 2 determine the chip select
used for memory devices in ROM sockets. Pins in columns 2 and 3 determine the chip select
used for memory devices in RAM sockets.

Figure 4-2 shows the W11 jumper settings for the factory-default memory configuration. The
illustration demonstrates the correct settings for CSP0* to serve as the ROM chip select and
CSD* to serve as the RAM chip select.

HARDWARE REFERENCE

HC12A4EVBUM/D4-12

1 2 3

CS0*

CS1*

CS2*

CS3*

CSD*

CSP0*

CSP1*

 ROM RAM

Figure 4-2. Chip Select Header

4.6.3 Glue Logic

Glue logic is required for the MCU to operate with 8-bit memory devices in Wide Expanded
modes. It is not needed in Narrow Expanded modes. The EVB allows either an OR gate (U3 —
factory-supplied) or a PAL array (U2 — optional, not populated) to serve as the glue logic.
Figure 4-3 shows the circuitry for the ROM and RAM logic.

HARDWARE REFERENCE

HC12A4EVBUM/D 4-13

OR

PAL

 A0

WIDE - HIGH

OE*
CE*

A0

NARROW

OE*
CE*

A0

WIDE - LOW

OE*
CE*

A1

A0

A1

LSB - CS*

MSB - CS*

CS*

RAM ONLY

 ROM ONLY

ROM/RAM

ROM/RAM

 ROM/RAM

LSTRB*

OR
A0

Figure 4-3. RAM/ROM Logic Diagram

4.7 CLOCK CIRCUITRY

The EVB comes with a 16-MHz crystal oscillator installed in a 14-pin DIP socket (XY2). The
socket wiring allows the use of various types of oscillator packages. Additionally, there is
ancillary circuitry that includes a footprint for a discrete crystal (Y1). This flexible arrangement
facilitates the construction of custom oscillators. When designing a custom oscillator, refer to
the EVB schematic diagram to locate the applicable components and the headers that must be
changed.

An external clock input can be supplied to the MCU’s EXTAL by installing a right-angle BNC
connector in footprint J7. Refer to the EVB schematic diagram to locate the headers that must be
changed.

HARDWARE REFERENCE

HC12A4EVBUM/D4-14

4.8 PHASE-LOCKED LOOP (PLL)

The PLL can be used to run the MCU on a time base that differs from the clock frequency. To
alter the time base, capacitors must be installed between the MCU’s XFC pin and the PLL’s
ground reference, VSSPLL. Connection points E4, E5, E6, E7, E8, and E9 provide space for these
capacitors. Header footprint W37 connects the XFC pin to the capacitors.

For more information, refer to the EVB schematic diagram. More detailed information on the
operation of the PLL is found in the MC68HC812A4 Technical Summary.

4.9 RESET

The reset circuit includes a pull-up resistor, debounce capacitor, and optional connection to an
installed undervoltage sensing device (U1, as described in section 4.10). The reset circuit drives
the MCU’s RESET* pin directly.

4.10 LOW-VOLTAGE INHIBIT

Low voltage inhibition (LVI) uses a Motorola undervoltage sensing device (U1) to automatically
drive the MCU’s RESET* pin low whenever VDD is below legal limits (2.8 Vdc typical). This
prevents the accidental corruption of EEPROM data if the power-supply voltage should drop
below the allowable level. Header W1 allows for the disconnection of the LVI circuit.

4.11 ANALOG-TO-DIGITAL (A/D) CONVERTER

The MCU’s A/D converter is fully documented in the MC68HC812A4 Technical Summary.

Note that two of the A/D bus lines, PAD0 and PAD1, are used by the EVB and D-Bug12 for
configuration purposes. These lines are not available for A/D usage in the factory-default
configuration.

The accuracy of the A/D converter can be increased by supplying the MCU’s A/D circuitry with
the same supply voltages used by the target hardware. These supply lines (VDDA and VSSA) and
the associated A/D reference voltages (VRH and VRL) can be isolated from the EVB’s power bus
with cut-trace footprints W15, W16, W17, and W18. Refer to the EVB schematic diagram for
details.

4.12 BACKGROUND DEBUG MODE (BDM) INTERFACE

The MCU’s serial BDM interface can be accessed through J5, a 2x3 header. The pin
assignments are shown in Table 4-4.

HARDWARE REFERENCE

HC12A4EVBUM/D 4-15

Note that the BDM interface requires a development tool such as Motorola’s Serial Debug
Interface. For more information, refer to Appendix F and to the Motorola Serial Debug Interface
User’s Manual.

Table 4-4. BDM Connector J5 Pin Assignments

Pin Number Description

1 BKGD

2 VSS

3 no connection

4 RESET*

5 no connection

6 VDD

4.13 PROTOTYPE AREA

The EVB’s prototype area allows construction of custom I/O circuitry that can be connected to
the MCU’s I/O lines through connectors J8 and J9. This 2-inch by 8-inch area is a grid of holes
(79 by 20) on 1/10-inch centers. This spacing accommodates most sockets, headers, and device
packages..

Figure 4-4 shows the component-side view of the prototype area. Ground (VSS) connections are
provided along the three outboard peripheries, with three loop-style test points for connecting
clips or probes. Vdc (VDD) connections are provided along the inboard periphery.

HARDWARE REFERENCE

HC12A4EVBUM/D4-16

79 HOLES

20 HOLES Vdc BUS

J8

J9

GND BUSGND test points

Figure 4-4. Prototype Area (Component-Side View)

HARDWARE REFERENCE

HC12A4EVBUM/D 4-17

4.14 MCU CONNECTORS

Two 2x30 pin header connectors, J8 and J9, provide access to the MCU’s I/0 and bus lines.
These connectors are located adjacent to the prototype area for use as described in section 4.13.
They also provide connection points for instrumentation probes and interfaces to target hardware.
Figure 4-5 and Figure 4-6 depict the pin assignments for J8 and J9. Table 4-5 and Table 4-6
provide descriptions of the signals.

Note that the EXTAL, XFC, and XTAL signals are not directly connected to these headers due to
impedance considerations. Header footprints W37, W38, and W39 can be used to make these
connections.

PJ6 1 l l 2 PJ7
PJ4 3 l l 4 PJ5
PJ2 5 l l 6 PJ3
PJ0 7 l l 8 PJ1
VSSEX0 9 l l 10 VDDEX0
PG4 11 l l 12 PG5
PG2 13 l l 14 PG3
PG0 15 l l 16 PG1
VSSI 17 l l 18 VDDI
BKGD 19 l l 20 NC
PC6 21 l l 22 PC7
PC4 23 l l 24 PC5
PC2 25 l l 26 PC3
PC0 27 l l 28 PC1
PD6 29 l l 30 PD7
PD4 31 l l 32 PD5
PD2 33 l l 34 PD3
PD0 35 l l 36 PD1
PE6 37 l l 38 PE7
PE4 39 l l 40 PE5
PE2 41 l l 42 PE3
PE0 43 l l 44 PE1
NC 45 l l 46 NC
RESET* 47 l l 48 XFC
VSSPLL 49 l l 50 VDDPLL
XTAL 51 l l 52 EXTAL
PB6 53 l l 54 PB7
PB4 55 l l 56 PB5
PB2 57 l l 58 PB3
PB0 59 l l 60 PB1

Figure 4-5. MCU Connector J8 (Component-Side View)

HARDWARE REFERENCE

HC12A4EVBUM/D4-18

VSSEX1 1 l l 2 VDDEX1
PA6 3 l l 4 PA7
PA4 5 l l 6 PA5
PA2 7 l l 8 PA3
PA0 9 l l 10 PA1
PF6 11 l l 12 NC
PF4 13 l l 14 PF5
PF2 15 l l 16 PF3
PF0 17 l l 18 PF1
VSSAD 19 l l 20 VDDAD
PAD6 21 l l 22 PAD7
PAD4 23 l l 24 PAD5
PAD2 25 l l 26 PAD3
PAD0 27 l l 28 PAD1
VRL 29 l l 30 VRH
PH6 31 l l 32 PH7
PH4 33 l l 34 PH5
PH2 35 l l 36 PH3
PH0 37 l l 38 PH1
VSSEX2 39 l l 40 VDDEX2
PS6 41 l l 42 PS7
PS4 43 l l 44 PS5
PS2 45 l l 46 PS3
PS0 47 l l 48 PS1
PT6 49 l l 50 PT7
PT4 51 l l 52 PT5
PT2 53 l l 54 PT3
PT0 55 l l 56 PT1
VSS 57 l l 58 VDD
VSS 59 l l 60 VDD

Figure 4-6. MCU Connector J9 (Component-Side View)

HARDWARE REFERENCE

HC12A4EVBUM/D 4-19

Table 4-5. MCU Connector J8 Pin Assignments

Pin Number Signal Mnemonic Signal Name And Description

1
2
3
4
5
6
7
8

PJ6/KWUJ6
PJ7/KWUJ7
PJ4/KWUJ4
PJ5/KWUJ5
PJ2/KWUJ2
PJ3/KWUJ3
PJ0/KWUJ0
PJ1/KWUJ1

PORT J (bits 0-7) — general purpose I/O or key wake-up

9
10

VSSEX0
VDDEX0

VSSX/VDDX — external VSS and VDD connections

11
12
13
14
15
16

PG4/A20
PG5/A21
PG2/A18
PG3/A19
PG0/A16
PG1/A17

PORT G (bits 0-5) — general purpose I/O or memory expansion
lines

17
18

VSSI
VDDI

VSSI/VDDI — internal VSS and VDD connections for the MCU

19 BKGD BACKGROUND — an I/O line dedicated to the background
debug function. If it is a zero out of reset then the MCU is in
special mode. This pin can be used for bi-directional
communications with the MCU.

20 NC not connected

21
22
23
24
25
26
27
28

PC6/D14/D6
PC7/D15/D7
PC4D12/D4
PC5/D13/D5
PC2/D10/D2
PC3/D11/D3
PC0/D8/D0
PC1/D9/D1

PORT C (bits 0-7) — general purpose I/O or data bus

29
30
31
32
33
34
35
36

PD6/D6/KWUD6
PD7/D7/KWUD7
PD4/D4/KWUD4
PD5/D5/KWUD5
PD2/D2/KWUD2
PD3/D3/KWUD3
PD0/D0/KWUD0
PD1/D1/KWUD1

PORT D (bits 0-7) — general purpose I/O, data bus, or key wake-
up

HARDWARE REFERENCE

HC12A4EVBUM/D4-20

Table 4-5. MCU Connector J8 Pin Assignments (continued)

Pin Number Signal Mnemonic Signal Name And Description

37
38
39
40
41
42
43
44

PE6/MODB/IPIPE1
PE7/ARSIE
PE4/E
PE5/MODA/IPIPE0
PE2/RW*
PE3/LSTRB*
PE0/XIRQ*
PE1/IRQ*

PORT E (bits 0-7) — general purpose I/O or external signals such
as mode select, auxiliary reset, E clock, read/write, strobe low,
XIRQ, and IRQ

45
46

NC
NC

not connected

47 RESET* Reset — active-low bi-directional control line used to initialize the
MCU

48 XFC XFC — optional filter-capacitor connection for PLL circuit

49
50

VSSPLL
VDDPLL

VSSPLL/VDDPLL — VSS and VDD connections for the PLL circuit.

51 XTAL CRYSTAL OUTPUT — crystal oscillator output

52 EXTAL EXTERNAL CLOCK INPUT — crystal oscillator input. The
frequency applied to this pin must be twice the desired bus speed.

53
54
55
56
57
58
59
60

PB6/A6
PB7/A7
PB4/A4
PB5/A5
PB2/A2
PB3/A3
PB0/A0
PB1/A1

PORT B (bits 0-7) — general purpose I/O or low byte address bus

HARDWARE REFERENCE

HC12A4EVBUM/D 4-21

Table 4-6. MCU Connector J9 Pin Assignments

Pin Number Signal Mnemonic Signal Name And Description

1
2

VSSEX1
VDDEX1

VSSX/VDDX — external VSS and VDD connections

3
4
5
6
7
8
9
10

PA6/A14
PA7/A15
PA4/A12
PA5/A13
PA2/A10
PA3/A11
PA0/A8
PA1/A9

PORT A (bits 0-7) — general purpose I/O or high byte address
bus

11 PF6/CSP1* PORT F (bit 6) — general purpose I/O or chip select

12 NC not connected

13
14
15
16
17
18

PF4/CSD*
PF5/CSP0*
PF2/CS2*
PF3/CS3*
PF0/CS0*
PF1/CS1*

PORT F (bits 0-5) — general purpose I/O port or chip selects

19
20

VSSAD
VDDAD

VSSAD/VDDAD — VSS and VDD connections for the MCU’s A/D
converter

21
22
23
24
25
26
27
28

PAD6
PAD7
PAD4
PAD5
PAD2
PAD3
PAD0
PAD1

PORT AD — A/D converter channel or general purpose I/O

29
30

VRL
VRH

VOLTAGE REFERENCE, LOW and HIGH — reference voltages
for the MCU’s A/D converter. These can improve the accuracy of
A/D conversions.

31
32
33
34
35
36
37
38

PH6/KWUH6
PH7/KWUH7
PH4/KWUH4
PH5/KWUH5
PH2/KWUH2
PH3/KWUH3
PH0/KWUH0
PH1/KWUH1

PORT H (bits 0-7) — general purpose I/O or key wake-up

39
340

VSSEX2
VDDEX2

VSSX/VDDX — external VSS and VDD connections

HARDWARE REFERENCE

HC12A4EVBUM/D4-22

Table 4-6. MCU Connector J9 Pin Assignments (continued)

Pin Number Signal Mnemonic Signal Name And Description

41
42
43
44
45
46
47
48

PS6/SCK
PS7/SS*
PS4/MISO
PS5/MOSI
PS2/RXD1
PS3/TXD1
PS0/RXD0
PS1/TXD0

PORT S (bits 0-7) — general purpose I/O or Multiple Serial
Interface (MSI) lines. The MSI lines consist of serial peripheral
and serial communication interfaces. The signal functions are
serial clock, slave select, master in/slave out, master out/slave in,
receiver data input, and transmitter data out.

49
50
51
52
53
54
55
56

PT6/IOC6
PT7/IOC7/PAIN
PT4/IOC4
PT5/IOC5
PT2/IOC2
PT3/IOC3
PT0/IOC0
PT1/IOC1

PORT T (bits 0-7) — general purpose I/O or timer lines

57
58
59
60

VSS
VDD
VSS
VDD

VSS/VDD — EVB system return (VSS) and power (VDD)

S-RECORD FORMAT

HC12A4EVBUM/D A-1

APPENDIX A

S-RECORD FORMAT

DESCRIPTION

The S-record format for output modules was devised for the purpose of encoding programs or
data files in a printable format for transportation between computer systems. The transportation
process can thus be visually monitored and the S-records can be more easily edited.

S-RECORD CONTENT

When viewed by the user, S-records are essentially character strings made of several fields that
identify the record type, record length, memory address, code/data, and checksum. Each byte of
binary data is encoded as a 2-character hexadecimal number: the first character represents the
high-order 4 bits, and the second represents the low-order 4 bits of the byte.

The 5 fields that comprise an S-record are shown below:

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM

S-RECORD FORMAT

HC12A4EVBUM/DA-2

The S-Record fields are composed as follows:

Field Printable
Characters

Contents

Type 2 S-record type - S0, S1, etc.

Record length 2 The count of the character pairs in the record, excluding the type and
record length.

Address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data field is to be loaded into
memory.

Code/data 0-2n From 0 to n bytes of executable code, memory-loadable data, or
descriptive information. For compatibility with teletypewriters, some
programs may limit the number of bytes to as few as 28 (56 printable
characters in the S-record).

Checksum 2 The least significant byte of the one’s complement of the sum of the
values represented by the pairs of characters making up the record
length, address, and the code/data fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record may have an
initial field to accommodate other data such as line numbers generated by some time-sharing
systems.

Accuracy of transmission is ensured by the record length (byte count) and checksum fields.

S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of the encoding,
transportation, and decoding functions. The various Motorola upload, download, and other
record transportation control programs, as well as cross assemblers, linkers, and other file-
creating or debugging programs, utilize only those S-records that serve the purpose of the
program. For specific information on which S-records are supported by a particular program, the
user manual for that program must be consulted.

NOTE

D-Bug12 supports only the S1 and S9 records. All data before the
first S1 record is ignored. Thereafter, all records must be S1 type
until the S9 record terminates data transfer.

An S-record format module may contain S-records of the following types:

S0 The header record for each block of S-records. The code/data field may contain any descriptive
information identifying the following block of S-records. The address field is normally zeroes.

S1 A record containing code/data and the 2-byte address at which the code/data is to reside.

S-RECORD FORMAT

HC12A4EVBUM/D A-3

S2-S8 Not applicable to EVB.

S9 A termination record for a block of S1 records. The address field may optionally contain the 2-
byte address of the instruction to which control is to be passed. If not specified, the first entry
point specification encountered in the object module input will be used. There is no code/data
field.

Only one termination record is used for each block of S-records. Normally, only one header
record is used, although it is possible for multiple header records to occur.

S-RECORD EXAMPLE

Shown below is a typical S-record format module, as printed or displayed:

S00600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC

The above module consists of an S0 header record, four S1 code/data records, and an S9
termination record.

The S0 header record is comprised of the following character pairs:

S0 S-record type S0, indicating a header record.

06 Hexadecimal 06 (decimal 6), indicating six character pairs (or ASCII bytes) follow.

00
00

Four-character 2-byte address field, zeroes.

48
44
52

ASCII H, D, and R - "HDR".

1B Checksum of S0 record.

S-RECORD FORMAT

HC12A4EVBUM/DA-4

The first S1 code/data record is explained as follows:

S1 S-record type S1, indicating a code/data record to be loaded/verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating 19 character pairs, representing 19 bytes of binary data,
follow.

00
00

Four-character 2-byte address field; hexadecimal address 0000, indicates location where the
following data is to be loaded.

The next 16 character pairs are the ASCII bytes of the actual program code/data. In this
assembly language example, the hexadecimal opcodes of the program are written in sequence in
the

code/data fields of the S1 records:

Opcode Instruction

28 5F BHCC $0161
24 5F BCC $0163
22 12 BHI $0118
22 6A BHI $0172
00 04 24 BRSET 0,$04,$012F
29 00 BHCS $010D
08 23 7C BRSET 4,$23,$018C

.

.

.

(Balance of this code is continued in the
code/data fields of the remaining S1
records, and stored in memory location
0010, etc.)

2A Checksum of the first S1 record.

The second and third S1 code/data records each also contain $13 (19) character pairs and are
ended with checksums 13 and 52, respectively. The fourth S1 code/data record contains 07
character pairs and has a checksum of 92.

The S9 termination record is explained as follows:

S9 S-record type S9, indicating a termination record.

03 Hexadecimal 03, indicating three character pairs (3 bytes) follow.

00
00

Four-character 2-byte address field, zeroes.

FC Checksum of S9 record.

S-RECORD FORMAT

HC12A4EVBUM/D A-5

Each printable character in an S-record is encoded in hexadecimal (ASCII in this example)
representation of the binary bits which are actually transmitted. For example, the first S1 record
above is sent as shown below.

0101 0011 0011 0001 0011 0001

TYPE

0011 0011 0011 0000 0011 0000 0011 0000 0011 0000 0011 0010 0011 1000 0011 0101 0100 0110 ••• 0011 0010 0100 0001

5 3 3 1 3 1 3 3 0 3 0 3 0 3 0 3 2 3 8 3 5 4 6 ••• 3 2 4 1

S 1 1 3 0 0 0 0 2 8 5 F ••• 2 A

LENGTH ADDRESS CODE/DATA CHECKSUM

3

COMMUNICATIONS PROGRAM EXAMPLES

HC12A4EVBUM/D B-1

APPENDIX B

COMMUNICATIONS PROGRAM EXAMPLES

INTRODUCTION

In all of these examples, first follow the EVB startup procedure in section 3.1. When the startup
procedure calls for setting up the host computer’s communications program for terminal
emulation, follow the steps in the examples.

Keyboard entries are illustrated in this appendix using the following conventions:

<ENTER> Press the keyboard’s Enter, Carriage Return, or Return key.

<ALT-P> While holding down the ALTERNATE key, press the P key.

<CTL-\> While holding down the CONTROL key, press the backslash key.

<filename> Supply the appropriate file name when required.

The stepwise procedures in this appendix are as accurate as possible. However, it is not feasible
to document all of the communications programs that are available or to guarantee that a newer
revision of a program behaves in exactly the same way as the version used to develop the
procedure. For this reason, the steps are as generic as possible in their descriptions. They can
thus serve as guidelines for programs not exemplified in this manual. Always consult the
documentation for the program being used.

PROCOMM FOR DOS — IBM PC

Setup

To set up Procomm using DOS on an IBM-compatible PC for use as the EVB terminal, first refer
to section 3.1 for the EVB startup procedure, which is inter-related with this example. Then
follow these steps:

1. At the DOS prompt, Invoke the Procomm program by typing:

PROCOMM<RETURN>

2. Enter the Setup menu by pressing <ALT-S>.

3. From the TERMINAL SETUP submenu, select the following:

Terminal emulation WYSE 100

Duplex FULL

COMMUNICATIONS PROGRAM EXAMPLES

HC12A4EVBUM/DB-2

Flow control NONE

CR translation (in) CR

CR translation (out) CR

BS translation DEST

BS key definition BS

Line wrap OFF

Scroll ON

Break Length (ms) 350

Enquiry (CTRL-E) OFF

4. From the ASCII TRANSFER SETUP submenu, select the following:

Echo locally YES

Expand blank lines YES

Pace character 0 (ASCII)

Character pacing 25 (1/1000th sec)

Line pacing 10 (1/10th sec)

CR translation NONE

LF translation NONE

5. Enter the Line Settings menu by pressing <ALT-P>. Select the following:

baud rate 9600 (or the customized EVB setting)

data bits 8

stop bits 1

parity none

COM port the host port used as the EVB terminal interface

6. Reset the EVB by pressing S1 or by activating the appropriate custom reset circuitry.

7. Press <ENTER>. The D-Bug12 prompt should appear on the display. Continue with
the startup procedure in section 3.1.

S-Record Transfers to EVB Memory

To load an S-Record file from the host computer into EVB memory using Procomm on an IBM-
compatible host computer, first verify that the host is correctly configured and operating as the
EVB terminal. Then follow these steps:

1. At the D-Bug12 prompt, enter the LOAD or VERF command with any parameters.

COMMUNICATIONS PROGRAM EXAMPLES

HC12A4EVBUM/D B-3

2. Instruct Procomm to send the S-Record file by pressing the <Page Up> key. Follow
the onscreen instructions to select the S-Record file for transfer, using ASCII transfer
protocol.

Upon completion of the S-Record file transfer, the D-Bug12prompt is displayed.

KERMIT FOR DOS — IBM PC

Setup

To set up Kermit using DOS on an IBM-compatible PC for use as the EVB terminal, first refer to
section 3.1 for the EVB startup procedure, which is inter-related with this example. Then follow
these steps:

1. At the DOS prompt, invoke Kermit by typing:

kermit<ENTER>

2. Set the baud rate to 9600 (or the customized EVB setting) by typing:

set baud 9600<ENTER>

3. Connect to the EVB by typing:

connect<ENTER>

4. Reset the EVB by pressing S1 or by activating the appropriate custom reset circuitry.
The D-Bug12 prompt should appear on the display. Continue with the startup
procedure in section 3.1.

S-Record Transfers to EVB Memory

To load an S-Record file from the host computer into EVB memory using Kermit on an IBM-
compatible host computer, first verify that the host is correctly configured and operating as the
EVB terminal. Then follow these steps:

1. At the D-Bug12 prompt, enter the LOAD or VERF command with any parameters.

2. “Escape” from the D-Bug12 prompt and start the Kermit file transfer by typing:

<CTL-]>c

push<ENTER>

type <filename> > com1<ENTER>

Upon completion of the S-Record file transfer, the D-Bug12 prompt is displayed.

COMMUNICATIONS PROGRAM EXAMPLES

B-4 HC12A4EVBUM/D

KERMIT — SUN WORKSTATION

Setup

To set up Kermit on the Sun Workstation for use as the EVB terminal, first refer to section
Error! Reference source not found. for the EVB startup procedure, which is inter-related with
this example. Then follow these steps:

1. In a shell window, invoke Kermit by typing:

kermit<ENTER>

2. Set the serial port to the one in use for the EVB (ttya, ttyb, etc.) by typing:

set line /dev/ttya<ENTER>

3. Set the baud rate to 9600 (or the customized EVB setting) by typing:

set speed 9600<ENTER>

4. Connect to the EVB by typing:

connect<ENTER>

5. Reset the EVB by pressing S1 or by activating the appropriate custom reset circuitry.
The D-Bug12 prompt should appear on the display. Continue with the startup
procedure in section Error! Reference source not found..

S-Record Transfers to EVB Memory

To load an S-Record file from the host computer into EVB memory using Kermit on a Sun
Workstation, first verify that the host is correctly configured and operating as the EVB terminal.
Then follow these steps:

1. In the shell window being used for the EVB terminal interface, at the D-Bug12
prompt, enter the LOAD or VERF command with any parameters.

2. Open a shell window separate from the one being used for the EVB terminal
interface. In this window, type:

cat <filename> > /dev/ttya<ENTER>

Upon completion of the S-Record file transfer, the D-Bug12 prompt is displayed in the shell
window being used for the EVB terminal interface.

COMMUNICATIONS PROGRAM EXAMPLES

HC12A4EVBUM/D B-5

MACTERMINAL — APPLE MACINTOSH

Setup

To set up MacTerminal on an Apple MacIntosh computer for use as the EVB terminal, first refer
to section 3.1 for the EVB startup procedure, which is inter-related with this example. Then
follow these steps:

1. Select the following from the Terminal Settings menu:

Terminal: TTY

Cursor Shape: Underline

Line Width: 80 Columns

Select: On Line

Auto Repeat

Click on: OK

2. Select the following from the Compatibility Settings menu:

Baud Rate: 9600 (or the customized EVB setting)

Bits per Character: 8 Bits

Parity: None

Handshake: None

Connection: Modem or Another Computer

Connection Port: Modem or Printer

Click on: OK

3. Reset the EVB by pressing S1 or by activating the appropriate custom reset circuitry.

4. Press <ENTER>. The D-Bug12 prompt should appear on the display. Continue with
the startup procedure in section 3.1.

S-Record Transfers to EVB Memory

To load an S-Record file from the host computer into EVB memory using MacTerminal, first
verify that the host is correctly configured and operating as the EVB terminal. Then follow these
steps:

1. At the D-Bug12 prompt, enter the LOAD or VERF command with any parameters.

2. From the MacIntosh File menu, select Send File - ASCII.

3. From the dialog box, select the S-Record file to be transferred.

COMMUNICATIONS PROGRAM EXAMPLES

HC12A4EVBUM/DB-6

4. Click on Send.

NOTES

1. S-Records are not displayed during the file transfer.

2. Following the file transfer, MacTerminal sends a carriage return-line feed pair,
which D-Bug12 interprets as an erroneous command. To return to the
D-Bug12 prompt, reset the EVB.

RED RYDER — APPLE MACINTOSH

Setup

To set up Red Ryder on an Apple MacIntosh computer for use as the EVB terminal, first refer to
section 3.1 for the EVB startup procedure, which is inter-related with this example. Then follow
these steps:

1. Launch the Red Ryder program.

2. Set up the Red Ryder parameters as follows:

9600 baud (or the customized EVB setting)

8 data bits

1 stop bit

no parity

full duplex

3. Reset the EVB by pressing S1 or by activating the appropriate custom reset circuitry.

4. Press <ENTER>. The D-Bug12 prompt should appear on the display. Continue with
the startup procedure in section 3.1.

S-Record Transfers to EVB Memory

To load an S-Record file from the host computer into EVB memory using Red Ryder, first verify
that the host is correctly configured and operating as the EVB terminal. Then follow these steps:

1. At the D-Bug12 prompt, enter the LOAD or VERF command with any parameters.

2. From the MacIntosh File menu, select Send File - ASCII.

3. From the dialog box, select the S-Record file to be transferred.

4. Click on Send.

COMMUNICATIONS PROGRAM EXAMPLES

HC12A4EVBUM/D B-7

NOTE

S-Records are not displayed during the file transfer.

Upon completion of the S-Record file transfer, the D-Bug12 prompt is displayed.

D-BUG12 STARTUP CODE

HC12A4EVBUM/D C-1

APPENDIX C

D-BUG12 STARTUP CODE

The D-Bug12 startup code is located in the EPROMs, U7 and U9A, in the address range $FD80
to $FDFF, as shown in Table 3-5.

To customize this startup code, it is necessary to reprogram the EPROMs. For more information,
refer to Appendix E, Customizing the EPROMs.

The following D-Bug12 startup code is distilled from the source listing for clarity. To assemble
the startup code for programming into the EPROMs, the .DEFINEs must be included ahead of
the code listed below. These are available on the Internet at http://www.mot.com/m68hc12.

opt lis ; assembler directive to turn
; listing on

0A00 MonRAMStart equ $0A00
0200 MonRAMSize equ $0200

0800 RAM_START equ $0800

0400 RAMSize equ $0400

0C00 STACKTOP equ RAM_START+RAMSize ; stack at top of int RAM

1000 EE_START equ $1000 ; 4K EEPROM located here out
; of reset(in expanded modes)

FD80 org $fd80

;***
; INITIALIZATION
;
; Initialization code for the M68HC12A4EVB D-Bug12 monitor program
;***

FD80 CODE_START:

; set PortE bit 7 to an output to eliminate possible noise
; problems associated with unterminated input pins.

D-BUG12 STARTUP CODE

HC12A4EVBUM/DC-2

FD80 4C0980 bset DDRE,80h ; set the data direction to
; configure PortE, bit 7 as an
; output.

FD83 4C0880 bset PORTE,80h ; set PortE, bit 7 to logic 1.

FD86 CF0C00 lds #STACKTOP ; initialize D-Bug12 stack
; pointer

FD89 4F6F0103 brclr PORTAD,01h,DEBUG12; if bit 0 of A/D port is 1,
FD8D 061000 jmp EE_START ; then jump to the start of

; internal EEPROM
; otherwise, remain in D-Bug12

FD90 DEBUG12:

; Clear all monitor RAM to start from a known state

FD90 CE0A00 ldx #MonRAMStart
FD93 6930 ClrRAM: clr 1,x+ ; clear one and inc pointer
FD95 8E0C00 cpx #MonRAMStart+MonRAMSize
FD98 26F9 bne ClrRAM ; loop till RAM clear

; Enable pipe signals, E, low strobe and read/write in port E
; PIPOE, NECLK, LSTRE and RDWE are write once in normal modes
; PEAR [ARSIE:CDLTE :PIPOE :NECLK !LSTRE : RDWE : 0 : 0]$0A

FD9A 862C ldaa #$2c ; prevent later protection
; lock

FD9C 5A0A staa PEAR ; PROTLK is write-once

; Without changing modes, enable internal visibility
; MODE [SMODN: MODB : MODA : ESTR ! IVIS : 0 : EMD : EME]$0B

FD9E 4C0B08 bset MODE,$08 ; set IVIS

; Disable the COP watchdog by CR2:CR1:CR0 = 0:0:0
; COPCTL = $07 when reset in normal modes
; FCME and CRx bits are write once in normal modes
; COPCTL[CME : FCME : FCM : FCOP ! DISR : CR2 : CR1 : CR0]$16

FDA1 790016 clr COPCTL ; disable watchdog

; Enable Program chip select 0 and Data chip select
; CSCTL0 = $20 after reset (CSP0 on others off)
; also set data chip select to cover $0000-7FFF (will mirror
; to fill space)
; internal resources have higher priority in case of overlaps
;
; CSCTL0[0 :CSP1E :CSP0E : CSDE ! CS3E : CS2E : CS1E : CS0E]$3C
; CSCTL1[0 :CSP1FL:CSPA21:CSDHF !CS3EP : 0 : 0 : 0]$3D

FDA4 8630 ldaa #$30
FDA6 5A3C staa CSCTL0 ; CSP0E and CSDE on
FDA8 8610 ldaa #$10
FDAA 5A3D staa CSCTL1 ; CSD to cover $0000-7FFF

D-BUG12 STARTUP CODE

HC12A4EVBUM/D C-3

; Set stretch for CSP0 and CSD to 1 extra E-speed cycle per
; access (to accomodate slower external RAM and EPROM)
;
; CSSTR0[0 : 0 :SRP1A :SRP1B !SRP0A :SRP0B :STRDA :STRDB]$3E

FDAC 8605 ldaa #$05
FDAE 5A3E staa CSSTR0 ; CSP0E and CSDE on

; Enable EEPROM so D-Bug12 can program/erase bytes
; EEMCR [1 : 1 : 1 : 1 ! 1 : 1 :PROTLK: EERC]$F0
; BPROT [1 :BPROT6:BPROT5:BPROT4!BPROT3:BPROT2:BPROT1:BPROT0]$F1

FDB0 86FC ldaa #$fc ; prevent later protection
; lock

FDB2 5AF0 staa EEMCR ; PROTLK is write-once
FDB4 7900F1 clr BPROT ; allow EE program and erase

FDB7 CEFE00 ldx #$fe00 ; point to the table of user
; accessible routines.

FDBA 05E30000 jmp [0,x] ; the first entry is a pointer
; to main. GO.........

; The following subroutine produces a delay of approximately
; 20 mS, based on the following conditions:

; 1.) An 8.00 MHz E-clock
; 2.) Subroutine located in external EPROM - selected by CSP0
; 3.) CSP0 programmed for 1 E-clock stretch
;
; This routine is called by D-Bug12’s WriteEEByte() function
; through a pointer stored in the Customization Data Table.

FDBE _EEDelay:
FDBE CE2710 ldx #10000 ; load delay count into x
FDC1 09 DlyLoop: dex ; decrement count
FDC2 26FD bne DlyLoop ; loop till done.
FDC4 3D rts ; return.

D-BUG12 CUSTOMIZATION DATA

HC12A4EVBUM/D D-1

APPENDIX D

D-BUG12 CUSTOMIZATION DATA

The Customization Data area, located in EPROM from $FE80 to $FEFF, allows users to
change default data parameters used by D-Bug12. The data contained in this area is described by
C data structure. The CustomData typedef is shown below. For those unfamiliar with C an
assembly language equivalent is also shown. The purpose of each field is explained in the
following paragraphs.

typedef struct {
 Byte UserCCR; /* User CPU Condition Code Register */
 Byte UserB; /* User CPU B-accumulator */
 Byte UserA; /* User CPU A-accumulator */
 Address UserX; /* User CPU X-index register */
 Address UserY; /* User CPU Y-index register */
 Address UserPC; /* User CPU Program Counter */
 Address UserSP; /* User CPU Stack Pointer */
 unsigned long SysClk; /* System Clock frequency (in Hz) */
 Address IOBase; /* Base address of the I/O registers */
 unsigned int SCIBaudRegVal; /* Initial SCI BAUD register value */
 Address EEBase; /* Base address of on-chip EEPROM */
 unsigned int EESize; /* size of the on-chip EEPROM */
 void (*Delay)(void); /* pointer to EEPROM program/erase */

/* delay routine */
 int AuxCmdCount; /* number of commands in the */

/* auxiliary command table */
 CmdTblEntryP AuxCmdTableP; /* pointer to the auxiliary command */

/* table */
 } CustomData;

org $FE80
;
CustData equ *
UserCCR dc.b $90 ; User CPU Condition Code Register
UserB dc.b $00 ; User CPU B-accumulator
UserA dc.b $00 ; User CPU A-accumulator
UserX dc.w $0000 ; User CPU X-index register
UserY dc.w $0000 ; User CPU Y-index register
UserPC dc.w $0000 ; User CPU Program Counter
UserSP dc.w $0A00 ; User CPU Stack Pointer
SysClk dc.l 8000000 ; System Clock frequency (in Hz)
IOBase dc.w $0000 ; Base address of the I/O registers
SCIBaudRegVal dc.w 52 ; Initial SCI BAUD register value
EEBase dc.w $1000 ; Base address of the on-chip EEPROM
EESize dc.w 4096 ; Size of the on-chip EEPROM
EEDelay dc.w _EEDELAY ; Address of EEPROM program/erase delay

; routine
AuxCmdCount dc.w 0 ; Number of commands in the auxiliary

; command table
AuxCmdTableP dc.w $0000 ; Pointer to the auxiliary command table

D-BUG12 CUSTOMIZATION DATA

HC12A4EVBUM/DD-2

Initial User CPU Register Values

The first seven fields in the CustomData typedef struct are used to provide default
values for the user CPU12 registers. The user CCR value is set to 0x90. This sets the S-bit,
disabling the STOP instruction, and the I-bit, inhibiting IRQ interrupts. The X-bit is cleared to
allow the use of the XIRQ interrupt as a programmer’s abort switch. The user SP value is set to
0x0a00, which is one byte beyond the last on-chip RAM location available to the user. The
CPU12 stack pointer points to the last byte pushed onto the stack. All of the other registers
contain the value zero.

SysClk Field

The SysClk field is used to inform D-Bug12 of the system clock frequency, M. Its value, in
Hz, is set to 8,000,000. The E-clock frequency is the same as the system clock frequency, M.
SysClk is used by the D-Bug12 BAUD command in calculating the new value of the SCI Baud
register for the requested baud rate.

NOTE

It is the responsibility of the startup code to perform any actions
necessary to set the system clock frequency. D-Bug12 DOES NOT
set or change the system clock frequency using the SysClk value.

IOBase Field

The IOBase field defines the base address of the I/O registers. This address is used by D-
Bug12 when accessing the I/O registers associated with the SCI and when programming or
erasing the on-chip EEPROM. On the MC68HC812A4 the I/O registers are mappable to any 2k
memory space. Therefore, the IOBase entry should only be a multiple of 2048. The value of
IOBase is set to 0x0000 which is the default address of the I/O registers for the
MC68HC812A4.

NOTE

It is the responsibility of the startup code to set the base address of
the I/O registers. D-Bug12 DOES NOT set or change the I/O
register base address.

SCIBaudRegVal Field

The SCIBaudRegVal field is used to set the initial baud rate of the SCI used for console I/O by
D-Bug12. Note that the value in SCIBaudRegVal is written directly to the Baud register of the
console SCI. The value is NOT the desired baud rate. The calculation of this value is NOT
made by D-Bug12 because of the possibility of an invalid Baud register value. Without a valid
Baud register value during SCI initialization, D-Bug12 would have no way to inform the user
that a problem existed. Not all combinations of baud rates and system clock frequencies produce
a valid Baud register value. The formula used to calculate the Baud register value is:

D-BUG12 CUSTOMIZATION DATA

HC12A4EVBUM/D D-3

BaudRegVal = MCLK ÷ (16 * SCIBaudRate)

The initial Baud register value is 52 (0x0034). At a system clock frequency of 8.0 MHz, this sets
the communications rate of 9600 baud.

NOTE

Because of the ability to choose either SCI0 or SCI1 for use as the
control console, D-Bug12 takes care of initializing the SCI
registers. The chosen SCI is set to 8-data bits, 1-start bit, 1-stop
bit, and no parity.

EEBase and EESize Fields

The EEBase and EESize fields are used to describe the base address and range of the
M68HC12’s on-chip EEPROM. This information is used by D-Bug12’s WriteMem() function
to determine when a byte is being written to the on-chip EEPROM. D-Bug12 then calls its
WriteEEByte() function to place the data in the on-chip EEPROM. On the MC68HC812A4 the
EEPROM base address is mappable to any 4k memory space. Therefore, the EEBase entry
should only be a multiple of 0x1000. The value of EEBase is set to 0x1000 which is the default
base address of the on-chip EEPROM for the MC68HC812A4. The value of EESize is also set
to 0x1000 (4096) which is the size of the on-chip EEPROM. Setting the value of EESize to
zero disables the WriteMem() function’s ability to write to on chip EEPROM.

NOTE

It is the responsibility of the startup code to set the base address of
the EEPROM. D-Bug12 DOES NOT set or change the EEPROM
base address.

EEPROM Erase/Program Delay Function Pointer Field

The (void)(* Delay)(void) field is a function pointer that points to an EEPROM
program/erase delay routine. For the MC68HC812A4, the routine should produce a delay of 20
mS before it returns. The delay routine is nothing more than a software delay loop. The
subroutine is located in the startup code area of the D-Bug12 EPROM from $FD80 - $FDFF.
See Appendix C, D-Bug12 Startup Code.

D-BUG12 CUSTOMIZATION DATA

HC12A4EVBUM/DD-4

Auxiliary Command Table Entries

The last two entries in this table provide a mechanism to extend the command set of D-Bug12.
The AuxCmdTableP points to an auxiliary command table, and AuxCmdCount contains the
number of entries in the auxiliary command table. The table consists of an array of
CmdTblEntry’s. Each CmdTblEntry in the auxiliary command table has the following
structure:
typedef struct {

const char *CommandStr; /* pointer to the command */
/*string */

int (*ExecuteCmd)(int argC, char *argV[]);/* pointer to function that*/
/* implements the command */

 } CmdTblEntry, * CmdTblEntryP;

As the typedef shows, the first field is a character pointer pointing to a null terminated
character array containing the command name. The command name string must be in upper
case. The second field, a function pointer, points to a function that implements the new D-Bug12
command. The first parameter to this function is a count of the number of command line
arguments that the command line interpreter found on the command line. This count includes the
command name itself. The command line may contain no more than a total of 10 parameters.
The second function parameter is a pointer to an array of char *. Each char * points to one
of the command line parameters parsed by the command line interpreter.

The function implementing the new command can report any error conditions to the user in one
of two ways. If the error condition can be described by one of the error messages in the
enumerated constant list below, the user defined command should return the appropriate
constant. If some other message text needs to be conveyed to the user, the command should
communicate the error message directly to the user by using the printf() function which is
one of the available user callable functions. In this case, the user defined command should return
an error code of noErr.

enum Error {
 WrongNumArgs = 6, /* Wrong Number of Arguments */
 BadStartAddress = 7, /* Invalid Starting Address */
 BadEndAddress = 8, /* Invalid Ending Address */
 StartEndError = 9, /* Start Address Greater Than End Address */
 BadHexData = 10, /* Invalid Hex Data */
 DataSizeError = 11, /* Data Out Of Range */
 NoTargetWrite = 12, /* Can’t Write Target Memory */

 };

CUSTOMIZING THE EPROMS

HC12A4EVBUM/D E-1

APPENDIX E

CUSTOMIZING THE EPROMS

The following blocks in the factory-supplied EPROMs can be reprogrammed with user code or
D-Bug12 code that has been modified for custom operation:

$8000 - $9FFF — available for user programs

$FD80 - $FDFF — D-Bug12 startup code. See Appendix C.

$FE80 - $FEFF — D-Bug12 customization data. See Appendix D.

$FF00 - $FFBF — available for user programs

Since the EPROMs also contain D-Bug12 and other EVB operating firmware, the factory
programming must be retained and burned into the custom chips along with the custom code.
The table below maps the EVB’s logical addresses (from Table 3-5) to the pin-level physical
addresses of U7 and U9A.

Note that the lower half of each EPROM — from $0000 to $3FFF — is unused and is filled with
ones. This is necessary because of the chip select, CSP0*, used by the MCU for EPROM access.
For more information on this subject, refer to 4.6.2 Chip Selects.

NOTE

Do not reprogram the factory-supplied EPROMs. Keep them as
masters, using expendable chips for new programming.

CUSTOMIZING THE EPROMS

HC12A4EVBUM/DE-2

Physical EPROM Addresses

MCU
Logical Address

Data U9A
Physical Address

U7
Physical Address

— $FF $0000 - $3FFF $0000 - $3FFF

$8000 - $9FFE
even addresses

custom $4000 - $4FFF —

$8001 - $9FFF
odd addresses

custom — $4000 - $4FFF

$A000 - $FD7E
even addresses

factory $5000 - $7EBF —

$A001 - $FD7F
odd addresses

factory — $5000 - $7EBF

$FD80 - $FDFE
even addresses

factory or
modified

$7EC0 - $7EFF —

$FD81 - $FDFF
odd addresses

factory or
modified

— $7EC0 - $7EFF

$FE00 - $FE7E
even addresses

factory $7F00 - $7F3F —

$FE01 - $FE7F
odd addresses

factory — $7F00 - $7F3F

$FE80 - $FEFE
even addresses

factory or
modified

$7F40 - $7F7F —

$FE81 - $FEFF
odd addresses

factory or
modified

— $7F40 - $7F7F

$FF00 - $FFBE
even addresses

custom $7F80 - $7FBF —

$FF01 - FFBF
odd addresses

custom — $7F80 - $7FBF

$FFC0 - $FFFE
even addresses

factory $7FC0 - $7FFF —

$FFC1 - $FFFF
odd addresses

factory — $7FC0 - $7FFF

SDI CONFIGURATION

HC12A4EVBUM/D F-1

APPENDIX F

SDI CONFIGURATION

To configure the EVB for use with Motorola’s Serial Debug Interface (SDI), follow these steps:

1. Remove the jumper on header W11 from CSD*.

2. Move the CSP0* jumper on W11 to pins 2-3.

 Steps 1 and 2 disable the external EPROM and map the CSP0* chip select to external
RAM.

3. Remove the jumper from W30.

 Step 3 allows the SDI to drive the MCU’s BKGD pin low at reset.

4. Move the jumper on W34 to pins 1-2.

5. Move the jumper on W42 to pins 1-2.

 Steps 4 and 5 place the MCU in Special Single Chip mode.

6. Move the base address of the MCU’s on-chip EEPROM from $F000 (the default in
Special Single Chip mode) to $1000. To do this, change the data at address $0012 to
a value of $11 using the appropriate debugging tool. For MCUdebug, the correct
command is:

 MM 12 11

 Step 6 must be repeated each time the EVB is reset in this mode, as the EEPROM’s
base address defaults to $F000 at reset.

Table 4-1 provides full descriptions of these jumper changes. See Figure 4-2 for details of
header W11. See Figure 1-1 for header locations on the EVB.

Note that CSP0* covers the address range from $8000 to $FFFF. The 16 Kbytes of RAM appear
in the new memory map from $C000 to $FFFF. This SDI memory map is shown in the table
below.

SDI CONFIGURATION

HC12A4EVBUM/DF-2

This configuration provides the following enhancements when using the SDI:

• The MCU’s on-chip RAM, from $0800 to $0BFF, is entirely available for user data.

• Data can be loaded into the vector area, which was reserved under the D-Bug12
operating configuration.

For information on using the SDI, refer to the Motorola Serial Debug Interface User’s Manual.

SDI Memory Map

Address Range Description Location

$0000 - $01FF CPU registers on-chip (MCU)

$0800 - $0BFF user data area 1K on-chip RAM (MCU)

$1000 - $1FFF user code area 4K on-chip EEPROM (MCU)

$C000 - $FFFF user code/data area 16K external RAM (U4, U6A)

INDEX

HC12A4EVBUM/D 1

INDEX

—A—
A/D converter

description, 4-14
isolatable power circuits, 4-6, 4-14

—B—
background debug mode (BDM)

as user interface, 1-6, 1-7, 2-4
interface connector, J5, 4-15
MCU mode, 3-26, 4-8

block diagram
EVB system, 1-4

bulletin boards, 1-9, C-1

—C—
chip select. See memory, chip selects
clock

circuitry, 4-13
E-clock, 1-5, 2-6, 4-11, C-3
external input, 4-14
oscillator chip and socket, 4-13
speed, 1-7, 4-13
time base, 4-14

code
firmware modification, C-1
generation, 1-6, 3-32

commands, D-Bug12
<REGISTER NAME> — Modify Register Value, 3-30
ASM — Assembler/Disassembler, 3-6
BAUD — Set Baud Rate, 3-9
BF — Block Fill, 3-10
BR — Breakpoint Set, 3-11
BULK — Bulk Erase on-chip EEPROM, 3-12
CALL — Call Subroutine, 3-13
GO — Go Execute a User Program, 3-14
Go Till, 3-15
HELP — Onscreen Help Summary, 3-16
LOAD — Load S-Record File, 3-17
MD — Memory Display, 3-18
MDW — Memory Display, Word, 3-19
MM — Memory Modify, 3-20
MMW — Memory Modify, Word, 3-21
MOVE — Move Memory Block, 3-22
NOBR — Remove Breakpoints, 3-23
RD — Register Display, 3-24
RM — Register Modify, 3-25
T — Trace, 3-26
UPLOAD — Display Memory, S-Record Format, 3-28
VERF — Verify S-Record File against Memory, 3-29

communications, EVB-host

baud rate, 2-5, 3-9
limitations, 3-35
parameters, 2-4, 2-5
SCI ports, 2-3, 4-6
software, 1-7, 2-5, B-1

configuration
D-Bug12, C-1
EVB, 2-2
jumpers, 4-1
SDI, F-1

connectors
J1, J2 — SCI1 RS-232C port, 2-3, 4-6
J3, J4 — SCI0 RS-232C port, 2-3, 4-6
J5 — BDM interface, 4-15
J6 — power input, 2-2, 4-6
J7 — external clock, 4-14
J8, J9 — MCU access, 1-6, 4-15, 4-17
locations, 1-3
types, 4-1

CPU
instruction translation, 3-6, 3-7
registers. See registers
type. See MCU

crystal. See clock
customer support, 1-9

—D—
D-Bug12

aborting a user program, 3-2
command set, 3-4, 3-5
command-line format, 3-3
commands. See commands, D-Bug12
configuration requirements, 1-5, 1-6, 2-2, 2-4, 4-1
customization data, D-1
description, 1-5, 1-6
generating user code, 1-6, 3-32
limitations imposed by, 1-7, 3-34
memory usage, 3-33, 3-34, E-1
resetting, 3-2
stack pointer, 3-33
starting, 3-1
startup code, C-1
startup modes, 1-6, 2-2, 3-1, 3-32
terminal interface, 1-5, 4-6

DS1. See power, indicator

—E—
E-clock, 1-5, 2-6, 4-11, C-3
EEPROM. See also memory

starting execution from, 3-32
EPROM. See memory
evaluation board. See EVB

INDEX

HC12A4EVBUM/D2

EVB
block diagram, 1-4
component placement, 1-3
configuring, 2-2, 4-1
description, general, 1-1
description, hardware, 4-1
features, 1-1
firmware. See D-Bug12
functional overview, 1-5
operating instructions, 3-1
packing list, 2-1
restrictions on use, 3-34
specifications, 1-8
unpacking, 2-1

—F—
file transfers, 3-17, 3-29, 3-32, B-1
firmware. See D-Bug12

—H—
headers

connector, 4-1. See also connectors
cut-trace, 4-1
description, 4-1
jumper, 4-1. See also jumper settings

—J—
J1, J2 — SCI1 RS-232C port, 2-3, 4-6
J3, J4 — SCI0 RS-232C port, 2-3, 4-6
J5 — BDM interface, 4-15
J6 — power input, 2-2, 4-6
J7 — external clock, 4-14
J8, J9 — MCU access, 1-6, 4-15, 4-17
jumper settings, 1-2, 1-5, 4-1, 4-3

—L—
LED. See power, indicator
low voltage inhibit (LVI), 4-14

—M—
M68HC12A4EVB Evaluation Board. See EVB
MC68HC812A4 Microcontroller Unit. See MCU
MCU

access interface, 1-6, 4-15, 4-17
description, 4-7
isolatable power circuits, 4-6
location, 1-3
modes, 4-7, 4-8, 4-9, 4-10
restrictions on use, 1-6, 3-33, 3-34
socket, 2-1
type, 1-8, 4-7

memory
and MCU modes, 4-7
chip selects, 1-5, 2-6, 4-11, F-1

configurations, 3-33, 4-9, 4-10
customizing the EPROMs, E-1
EEPROM, external, 4-9
EEPROM, on-chip, 1-6, 2-2, 3-12, 3-32, 4-14
EPROM, 1-5, 4-9, E-1
external, 4-9
glue logic, 4-12
limitations, 3-33, 3-34
loading from host computer, 3-32
locations, 1-3, 1-4
map, EPROM, E-2
map, factory default, 3-33, 3-34
map, SDI configuration, F-2
on-chip, 4-7, F-2
programming, 1-6
RAM, 1-4, 2-6, 4-9
ROM, 4-9
sockets, 4-9, 4-10
speed enhancement, 1-4, 2-6
SRAM, 1-4, 2-6, 4-9
usage, 3-33, 4-9
wait states, 1-4, 2-6, 4-11

microcontroller unit. See MCU
monitor program. See D-Bug12
multiple serial interface (MSI), 4-22

—O—
oscillator. See clock

—P—
packing list, 2-1
phase-locked loop (PLL)

description, 4-14
isolatable power circuit, 4-6

power
distribution, 4-6, 4-15, 4-16, 4-17
indicator,description, 4-6
indicator,location, 1-3
input circuit and protection, 4-6
input connector, J6, 2-2
isolatable circuits, 4-6
low-voltage inhibit, 4-14
supply, connecting to, 2-2
supply, requirements, 1-6, 1-8

printed circuit board
description, 4-1

program abort, 1-6, 3-2, 3-14, 3-32, 3-35
prototype area, 1-6, 4-15

—R—
RAM. See memory
registers, 2-6, 3-2, 3-11, 3-13, 3-14, 3-15, 3-24, 3-25, 3-26,

3-30, 3-34, 3-35, 4-7, D-1, F-2
reset, 1-6, 2-2, 2-5, 3-1, 3-2, 4-7, 4-14
ROM. See memory

INDEX

HC12A4EVBUM/D 3

—S—
S1, S2. See switches
SCI ports

baud rate, 3-9
configuration, 2-3, 4-6
limitations, 3-35
usage, 1-5, 1-7, 2-3, 2-4

SCI0. See SCI ports
SCI1. See SCI ports
serial communications interface. See SCI ports
Serial Debug Interface (SDI), 1-6, 1-7, 2-4, 4-15, F-1
sockets

clock oscillator, 4-13
locations, 1-3
MCU, 2-1
memory, 4-9, 4-10

specifications
EVB, 1-8

speed enhancement, 1-4, 2-6
SRAM. See memory
S-Records, 3-17, 3-29, 3-32, A-1
switches, 1-6

locations, 1-3
S1 — reset, 3-2
S2 — program abort, 3-2

—T—
terminal

baud rate, 2-5, 3-9
cabling, 2-3, 2-4
communications parameters, 2-4, 2-5
communications software, 1-7, 2-5, B-1
connectors, 2-3, 4-6
interface circuitry, 4-6
limitations, 3-35
requirements, 1-7
SCI ports, 1-5, 2-3, 4-6
setup, 2-3, 2-5, 4-6

test points, 1-2, 4-15
time base, 4-14

—U—
upacking instructions, 2-1

—V—
vector memory area, 3-34, F-2

—W—
wait states, 1-4, 2-6, 4-11

	COVER
	CONTENTS
	CHAPTER 1 GENERAL INFORMATION
	CHAPTER 2 CONFIGURATION AND SETUP
	CHAPTER 3 OPERATION
	CHAPTER 4 HARDWARE REFERENCE
	APPENDIX A S-RECORD FORMAT
	APPENDIX B COMMUNICATIONS PROGRAM EXAMPLES
	APPENDIX C D-BUG12 STARTUP CODE
	APPENDIX D D-BUG12 CUSTOMIZATION DATA
	APPENDIX E CUSTOMIZING THE EPROMS
	APPENDIX F SDI CONFIGURATION
	INDEX
	FIGURES
	TABLES

	FIGURES
	Figure 1-1. EVB Layout and Component Placement
	Figure 1-2. System Block Diagram
	Figure 2-1. EVB Power Connector J6
	Figure 4-1. Memory Sockets Configuration
	Figure 4-2. Chip Select Header
	Figure 4-3. RAM/ROM Logic Diagram
	Figure 4-4. Prototype Area (Component-Side View)
	Figure 4-5. MCU Connector J8 (Component-Side View)
	Figure 4-6. MCU Connector J9 (Component-Side View)

	TABLES
	Table 1-1. EVB Specifications
	Table 2-1. RS-232C Interface Cabling
	Table 2-2. Communication Parameters
	Table 3-1. D-Bug12 Command-Set Summary
	Table 3-2. M68HC11 to CPU12 Instruction Translation
	Table 3-3. CPU12 Registers
	Table 3-4. Condition Code Register Bits
	Table 3-5. Factory-Configuration Memory Map
	Table 4-1. Jumper-Selectable Functions
	Table 4-2. CPU Mode Selection
	Table 4-3. EVB Memories Supplied
	Table 4-4. BDM Connector J5 Pin Assignments
	Table 4-5. MCU Connector J8 Pin Assignments
	Table 4-6. MCU Connector J9 Pin Assignments

	CHAPTER 1 GENERAL INFORMATION
	1.1 INTRODUCTION
	1.2 GENERAL DESCRIPTION AND FEATURES
	1.3 PERFORMANCE NOTES
	1.4 FUNCTIONAL OVERVIEW
	1.5 EXTERNAL EQUPMENT REQUIREMENTS
	1.6 EVB SPECIFICATIONS
	1.7 CUSTOMER SUPPORT

	CHAPTER 2 CONFIGURATION AND SETUP
	2.1 UNPACKING AND PREPARATION
	2.2 EVB CONFIGURATION
	2.3 EVB TO POWER SUPPLY CONNECTION
	2.4 EVB TO TERMINAL CONNECTION
	2.5 TERMINAL COMMUNICATIONS SETUP
	2.5.1 Communication Parameters
	2.5.2 Dumb-Terminal Setup
	2.5.3 Host-Computer Setup
	2.5.4 Changing the Baud Rate

	2.6 USING FAST EXTERNAL RAM
	2.6.1 Selecting and Replacing the RAM Chips
	2.6.2 Reprogramming the RAM Chip Select

	CHAPTER 3 OPERATION
	3.1 STARTUP
	3.2 RESET
	3.3 PROGRAM ABORT
	3.4 USING D-BUG12 COMMANDS
	3.5 D-BUG12 COMMAND SET
	Assembler/Disassembler (ASM)
	Set Baud Rate (BAUD)
	Block Fill (BF)
	Breakpoint Set (BR)
	Bulk Erase On-Chip EEPROM (BULK)
	Call Subroutine (CALL)
	Go Execute a User Program (GO)
	Go Till (GT)
	Onscreen Help Summary (HELP)
	Load S-Record File (LOAD)
	Memory Display (MD)
	Memory Display, Word (MDW)
	Memory Modify (MM)
	Memory Modify, Word (MMW)
	Move Memory Block (MOVE)
	Remove Breakpoints (NOBR)
	Register Display (RD)
	Register Modify (RM)
	Trace (T)
	Display Memory in S-Record Format (UPLOAD)
	Verify S-Record File against Memory (VERF)
	Modify Register Value (<Register Name>)

	3.6 ALTERNATE EXECUTION FROM EEPROM
	3.7 OFF-BOARD CODE GENERATION
	3.8 MEMORY USAGE
	3.8.1 Description
	3.8.2 Memory Map

	3.9 OPERATIONAL LIMITATIONS
	3.9.1 On-Chip RAM
	3.9.2 SCI Port Usage
	3.9.3 Dedicated MCU Pins
	3.9.4 Terminal Communications

	CHAPTER 4 HARDWARE REFERENCE
	4.1 PCB DESCRIPTION
	4.2 CONFIGURATION HEADERS AND JUMPER SETTINGS
	4.3 POWER INPUT CIRCUITRY
	4.4 TERMINAL INTERFACE
	4.5 MICROCONTROLLER
	4.6 MEMORY
	4.6.1 Memory Types and Sockets
	4.6.2 Chip Selects
	4.6.3 Glue Logic

	4.7 CLOCK CIRCUITRY
	4.8 PHASE-LOCKED LOOP (PLL)
	4.9 RESET
	4.10 LOW-VOLTAGE INHIBIT
	4.11 ANALOG-TO-DIGITAL (A/D) CONVERTER
	4.12 BACKGROUND DEBUG MODE (BDM) INTERFACE
	4.13 PROTOTYPE AREA
	4.14 MCU CONNECTORS

	APPENDIX A S-RECORD FORMAT
	DESCRIPTION
	S-RECORD CONTENT
	S-RECORD TYPES
	S-RECORD EXAMPLE

	APPENDIX B COMMUNICATIONS PROGRAM EXAMPLES
	INTRODUCTION
	PROCOMM FOR DOS — IBM PC
	Setup
	S-Record Transfers to EVB Memory

	KERMIT FOR DOS — IBM PC
	Setup
	S-Record Transfers to EVB Memory

	KERMIT — SUN WORKSTATION
	Setup
	S-Record Transfers to EVB Memory

	MACTERMINAL — APPLE MACINTOSH
	Setup
	S-Record Transfers to EVB Memory

	RED RYDER — APPLE MACINTOSH
	Setup
	S-Record Transfers to EVB Memory

	APPENDIX C D-BUG12 STARTUP CODE
	APPENDIX D D-BUG12 CUSTOMIZATION DATA
	Initial User CPU Register Values
	SysClk Field
	IOBase Field
	SCIBaudRegVal Field
	EEBase and EESize Fields
	EEPROM Erase/Program Delay Function Pointer Field
	Auxiliary Command Table Entries

	APPENDIX E CUSTOMIZING THE EPROMS
	Physical EPROM Addresses

	APPENDIX F SDI CONFIGURATION
	SDI Memory Map

	INDEX

