

Motorola Semiconductor Application Note

Order this document
by AN1828/D

© Motorola, Inc., 1999 AN1828

AN1828

Flash Programming Via CAN

by Ross McLuckie
East Kilbride, Scotland.

1 Introduction

With the introduction, and growing use of Flash based microcontrollers
(MCU), new opportunities exist to extend the capabilities of the
Controller Area Network (CAN). One such opportunity would be to use
the CAN to examine, modify or reprogram the memory contents of any
MCU connected to the network from a single, easily accessible point
within the system.

The more traditional methods of providing in-circuit programming of an
Electronic Control Module (ECM) are based upon either the Universal
Asynchronous Receiver / Transmitter (UART) or an MCU specific
interface, such as the single wire interfaces found on Motorola’s HC08
(Monitor mode) and HC12 (BDM) products. Using this approach requires
dedicated hardware on each ECM and assumes that accessibility to
each module is readily available.

From a design point of view, the added cost of dedicated hardware for a
diagnostic / development feature and the restrictions placed upon the
ECM to meet the accessibility requirements are undesirable to say the
least. At this point it easy to understand the benefits of utilizing CAN to
provide the desired functionality, each ECM has a CAN connection as
part of the standard system, therefore no additional hardware is
required, and connection to any node allows communication to all other
nodes via CAN.

This concept offers benefits throughout the products’ life span, from the
development phase through to in-field upgrades, servicing and
diagnostic capabilities. During development and testing any module
connected to the network could be reprogrammed in-circuit, saving time

AN1828

2 MOTOROLA

Application Note

and effort as well as minimizing the dependencies between product
assembly and software development. In-field system upgrades,
servicing and diagnostic reports could all be easily achieved, and
potential high cost product recalls could be handled much quicker and
cheaper with field maintenance.

A considerable amount of additional functionality can be added by
implementing some or all of these features, whilst requiring limited effort
during the software development cycle.

2 Scope

The purpose of this paper is to focus on the specific features necessary
to enable the reader to include the desired functionality into their system.
It is assumed the reader is familiar with the use of CAN and Flash
memory technology, therefore the discussion will not enter into any great
detail on either the CAN specification or device specific Flash
programming algorithms. There are numerous other publications which
describe in detail the CAN specification, whilst Flash programming
algorithms are technology / device specific and although a working
example is shown for Motorola’s HC12 Flash memory, the principles
discussed could be easily extended to any other Flash technology.

3 Objective

It is the intention of this application note to identify and illustrate the key
features required, allowing the reader to incorporate the additional
functionality, discussed in the introductory section, into their system. In
addition to outlining the requirements of the basic ‘skeleton’ system,
some topics will also discuss potential extensions and enhancements
that the reader may wish to consider when customizing and tailoring the
system to their individual needs.

Although the principles discussed could be applied to any CAN based
system incorporating MCUs with either embedded or external Flash
memory, for the purpose of illustration, the remainder of this document
will describe how to build a demonstration system based on Motorola’s
M68EVB912BC32.

AN1828

MOTOROLA 3

Objective

Figure 1 MC68HC912BC32 block diagram

IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6

PAI

OC7

D
D

R
T

PO
R

T
T

PERIODIC INTERRUPT

COP WATCHDOG

32-KBYTE FLASH EEPROM

1-KBYTE RAM
PO

R
T

E

TIMER AND

PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7

SPI

D
D

R
S

PO
R

T
S

ATD

PO
R

T
AD

PE1
PE2

PE4
PE5
PE6

PE3

PAD3
PAD4
PAD5
PAD6
PAD7

VDDA
VSSA

VRH
VRL

PAD0
PAD1
PAD2

DDRA

PORT A

DDRB

PORT B

PA
4

PA
3

PA
2

PA
1

PA
0

PA
7

PA
6

PA
5

PB
4

PB
3

PB
2

PB
1

PB
0

PB
7

PB
6

PB
5

D
AT

A1
5

MULTIPLEXED ADDRESS/DATA BUS

RESET

EXTAL
XTAL

PW0
PW1
PW2
PW3

PWM
D

D
R

P

PO
R

T
P

PP0
PP1
PP2
PP3

VDD × 2
VSS × 2

SCI RxD
TxD
I/O
I/O

SDI/MISO
SDO/MOSI

SCK
CS/SS

PS0
PS1
PS2
PS3

PS4
PS5
PS6
PS7

768-BYTE EEPROM

CLOCK MONITOR

PE0

PE7

AN3
AN4
AN5
AN6
AN7

VDDA
VSSA

VRH
VRL

AN0
AN1
AN2

SINGLE-WIRE
BACKGROUND

DEBUG MODULE

SMODN / TAGHI

ECLK

R/W
LSTRB / TAGLO

IPIPE0 / MODA
IPIPE1 / MODB

XIRQ

DBE

PULSE
ACCUMULATOR

LITE

IRQ/VPP

PP4
PP5
PP6
PP7

I/O
I/O
I/O
I/O

I/O

I/O

DLCTx
DLCRx

I/O

BDLC

D
D

R
D

LC

PO
R

T
D

LC

PDLC4
PDLC5
PDLC6

I/O
I/O
I/O

I/O

PDLC0
PDLC1

PDLC2
PDLC3

INTEGRATION
MODULE

(LIM)

VFP

BREAK POINTS

CPU12

A
D

D
R

15
A

D
D

R
14

A
D

D
R

13
A

D
D

R
12

A
D

D
R

11
A

D
D

R
10

A
D

D
R

9
A

D
D

R
8

D
AT

A1
4

D
AT

A1
3

D
AT

A1
2

D
AT

A1
1

D
AT

A1
0

D
A

TA
9

D
A

TA
8

A
D

D
R

7
A

D
D

R
6

A
D

D
R

5
A

D
D

R
4

A
D

D
R

3
A

D
D

R
2

A
D

D
R

1
A

D
D

R
0

D
A

TA
7

D
A

TA
6

D
A

TA
5

D
A

TA
4

D
A

TA
3

D
A

TA
2

D
A

TA
1

D
A

TA
0

I/O

CONVERTER

VSSX × 2
VDDX × 2

POWER FORPOWER FOR
I/O DRIVERSINTERNAL

CIRCUITRY

D
A

TA
7

D
A

TA
6

D
A

TA
5

D
A

TA
4

D
A

TA
3

D
A

TA
2

D
A

TA
1

D
A

TA
0

NARROW BUS

WIDE
BUS

BKGD

AN1828

4 MOTOROLA

Application Note

In order to provide this additional functionality, the following key features
must be taken into consideration when planning and designing the
overall system.

• Provide ‘maintenance’ access to the MCU via the CAN interface.

• Device specific Flash modifying routines.

• A ‘smart cable’ to interface between a PC and the target ECM.

• An API capable of transferring data to the ‘smart cable’.

The following sections will take a closer look at each of these topics and
illustrate, through example, the minimum requirements needed to
accomplish each task. In addition, each section will discuss ways to
enhance and extend the overall performance of the system, allowing the
designer to meet their system’s unique requirements.

4 MCU maintenance access via CAN

There is very seldom a single solution to any given design requirement
and it is important to determine an appropriate strategy from the offset.
For this particular application it would be just as easy to embed the Flash
modifying algorithms into the user software and activate them via a CAN
message, but this approach comes with many limiting factors. Having
Flash algorithms in MCU memory at all times could result in permanent
damage if at any time code runaway occurred, less memory would be
available for application code and additional functionality would be
limited to what was coded in the original application.

A more flexible approach would be to utilize a CAN Load Ram And
Execute (LRAE) routine. Flash algorithms would only be loaded into the
MCU at the appropriate time, it would be possible to write a very small
routine (under 100 bytes) to accomplish the task and only MCU ram size
restricts additional functionality.

The basic requirement for the LRAE routine is to implement a CAN
protocol which allows data transfer into ram and program execution from
ram. Although several CAN protocol definitions already exist, such as
CCP (CAN Calibration Protocol), CANopen and SDS™ (Smart
Distributed System)

1

, for the purpose of demonstration, a simplified
custom protocol was adopted.

The flowchart in Figure 2 explains the operation of the LRAE routine,
while Table 1 explains how the CAN protocol functions.

1. SDS™ is a trademark of Honeywell Inc.

AN1828

MOTOROLA 5

MCU maintenance access via CAN

Figure 2 CAN load ram and execute process flow

The address instruction initializes a pointer to RAM, where subsequent
data bytes are incrementally stored until a new address or execute
instruction is received. The data instruction may contain up to seven
bytes of data. On receiving the execute instruction, program execution
jumps to the address location contained in the execute command.

Listing 1 provides a coded example of how to implement the CAN LRAE
protocol shown in Figure 2 and Table 1.

Table 1 CAN message Rx buffer contents

CAN Rx
Buffer

Address
Instruction

Data
Instruction

Execute
Instruction

DSR0 0 2 4

DSR1 Address MSB Data Byte 1 Address MSB

DSR2 Address LSB (Data Byte 2) Address LSB

DSR3 — (Data Byte 3) —

DSR4 — (Data Byte 4) —

DSR5 — (Data Byte 5) —

DSR6 — (Data Byte 6) —

DSR7 — (Data Byte 7) —

Start

Wait for

Execute
instruction

Address
instruction

Data
instruction

Set address
pointer

CAN message

Transfer data to
RAM and

increment pointer

Begin Execution
from RAM

Yes

Yes

Yes

No

No

No

AN1828

6 MOTOROLA

Application Note

Listing 1 CAN LRAE routine

;***
; A load RAM and execute routine via the CAN network
; Written to run on an MC68HC912BC32
;***

;***
; Register definitions
;***

COPCTL: EQU $16
CMCR0: EQU $0100

;***
; Bit definitions for the CMCR0 register
;***
CSWAI: EQU $20
SYNCH: EQU $10
TLNKEN: EQU $08
SLPAK: EQU $04
SLPRQ: EQU $02
SFTRES: EQU $01
;***

CBTR0: EQU $0102
CRFLG: EQU $0104

;***
; Bit definitions for the CRFLG register
;***
WUPIF: EQU $80
RWRNIF: EQU $40
TWRNIF: EQU $20
RERRIF: EQU $10
TERRIF: EQU $08
BOFFIF: EQU $04
OVRIF: EQU $02
RXF: EQU $01
;***

CTCR: EQU $0107
CIDMR0: EQU $0114
CIDMR2: EQU $0116
RXDSR0: EQU $0144
RXDSR1: EQU $0145
RXDLR: EQU $014C

AN1828

MOTOROLA 7

MCU maintenance access via CAN

;***
; Standard equates
;***

StackTop: EQU $0BFF
ProtectedBlock: EQU $FC00
ResetVector: EQU $FFFE
CBT: EQU $C749
LastInstr: EQU $04

ORG ProtectedBlock

;***
; Initialization routine
;***

lrae:
LDS #StackTop ;initialize stack pointer
CLR COPCTL ;switch off COP watchdog

;***
; Setup the CAN module
;***

BSET CMCR0,#SFTRES ;place CAN module in reset
MOVW #CBT,CBTR0 ;set up CAN bit timing

CLR CTCR
MOVW #$FFFF,CIDMR0
MOVW #$FFFF,CIDMR2 ;set up module to receive all messages

BCLR CMCR0,#SFTRES ;take CAN module out of reset
canSynch:

BRCLR CMCR0,#SYNCH,* ;synchronize module with CAN bus

;***
; Wait for CAN message
;***

waitForMsg:
BRCLR CRFLG,#RXF,* ;wait for CAN message

BRSET RXDSR0,#$01 ,waitForNextMsg
LDAB RXDSR0
CMPB #LastInstr
BHI waitForNextMsg ;ignore invalid instructions

CLRA ;jump to appropriate routine, depending
JMP [D,PC] ;on instruction value
DC.W addressInstr ;(0) initialize RAM pointer
DC.W dataInstr ;(2) load data into RAM
DC.W executeInstr ;(4) begin execution at given address

AN1828

8 MOTOROLA

Application Note

;***
; Setup RAM pointer
;***

addressInstr:
LDX RXDSR1 ;point to RAM address in RXDSR1:2
BRA waitForNextMsg

;***
; Transfer data into RAM
;***

dataInstr:
LDAB RXDLR ;number of bytes transmitted
LDY #RXDSR1 ;start of transmitted data

nextDataByte:
DECB ;ignore command byte
BEQ endOfData ;stop at end of data
MOVB 1,Y+,1,X+ ;load data into RAM
BRA nextDataByte

endOfData:
BRA waitForNextMsg

;***
; Clear CAN Rx flag and begin program execution from new location
;***

executeInstr:
BSET CRFLG,#RXF ;clear Rx flag
LDX RXDSR1
JMP X ;begin program execution from RXDSR1:2

;***
; Clear CAN Rx flag and wait for next message
;***

waitForNextMsg:
BSET CRFLG,#RXF ;clear Rx flag
BRA waitForMsg

;***
; Define reset vector
;***

ORG ResetVector
DCW lrae

;***

AN1828

MOTOROLA 9

MCU maintenance access via CAN

Since the LRAE function provides the platform from which the complete
system is built upon, then it is also the area where most of the system
enhancements and extensions should be added.

Implementing a specific CAN protocol could provide additional
functionality, whilst adding a level of security, through message
handshaking when establishing a connection to the target MCU. If
required, a more complex, custom handshaking protocol could be
added, in an attempt to prevent any unauthorized access to the MCU.

The coded example, shown in Listing 1, accepts all CAN messages’ and
is intended for use in a point to point (2-node network) application only.
By either adopting a more complex protocol, or utilizing a dedicated CAN
filter / identifier for each node on the network, a multiple node network
could be easily supported.

From Table 1, it can be seen that the LRAE example sends both the
instruction ID and its associated data in the CAN data segment registers
(DSR0-7). If it was required to optimize the bandwidth of the CAN bus,
the instruction ID could be embedded into the CAN identifier, allowing
transmission of up to eight data bytes at a time. The potential
improvement on system performance depends upon the number of
possible instruction ID’s and the overall size of the data transfer.

It is important to consider the effect of a system failure whilst attempting
to modify Flash memory, if for example, a power failure occurred after
erasing, but before programming was complete, then the end result
would be an erased or partially programmed target MCU. The resultant
‘dead’ node would most likely have to be replaced, which may require
significant cost and effort. There are several approaches that could be
undertaken to prevent, or at least minimize the risk from this kind of
failure. An auxiliary power supply could be incorporated into the
maintenance equipment, utilizing the protected memory area of the
MCU in order to guarantee a minimal functionality, such as the CAN
LRAE routines or in the case of the HC12, provide an appropriate BDM
interface. Although it is not possible to eliminate the risk of this type
failure entirely, the amount of preventative action taken should depend
upon the potential consequences arising from a failure of this nature.

There are many more topics that could be discussed here, and the
required functionality will vary from system to system, but it is important
to realize when defining the specification for the LRAE routine, the part
it plays in limiting the overall system.

AN1828

10 MOTOROLA

Application Note

5 Device specific Flash modifying, via CAN, routines

With the exception of a few minor differences, the basic requirement for
the Flash modifying routine is the same as the LRAE routine. A CAN
protocol capable of transferring data into a ram buffer and the ability to
both erase and program Flash. Despite the fact that there are numerous
Flash technologies, even Motorola’s HC08 and HC12 products have
different Flash modules, the same basic principles are applicable to
them all. The coded example that follows was written for use with the
MC68HC912BC32 Flash module.

Figure 3 Motorola’s MC68HC912BC32 memory map

The biggest difference in functionality from the LRAE routine is the
introduction of CAN message handshaking, which gives the target MCU
the ability to return status messages after each command request.
Although not an essential requirement, the ability to return status
information greatly increases the capabilities of the overall system.

BDM
(IF ACTIVE)

$8000

$FFFF$FFFF

FLASH EEPROM

$0000

$0800

$0D00

$0FFF

$FF00

$0000

$01FF

$0800

SINGLE CHIP
SPECIAL

SINGLE CHIP
NORMAL

EXPANDED

$8000

VECTORS VECTORS VECTORS

$FF00
$F000

768 BYTES EEPROM
MAP TO ANY 4K SPACE

1-KBYTE RAM
MAP TO ANY 2K SPACE

REGISTERS

MAP TO ANY 2K SPACE

$FFFF
$FFC0

$0BFF

MAP WITH MAPROM BIT

$0D00

512 BYTES RAM
$0000

$7FFF

IN MISC REGISTER
TO $0000 – $7FFF
OR $8000 – $FFFF

$0200

$03FF

REGISTER FOLLOWING
SPACE
512 BYTES RAM

AN1828

MOTOROLA 11

Device specific Flash modifying, via CAN, routines

An initial status message is sent to indicate that the Flash modifying
routines are now running and have control of the target MCU,
subsequent status messages are sent after each request to modify
Flash memory is received. The status returned is used to determine if
the programming voltage was present, or whether or not the attempted
modification was successful.

The flowchart in Figure 4 explains the operation of the Flash modifying
routine, while Table 2 explains how the CAN protocol functions.

Figure 4 Flash modifying process flow

Start

Wait for

Reset
instruction

Program
instruction

Load data
instruction

Reset RAM
buffer pointer

CAN message

Transfer data to
RAM and

increment pointer

Yes

Yes

Yes

No

No

No

Erase
instruction

Start programming
sequence and
return status

message

Start erase
sequence and
return status

message

Yes

No

Transmit
connection
established
message

AN1828

12 MOTOROLA

Application Note

The reset instruction initializes a pointer to the start of a RAM buffer,
where subsequent data bytes are incrementally stored until a new reset
instruction is received. The data instruction may contain up to seven
bytes of data. On receiving the program instruction, an attempt is made
to program the specified number of bytes from the start of the RAM
buffer into Flash, starting at the address sent in the instruction. The page
number is optional and is included to provide support for S2 Records (>
64K). The erase command contains the starting address and word size
of the flash block that has to be erased, this is required in order to allow
verification of the erase process. Both the program and erase
instructions return a status message, which provides information on the
outcome of any attempt to modify Flash memory, whilst also providing a
mechanism for data flow control to the target ECM.

Listing 2 provides a coded example of how to implement the Flash
modifying via CAN protocol shown in Figure 4 and Table 2.

Table 2 CAN message Rx buffer contents

CAN Rx
Buffer

Reset
Instruction

Load Data
Instruction

Program
Instruction

Erase
Instruction

DSR0 0 2 4 6

DSR1 — Data Byte 1 Address MSB Address MSB

DSR2 — (Data Byte 2) Address LSB Address LSB

DSR3 — (Data Byte 3) No of Bytes Word MSB

DSR4 — (Data Byte 4) (Page No) Word LSB

DSR5 — (Data Byte 5) — —

DSR6 — (Data Byte 6) — —

DSR7 — (Data Byte 7) — —

AN1828

MOTOROLA 13

Device specific Flash modifying, via CAN, routines

Listing 2 Flash modifying via CAN routine

;***
; A bootloader routine to program 1.5T Flash via CAN
; Written to run on an MC68HC912BC32
;***

;***
; Register definitions
;***

COPCTL: EQU $16
TIOS: EQU $80

;***
; Bit definitions for the TIOS register
;***
IOS7: EQU $80
IOS6: EQU $40
IOS5: EQU $20
IOS4: EQU $10
IOS3: EQU $08
IOS2: EQU $04
IOS1: EQU $02
IOS0: EQU $01
;***
TCNTH: EQU $84
TSCR: EQU $86

;***
; Bit definitions for the TSCR register
;***
TEN: EQU $80
TSWAI: EQU $40
TSBCK: EQU $20
TFFCA: EQU $10
;***

TMSK2: EQU $8D

;***
; Bit definitions for the TMSK2 register
;***
TOI: EQU $80
PUPT: EQU $20
RDPT: EQU $10
TCRE: EQU $08
PR2: EQU $04
PR1: EQU $02
PR0: EQU $01
;***

TFLG1: EQU $8E

AN1828

14 MOTOROLA

Application Note

;***
; Bit definitions for the TFLG1 register
;***
C7F: EQU $80
C6F: EQU $40
C5F: EQU $20
C4F: EQU $10
C3F: EQU $08
C2F: EQU $04
C1F: EQU $02
C0F: EQU $01
;***

TC0H: EQU $90
FEEMCR: EQU $F5

;***
; Bit definitions for the FEEMCR register
;***
BOOTP: EQU $01
;***

FEECTL: EQU $F7

;***
; Bit definitions for the FEECTL register
;***
FEESWAI: EQU $10
SVFP: EQU $08
ERAS: EQU $04
LAT: EQU $02
ENPE: EQU $01
;***

CMCR0: EQU $0100

;***
; Bit definitions for the CMCR0 register
;***
CSWAI: EQU $20
SYNCH: EQU $10
TLNKEN: EQU $08
SLPAK: EQU $04
SLPRQ: EQU $02
SFTRES: EQU $01
;***

CBTR0: EQU $0102
CRFLG: EQU $0104

AN1828

MOTOROLA 15

Device specific Flash modifying, via CAN, routines

;***
; Bit definitions for the CRFLG register
;***
WUPIF: EQU $80
RWRNIF: EQU $40
TWRNIF: EQU $20
RERRIF: EQU $10
TERRIF: EQU $08
BOFFIF: EQU $04
OVRIF: EQU $02
RXF: EQU $01
;***

CTFLG: EQU $0106

;***
; Bit definitions for the CTFLG register
;***
ABTAK2: EQU $40
ABTAK1: EQU $20
ABTAK0: EQU $10
TXE2: EQU $04
TXE1: EQU $02
TXE0: EQU $01
;***

CTCR: EQU $0107
CIDMR0: EQU $0114
CIDMR2: EQU $0116

RXDSR0: EQU $0144
RXDSR1: EQU $0145
RXDSR3: EQU $0147
RXDLR: EQU $014C

TX0IDR0: EQU $0150
TX0DSR0: EQU $0154
TX0DLR: EQU $015C
TX0PRI: EQU $015D

;***
; Standard equates
;***

StackTop: EQU $0BFF
StartOfRAM: EQU $0800

CBT: EQU $C749
ConnectedMsg: EQU $55
LastInstr: EQU $06

EClock: EQU 8000000 ;E-clock frequency in Hz

AN1828

16 MOTOROLA

Application Note

PrescaleBy32: EQU 5 ;generate msec delays based on 8MHz bus
ms10: EQU EClock/3200
ms1: EQU EClock/32000

PrescaleBy1: EQU 0 ;generate usec delays based on 8MHz bus
us22: EQU ((EClock/10000)*22)/100
us11: EQU ((EClock/10000)*11)/100

MaxProgPulses: EQU 50
MaxErasePulses: EQU 5

ORG StartOfRAM

;***
; Declare variables
;***

pulseTotal: DS.B 1 ;tracks program/erase pulses applied
marginFlag: DS.B 1 ;indicates if prog or margin pulses
bytesTotal: DS.B 1 ;number of bytes to be programmed

;***
; Initialization routine
;***

bootloader:
LDS #StackTop ;initialize stack pointer
CLR COPCTL ;switch off COP watchdog
BSET TSCR,#(TEN+TFFCA) ;enable timer, allow fast flag clears
BSET TIOS,#IOS0 ;set channel 0 to output compare
BCLR FEEMCR,#BOOTP ;enable erasure of protected block

;***
; Setup the CAN module
;***

BSET CMCR0,#SFTRES ;place CAN module in reset
MOVW #CBT,CBTR0 ;set up CAN bit timing

CLR CTCR
MOVW #$FFFF,CIDMR0
MOVW #$FFFF,CIDMR2 ;set up module to receive all messages

MOVW #$0000,TX0IDR0 ;stanard ID (0 value)
MOVB #$01,TX0DLR ;single byte status message
CLR TX0PRI ;set status message registers

BCLR CMCR0,#SFTRES ;take CAN module out of reset
canSynch:

BRCLR CMCR0,#SYNCH,* ;synchronize module with CAN bus

MOVB #ConnectedMsg,TX0DSR0
JSR canTx ;transmit connected status message

AN1828

MOTOROLA 17

Device specific Flash modifying, via CAN, routines

;***
; Wait for CAN message
;***

waitForMsg:
BRCLR CRFLG,#RXF,* ;wait for CAN message

BRSET RXDSR0,#$01,waitForNextMsg
LDAB RXDSR0
CMPB #LastInstr
BHI waitForNextMsg ;ignore invalid instructions

CLRA ;jump to appropriate routine, depending
JMP [D,PC] ;on instruction value
DC.W setupBuffer ;(0) reset RAM ptr
DC.W loadBuffer ;(2) load buffer up to a max 256 bytes
DC.W programFlash ;(4) program flash with buffer contents
DC.W eraseFlash ;(6) erase flash array

;***
; Setup buffer pointer
;***

setupBuffer:
LDX #ramBuffer
BRA waitForNextMsg

;***
; Transfer data into buffer
;***

loadBuffer:
LDAB RXDLR ;number of bytes transmitted
LDY #RXDSR1 ;start of transmitted data

nextDataByte:
DECB ;ignore command byte
BEQ endOfData ;stop at end of data
MOVB 1,Y+,1,X+ ;store data in RAM buffer
BRA nextDataByte

endOfData:
BRA waitForNextMsg

;***
; Program ram buffer contents into flash memory
;***

programFlash:
BSR beginProgramming
JSR canTx ;transmit status/flow control message
BRA waitForNextMsg

AN1828

18 MOTOROLA

Application Note

;***
; Erase flash memory block
;***

eraseFlash:
JSR beginErasing
JSR canTx ;transimit status/flow control message

;***
; Clear CAN Rx flag and wait for next message
;***

waitForNextMsg:
BSET CRFLG,#RXF ;clear Rx flag
BRA waitForMsg ;normal operation

;***
; Flash programming algorithm
;***

beginProgramming:
LDX #ramBuffer ;point to the start of the RAM buffer
LDY RXDSR1 ;point at location(s) to be programmed

CLR TX0DSR0 ;indicates result of program procedure

LDAB RXDSR3 ;number of bytes to be programmed
BEQ progStatus ;check for zero bytes to be programmed
STAB bytesTotal ;store number of bytes to program
BRCLR FEECTL,#SVFP,progStatus

;check Vfp level
INC TX0DSR0 ;(1) indicate that Vfp is present
MOVB #PrescaleBy1,TMSK2

;setup timer prescalar for usec delays
progNextLocation:

CLR pulseTotal
CLR marginFlag ;reset pulse total and margin flag

BCLR FEECTL,#ERAS ;configure flash array for programming
BSET FEECTL,#LAT ;enable addr/data latches
MOVB ,X,,Y ;write data to flash address

progPulseLoop:
BSET FEECTL,#ENPE ;switch on Vfp onto array

LDD #us22 ;generate 22 usec delay
ADDD TCNTH
STD TC0H
BRCLR TFLG1,#C0F,*

BCLR FEECTL,#ENPE ;switch off Vfp from array

LDD #us11 ;generate 11 usec delay
ADDD TCNTH

AN1828

MOTOROLA 19

Device specific Flash modifying, via CAN, routines

STD TC0H
BRCLR TFLG1,#C0F,*

TST marginFlag ;are margin pulses being applied ?
BNE progMargin

INC pulseTotal ;update pulse count
BRA progCheck

progMargin:
DEC pulseTotal ;apply the same number of margin pulses
BNE progPulseLoop ;as there were programming pulses

progCheck:
LDAB ,Y ;read location being programmed
CMPB ,X ;compare against intended value
BNE progFail

TST pulseTotal ;if 0 then margin pulses have been done
BEQ progSuccess ;byte has been programmed

INC marginFlag ;set margin flag if byte programmed
BRA progPulseLoop ;and apply margin pulses

progFail:
LDAA pulseTotal ;if 0 then margin pulses have been done
BEQ progStatus ;and program has failed, TX0IDR = 1

CMPA #MaxProgPulses ;if max program pulses have been applied
BEQ progStatus ;no need to apply margin pulses

BRA progPulseLoop ;continue applying program pulses
progSuccess:

CLR FEECTL ;release LAT bit
INX ;point to next data byte
INY ;point to next flash location
DEC bytesTotal
BNE progNextLocation ;program all bytes

INC TX0DSR0 ;(2) program successful
progStatus:

CLR FEECTL ;release LAT bit
RTS

;***
; Flash erase algorithm
;***

beginErasing:
LDX RXDSR1 ;(DSR1:2) start address of array

;(DSR3:4) size of array (in words)
CLR TX0DSR0 ;indicates result of erase procedure
BRCLR FEECTL,#SVFP,eraseStatus

;check Vfp level
INC TX0DSR0 ;(1) indicate that Vfp is present
MOVB #PrescaleBy32,TMSK2

AN1828

20 MOTOROLA

Application Note

;setup timer prescalar for msec delays
CLR pulseTotal
CLR marginFlag ;reset pulse total and margin flag

BSET FEECTL,#(LAT+ERAS)
;enable addr/data latches and erase bit

STAA ,X ;write to valid location in array
erasePulseLoop:

BSET FEECTL,#ENPE ;switch on Vfp onto array

LDD #ms10 ;generate 10 msec delay
ADDD TCNTH
STD TC0H
BRCLR TFLG1,#C0F,*

BCLR FEECTL,#ENPE ;switch off Vfp from array

LDD #ms1 ;generate 1 msec delay
ADDD TCNTH
STD TC0H
BRCLR TFLG1,#C0F,*

TST marginFlag ;are margin pulses being applied
BNE eraseMargin

INC pulseTotal ;update pulse count
BRA eraseCheck

eraseMargin:
DEC pulseTotal ;apply the same number of margin pulses
BNE erasePulseLoop ;as there were programming pulses

eraseCheck:
LDX RXDSR1 ;start of array
LDY RXDSR3 ;word size of array
LDD #$FFFF ;erased state of word

eraseCheckLoop:
CPD 2,X+ ;check all array entries are erased
BNE eraseFail
DBNE Y,eraseCheckLoop

TST pulseTotal ;if 0 then margin pulses have been done
BEQ eraseSuccess ;array has been erased

INC marginFlag ;set margin flag if array erased
BRA erasePulseLoop ;and apply margin pulses

eraseFail:
LDAA pulseTotal ;if 0 then margin pulses have been done
BEQ eraseStatus ;and erase has failed, TX0IDR = 1

CMPA #MaxErasePulses
;if max erase pulses have been applied

BEQ eraseStatus ;no need to apply margin pulses

BRA erasePulseLoop ;continue applying erase pulses

AN1828

MOTOROLA 21

Device specific Flash modifying, via CAN, routines

eraseSuccess:
INC TX0DSR0 ;(2) array is erased

eraseStatus:
CLR FEECTL ;release LAT and ERAS bits
RTS

;***
; CAN status/flow control message transmit routine
;***

canTx:
BRCLR CTFLG,#TXE0,* ;wait until Tx buffer is available
BSET CTFLG,#TXE0 ;transimit status/flow control message
RTS

;***
; Label pointing to first available ram location after bootloader for buffer
;***

ramBuffer:

;***

When considering potential improvements to this part of the system, it is
worth noting that most will be technology and / or device dependent,
although by extending the CAN protocol it should be possible to support
most, if not all, of the potential enhancements. For instance, the CAN
protocol could be modified to include support for paged memory devices,
such as Motorola's MC68HC912DG128, as shown in Table 2. The
protocol could also be used to provide access control to protected
memory areas or extend the capabilities of the status messaging, e.g.
return failing address information.

However, there are some extensions that need more than just a
modification of the CAN protocol, for example, to include eeprom
support would require the inclusion of device specific program and erase
routines. In the case of the HC12 family, an external 12 volt
programming voltage is required, but in order to limit the programming
interface to just the CAN wires, additional hardware (i.e. 12 volt charge
pump) must be included on the PCB. The charge pump itself could be
enabled by one of the MCU output pins, which in turn could be controlled
through the CAN protocol or directly from the Flash modifying
algorithms. The HC08 family includes an onboard charge pump and as
such does not require the inclusion of any additional hardware.

AN1828

22 MOTOROLA

Application Note

6 A ‘smart cable’ to interface between a PC and the target ECM

If you consider that the minimal requirement for this part of the system is
to provide the hardware to convert an S-Record into a stream of CAN
messages, suitable for use with the protocol described in Table 2,
purchasing one of the many commercially available CAN PC interface
cards is all that is required. However this approach requires much more
effort during the software development of a suitable API, it is also less
portable, with each PC or Laptop requiring the appropriate piece of
hardware to be installed before it can be used as part of the system.

An alternative approach is to develop an additional piece of hardware
that provides a CAN interface to the target ECM and either a serial or
parallel interface to the PC or Laptop. A prototype system was built using
the M68EVB912BC32, which has all the necessary hardware
requirements, e.g. RS232 and CAN physical interfaces.

Having an MCU based 'smart cable' provides the ability to add a lot of
additional functionality, meeting each system's individual requirements.
The prototype system included a lot of extra features, which although not
necessary enhanced the performance of the overall system.

Data flow control between the PC and the target ECM is essential and
can be handled by the smart cable. System parameters, including baud
rate, smart cable operating frequency, CAN bit timing, LRAE
maintenance identifier and target MCU details are all stored in the cables
non-volatile memory. Each of these parameters can be modified and, in
case of error, restored to a set of default values, some changes do not
take effect until the smart cable itself is reset.

Error handling can also be included, validating S-Records, verifying
target device memory mapping, reporting system errors and failures
during Flash modifying routines.

The flowchart in Figure 5 explains the operation of the prototype smart
cable.

AN1828

MOTOROLA 23

A ‘smart cable’ to interface between a PC and the target ECM

Figure 5 Smart cable process flow (Part 1 of 3)

Start

Wait for

Display
request

Download
bootloader

Modify
request

Display
requested details

command

Yes

Yes

No

No

No

Erase
Flash

No

Initialise
routine

and display
system details

Program
Flash

Modify system
parameter

A

B

C

D

IRQ entry

IRQ exit

Restore default
parameter settings

Yes

Yes

Yes No

AN1828

24 MOTOROLA

Application Note

Figure 5 Smart cable process flow (Part 2 of 3)

Receive

Valid
S-record

Valid
addresses

S9
record

S-record

No

Yes

No

Yes

A

Transmit S-record
via CAN protocol

Initialise CAN
module

No
A

Transmit
execute command

Wait for connection
established message

Connection
established

B

A

C

A A

Yes

Transmit
erase command

Wait for status
message

Display
Status

Yes

No

AN1828

MOTOROLA 25

A ‘smart cable’ to interface between a PC and the target ECM

The smart cable receives either commands or S-Records from the PC,
each command is processed and the appropriate action taken. On
receiving an S-Record, the cable validates and performs a range check,
based on the target MCU specified, and if appropriate translates it into a
suitable CAN format for communication to the target ECU.

The actual features included on the smart cable can be modified to suit
the individual needs of each system. It could be used to supply the
programming voltage, when appropriate, it could be optimized for speed
(e.g. parallel communication), provide an additional level of security or
include some diagnostic capabilities.

Figure 5 Smart cable process flow (Part 3 of 3)

Receive

Valid
S-record

Valid
addresses

S9
record

S-record

No

Yes

No

Yes

A

Transmit S-record
via CAN protocol

No
A

D

Transmit
program command

Wait for status
message

Connection
established

Yes
A

A
Valid
status

No Yes

Yes

A
No

AN1828

26 MOTOROLA

Application Note

7 An API capable of transferring data to the ‘smart cable’

The actual requirements for this part of the system are dependent upon
the approach taken in the previous section, by developing the 'smart
cable' concept the minimal requirements for the API are greatly
simplified.

The prototype smart cable was designed to accept either S-Records or
ASCII text strings via a serial interface. To successfully process a stream
of S-Records, the cable transmits a pace character to inform the API it
is ready to receive new data.

A terminal emulator, that supports the pace character flow control
method, provides all the necessary functionality required when using the
prototype system.

Developing a custom API could be used to provide additional features,
simplify the user interface or improve the overall look of the product.

8 Additional information

The Flash programming algorithm shown in section 5 utilizes a very
simple data transfer scheme, it receives and stores data from a single
S-Record into a ram buffer, the buffer data is then used to program the
Flash array before a request for new data is issued. Using this method
results in an overall operating time equal to total transmission time plus
total programming time.

The following example provides a comparison of programming time
versus transmission time and makes the following assumptions:

• Assume the command byte is encoded into the CAN ID, allowing
transmission of up to 8 data bytes per CAN message

• CAN transmission at 125Kbits/s, using extended ID’s and ignoring
bit stuffing
– Buffer reset command (0 data bytes / 64 bits) takes 0.512

milliseconds
– Load buffer command (8 data bytes / 128 bits) takes 1.024

milliseconds
– Program buffer command (4 data bytes / 96 bits) takes 0.768

milliseconds

AN1828

MOTOROLA 27

Additional information

• Each S-Record contains 32 bytes of data requiring
– One buffer reset command
– Four load buffer commands
– One program buffer command

• Require to program all 32,768 bytes of the MC68HC912BC32
– 1024 S-Records needed in total

Therefore,

Total transmission time = 1,024 x (0.512 + (4 x 1.024) + 0.768) msecs
= 5.505 seconds

By assuming the average number of programming and margin pulses to
be 5 in total, a programming pulse of 25 microseconds and a time to
verify of 15 microseconds,

Total programming time = 32,768 x (5 x (25 + 15)) usecs
= 6.554 seconds

At first glance, an overall operating time of approximately 12 seconds
might be considered acceptable, but if the target device is changed to an
MC68HC912DG128, the total time jumps to nearly 50 seconds. Another
consideration, although not part of the subject matter of this paper, is the
possibility that another, slower, serial protocol could be used to transfer
data, such as J1850 or a UART based system. With transmission rates
dropping as low as 10 Kbits/s, suddenly transmission time becomes the
biggest influence on the overall operating time.

The benefits to be gained by optimizing programming algorithms for
speed vary from convenience, during the development cycle, to cost
savings in a production environment. There are several techniques that
can be used to reduce operating time, with varying degrees of success,
i.e. using the CAN identifier to encode an additional three bytes of data
reduces the number load buffer commands from 4096 to 2979, saving
over a second in the previous example.

However the biggest return in time saving comes about through the
adoption of a parallel programming algorithm, i.e. data is continually
received into a circular buffer whilst programming is carried out
simultaneously from the same buffer.

When employing this method care has to be taken to avoid an over run
condition between the load and program operations, but in return the
overall operating time should be limited to the larger of the two values,
total transmission time or total programming time.

AN1828/D

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed:

 Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or
1-303-675-2140. Customer Focus Center, 1-800-521-6274

JAPAN:

 Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 03-5487-8488

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848

HOME PAGE:

 http://motorola.com/sps/
Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 1999

9 Conclusion

By including the CAN LRAE feature to a system specification, the
potential benefits that can be gained outweighs the effort required in
meeting that specification.

However, care should be taken when identifying the exact system
requirements, as the LRAE function provides the backbone that
defines each system's limitations.

It is also apparent that a great deal of flexibility exists when defining
the additional tools required to support this application. By
developing custom hardware it is possible to significantly reduce the
work involved in producing a suitable API, whereas selecting a
readily available piece of hardware increases the work required on
the API. This flexibility enables designers to develop a system best
suited to the available skill set at their disposal.

By designing the LRAE routine to be compatible with one of the
existing CAN standards, such as CCP, it may be possible to
purchase a commercially available product, capable of providing
both the smart cable and API functionality. Although this approach
only requires the development of the LRAE section, it restricts the
amount of customization that could otherwise be achieved.

A basic implementation of the complete system is possible with
surprisingly little effort, with the amount of additional work required
dependent upon the level of customization undertaken to meet the
overall system specification.

