

DMA08RM/AD
Rev. 1.0

DMA08

DIRECT MEMORY ACCESS

REFERENCE MANUAL

C 8H

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

DMA08
Direct Memory Access

Reference Manual
© Motorola, Inc., 1996; All Rights Reserved
N

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Motorola reserves the right to make changes without further notice to any products
herein to improve reliability, function, or design. Motorola does not assume any liability
arising out of the application or use of any product or circuit described herein; neither
does it convey any license under its patent rights nor the rights of others. Motorola
products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur.
Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,
damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part.

Motorola and the Motorola logo are registered trademarks of Motorola, Inc.

Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

List of Sections
Introduction . 17

Overview and Features . 21

DMA Module Description . 25

DMA Transfers . 35

DMA Registers . 49

DMA Application Examples . 67

DMA Module . 105

DMA08 Version B . 109

Glossary . 111

Index . 125
DMA08 Reference Manual — Rev. 1.0
MOTOROLA List of Sections 5

List of Sections
DMA08 Reference Manual — Rev. 1.0

6 List of Sections
 MOTOROLA

Preface
All M68HC08 microcontrollers are modular, customer-specified designs.
To meet customer requirements, Motorola is constantly designing new
modules and creating new versions of existing modules.

The DMA08 Reference Manual introduces version A of the DMA08, the
direct memory access (DMA) of the Motorola HC08 Family. Version B is
described in Appendix A. Information concerning future versions of the
DMA08 will be included in appendices in later versions of the reference
manual.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Preface 7

Revision History
Revision History

This table summarizes differences between this revision and the
previous revision of this reference manual.

Previous
Revision Original Release

Current
Revision 1.0

Date 08/96

Changes Format and organizational changes

Location Throughout
DMA08 Reference Manual — Rev. 1.0

8 Preface MOTOROLA

Table of Contents
Introduction
Contents .17

Introduction .17

The DMA08 Module .20

Overview and Features
Contents .21

Introduction .21

Features .23

DMA Module Description
Contents .25

Introduction .26

Source and Destination Base Addresses .27

Address Extension Module .28

Byte Count .29

Block Length .30

Arithmetic Logic Unit (ALU) .31

DMA Control and Status .31

Memory Stretch .31

Low-Power Modes .32
Wait Mode .32
Stop Mode .32

Breakpoints .33

DMA in Expanded Mode .33
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Table of Contents 9

Table of Contents
DMA Transfers
Contents .35

DMA Operation .36

Transfer Types .37

Cycle-By-Cycle Operation .40
Byte Transfers .40
DMA Activity During a Byte Transfer .41
Word Transfers .42
DMA Activity During a Word Transfer .42

DMA Transfer Latency .44

Example of the DMA Transfer Programming Procedure 44

Address Calculation .46

Bandwidth Control .47

DMA Registers
Contents .49

Introduction .50

DMA Register Latency .51

DMA Module Registers .52
DMA Control Register 1 .52
DMA Status and Control Register .54
DMA Control Register 2 .57

Individual DMA Channel Registers .59
DMA Channel Control Register .59
DMA Source Base Address Registers .62
DMA Destination Base Address Registers63
DMA Block Length Register .64
DMA Byte Count Register .65
DMA08 Reference Manual — Rev. 1.0

10 Table of Contents MOTOROLA

Table of Contents
DMA Application Examples
Contents .67

Introduction .68

Software-Initiated Block Transfer .69
A – Simple, Small Block Transfer 69
B – Flexible, Large Block Transfer .71
Summary .73

DMA Service of Serial Communications .73
A – Transmitting a Buffered Message Using the CPU74
B – Servicing the SCI Transmitter Using the DMA75
Summary .76

DMA Timer Servicing .77
A – Generating a Pseudo Buffered PWM 77
B – Buffering Input Captures for Period Calculation 81
Summary .83

Full Assembler Listings .84
Listing 1 – Fixed Block Length Transfer .84
Listing 2 – Variable Block Length Transfer 86
Listing 3 – SCI Transmitter .90
Listing 4 – SCI Transmitter .92
Listing 5 – Timer Output Compare .94
Listing 6 – PWM Generation .96
Listing 7 – Timer Input Capture .98
Listing 8 – Period Measurement .101

DMA Module
Contents .105

Introduction .106

708XL36 DMA Registers .107

708XL36 DMA Transfer Source Mapping .108

708XL36 Peripheral Interrupt Prioritization .108
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Table of Contents 11

Table of Contents
DMA08 Version B
DMA Version B .109

Glossary
Glossary .111

Index
Index .125
DMA08 Reference Manual — Rev. 1.0

12 Table of Contents MOTOROLA

List of Figures
Figure Title Page

1 Simplified Block Diagram of a System with DMA18

2 Diagram of the MC68HC708XL36 Layout20

3 DMA Module Functional Block Diagram.22

4 DMA Module Functional Block Diagram. 26

5 Address Extension Registers . 28

6 DMA Operation. 30

7 DMA Operation. .36

8 Write-Clearing Interrupts at 100% Bandwidth 39

9 Software-Initiated Transfers/Read-Clearing
Service Request Flags Behavior with 100% Bandwidth .39

10 MCU Bus Activity During a DMA Byte Transfer40

11 MCU Bus Activity During a DMA
Word Transfer (100% Bandwidth)42

12 MCU Bus Activity During a DMA
Word Transfer (50% Bandwidth)42

13 DMA and CPU Use of the IBUS .47

14 DMA Control Register (DC1) .52

15 DMA Status and Control Register (DSC)54

16 DMA Control Register 2 (DC2). .57

17 DMA Channel Control Register (D0C)59

18 DMA Source Base Address Registers (D0SH and D0SL) . .62

19 DMA Destination Base Address
Registers (D0DH and D0DL). .63

20 DMA Block Length Register (D0BL).64

21 DMA Byte Count Register (D0BC) .65
DMA08 Reference Manual — Rev. 1.0
MOTOROLA List of Figures 13

List of Figures
Figure Title Page

22 Minimum PWM High Time .80

23 Diagram of the MC68HC708XL36 Layout106

24 MCU Bus Activity During DMA Byte
and Word Transfers (50% Bandwidth) 110
DMA08 Reference Manual — Rev. 1.0

14 List of Figures
 MOTOROLA

List of Tables
Table Title Page

1 Byte Transfer Activity..41

2 Word Transfer Activity ..43

3 DMA/CPU Bus Bandwidth Sharing...47

4 DMA Transfer Source Selection ...57

5 DMA Channel Control Register ..59

6 DMA Word Transfer..61

7 Relative Performance in Two Block Transfer Methods70

8 Relative Performance in Two Block Transfer Methods72

9 Relative Performance in DMA
and CPU Transfer Methods...76

10 MC68HC708XL36 DMA Registers107

11 DTS Bits ...108

12 MC68HC708XL36 Peripheral
Interrupt Prioritization ..108

13 DMA/CPU Bus Bandwidth
Sharing (DMA08 Version B) ..109
DMA08 Reference Manual — Rev. 1.0

MOTOROLA List of Tables 15

List of Tables
DMA08 Reference Manual — Rev. 1.0

16 List of Tables MOTOROLA

Introduction
Introduction
Contents

Introduction .17

The DMA08 Module .20

Introduction

Direct memory access (DMA) is a method of data transfer whereby large
amounts of information may be stored in and retrieved from memory
and/or buffers without the need for central processing unit (CPU)
intervention. This method is the first example of coprocessing
associated with the HC08 Family; the technique traditionally has been
used in large, complex, multi-chip computer systems to move blocks of
data around the system. Its use in single-chip and embedded control
systems is a more recent development brought about by the demands
for higher performance and ever increasing integration of functions onto
a single silicon chip. The on-chip M68HC08 DMA module (DMA08)
takes two bus cycles to transfer a byte of data and four bus cycles to
transfer a 16-bit word.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Introduction 17

Introduction

r

Figure 1. Simplified Block Diagram of a System with DMA

While the use of DMA techniques was relatively obvious and
straightforward when large amounts of memory were involved, the
usefulness of DMA in an M68HC08 application is, perhaps, less clear.
The DMA exists principally because it works with whole blocks of data,
rather than on a byte-by-byte basis. CPU intervention is, therefore, only
required at block boundaries and not at the end of each byte transfe,
thus providing fast, low-latency servicing of peripheral functions, such as
serial communications interface (SCI) transmit data, serial peripheral
interface (SPI) receive data, etc.

For example: It is highly advantageous (in terms of response time and
software size and complexity) to be able to continually write data to an
SPI communications module with minimal CPU involvement. This
approach can be taken with many peripheral functions, for example,
servicing SPI and SCI modules and supporting a timer with data required
for input capture and output compare functions. The DMA module also
may be used simply to move blocks of memory around, as in the
traditional high-end use (including reordering data). Or it can replace a
CPU interrupt if the service routineis purely a data transfer, that is,
when no data manipulation is involved.

Whether software- or interrupt-driven, data input or output requires
considerable CPU involvement. For example, when data is required by
a peripheral function, the CPU must first fetch the data from memory and

CPU DMA

CONTROL AND STATUS

ADDRESS AND DATA

RAM
PERIPHERAL

1
PERIPHERAL

2

ADDRESS
SPACE

BUS
SWITCHES

NVM
DMA08 Reference Manual — Rev. 1.0

18 Introduction MOTOROLA

Introduction
Introduction
then write it to the appropriate location. Conversely, when a peripheral
signals that it has data to transfer, the CPU must stop what it is doing,
read the data and store it at the correct address. The following tasks
contribute to the CPU interrupt overhead (limiting the overall transfer
rate between the CPU and the peripheral):

• Stacking and unstacking CPU registers

• Loading interrupt vectors

• Loading address pointers

• Reading/writing transfer data

• Incrementing address pointers

• Storing address pointers

• Clearing interrupt flags

• Returning from interrupt

The normal CPU interrupt overhead is 16 cycles. The term “latency” is
used to describe the delay between the request for an action and the
action’s actual start. The DMA operates with a much lower latency than
the CPU and, therefore, can improve system performance.

For a DMA transfer to occur within a system, the DMA subsystem must
take control of the system bus, thus temporarily replacing the CPU as
the bus master. In general terms, there are two basic methods of DMA
operation: cycle stealing and CPU halt. By halting CPU execution, the
DMA has access to the system buses all of the time and, therefore, will
be able to transfer the data in the minimum time (at the expense of any
CPU tasks). In most situations, this method is only really practicable for
transferring small amounts of data. For larger amounts of data, however,
the DMA can be allocated a proportion of the bus bandwidth. This means
that both DMA and CPU effectively process data concurrently by sharing
their use of the bus. The overall DMA transfer rate is thereby reduced,
but CPU tasks continue to progress.

By using the DMA to move data, the load on the CPU is reduced, as is
the amount of executable code required for each move, thus giving
faster response times and more efficient use of the available program
memory space.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Introduction 19

Introduction
The DMA08 Module

The DMA08 is a coprocessor module for the M68HC08 that can take
control of the system address and data buses at any bus cycle
boundary. It is designed to allow the transfer of data between any two
CPU addressable locations with a minimum of latency. Normal interrupt
latency is nine bus cycles, with a total overhead of 16 bus cycles. DMA
transfers (when enabled) can have a latency of only two cycles.

The DMA implementation on the M68HC08 is based on a modular
approach: One or more independent DMA channels may be provided in
a given hardware implementation. Data transfer may be either interrupt-
or software-driven.

The modular design approach means that it is an easy matter to expand
the DMA from one to seven channels. Figure 2 shows the layout of the
708XL36 die and illustrates the common module height and its
advantages. The 708XL36 has three DMA channels; more could be
added by expanding the DMA module horizontally.

Figure 2. Diagram of the MC68HC708XL36 Layout

CPU08
LVI

COP

TIMING
INTERFACE

MODULE

SERIAL
PERIPHERAL
INTERFACE

MODULE

SYSTEM
INTEGRATION

MODULE

CLOCK
GENERATION

MODULE

SERIAL
COMMUNICATIONS

INTERFACE

RANDOM
ACCESS
MEMORY

ELECTRICALLY
PROGRAMMABLE

READ-ONLY MEMORY

INTERNAL BUS (IBUS)

I/O

DMA y

y

x

Note: ‘x’ indicates the direction in which the modules may be expanded; ‘y’ is the standard module height
DMA08 Reference Manual — Rev. 1.0

20 Introduction MOTOROLA

Overview and Features
Overview and Features
Contents

Introduction .21

Features .22

Introduction

The M68HC08 direct memory access module (DMA08) is constructed in
a modular fashion to ensure flexibility and ease of use, while shortening
the design effort required each time a DMA module is specified for a new
device. From one to seven DMA channels may be specified for a
particular implementation; each channel is independent and is enabled
only when required. If the DMA module is not enabled or is enabled but
not active, it does not consume bus cycles.

There are two versions of the DMA08 module. Version A, implemented
in the MC68HC708XL36, is described in the main body of this book.
Version B of the DMA08 operates differently in word mode. Version B is
described in DMA08 Version B on page 109.

In this manual, the modular nature of the DMA is exploited and only one
channel (channel 0) is discussed in detail. For information on precise
register addresses, bit names and positions and channel assignments,
refer to the specific device’s data sheet.

Figure 3 is a simplified representation of the DMA module, showing its
functional blocks as perceived by the user. The system control logic
enables the DMA to select the set of registers for the DMA channel
required, controls the incrementing or decrementing of source and
destination addresses and controls the movement of data within the
DMA module.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Overview and Features 21

Overview and Features
Figure 3. DMA Module Functional Block Diagram

ALU

SYSTEM CONTROL
LOGIC

SYSTEM
CONTROL
& STATUS

REGISTERS

M68HC08 INTERNAL ADDRESS & DATA BUSES (IBUS)

KEY:

BYTE
COUNT

TRANSFER

ADDRESS

TRANSFER

DATA

BUS
SWITCHES

16-BIT DATA PATH; 8-BIT DATA PATH;

CONTROL LINES

MULTIPLE REGISTERS;
ONE FOR EACH
DMA CHANNEL

BLOCK
LENGTH

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

DESTINATION
BASE

ADDRESS

CHAN.
CTRL.

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

CHANNEL
X

REGISTER
DMA08 Reference Manual — Rev. 1.0

22 Overview and Features MOTOROLA

Overview and Features
Features
Features

The following are features of the DMA08:

• Modular and Expandable Architecture; Up to Seven Independent
Channels with Eight Transfer Source Inputs May Be Specified

• Interrupt-Driven Operation Without CPU Intervention

• Data Transfer Rates of up to 4 Mbytes/sec (8 MHz bus); One Byte
Transferred Every Two Bus Cycles

• Low Latency for Data Moves (Two Cycles)

• Separate 16-Bit Source and Destination Addresses

• Byte or Word Transfer Capability

• Single Block or Loop (Repeated Block) Transfer Options

• Programmable Block Length, up to 256 Bytes

• Optional CPU Interrupt Request on Completion of Block Transfer
or on Loop Restart

• Programmable DMA Bus Bandwidth. 25, 50, 67, or 100% of Total
Bus Bandwidth Can Be Allocated to the DMA Module

• Programmable DMA Transfer Priority, DMA Transfers Can Either
Take Priority Over CPU Interrupts, or CPU Interrupts Can Halt the
DMA transfer

• Arbitration of Priorities in Multichannel Implementation

• Automatic Peripheral Flag Clearing During DMA Transfer Mode

• Programmable DMA Enable During Wait Mode

• Memory Stretch Capability For Interfacing to Slow Memory

• Built-in Support for Optional Memory Address Extension Module,
Allowing the DMA to Access up to 16 M Address Space

• Breakpoint Feature Capable of Halting DMA Operation
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Overview and Features 23

Overview and Features
DMA08 Reference Manual — Rev. 1.0

24 Overview and Features MOTOROLA

DMA Module Description
DMA Module Description
Contents

Introduction .26

Source and Destination Base Addresses .27

Address Extension Module .28

Byte Count .29

Block Length .30

Arithmetic Logic Unit (ALU) .31

DMA Control and Status .31

Memory Stretch .31

Low-Power Modes .32
Wait Mode .32
Stop Mode .32

Breakpoints .33

DMA in Expanded Mode .33
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Module Description 25

DMA Module Description
Introduction

Figure 4 shows a simplified representation of the DMA module from a
user’s perspective. As shown in Figure 4 , all the registers may be both
read and written by the CPU. The system control logic enables the DMA
to select the set of registers for the required DMA channel, controls the
incrementing or decrementing of source and destination addresses, and
controls the movement of data within the DMA module. DMA access to
the M68HC08 bus and the ratio of DMA to CPU cycles is also controlled.

The function of each of the blocks is discussed in the following
paragraphs. How to program a DMA transfer is covered in DMA
Transfers on page 35 and details of the registers are given in DMA
Registers on page 49.

Figure 4. DMA Module Functional Block Diagram

ALU

SYSTEM CONTROL
LOGIC

SYSTEM
CONTROL
& STATUS

REGISTERS

M68HC08 INTERNAL ADDRESS & DATA BUSES (IBUS)

KEY:

BYTE
COUNT

TRANSFER

ADDRESS

TRANSFER

DATA

BUS
SWITCHES

16-BIT DATA PATH; 8-BIT DATA PATH;

CONTROL LINES

MULTIPLE REGISTERS;
ONE FOR EACH
DMA CHANNEL

BLOCK
LENGTH

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

DESTINATION
BASE

ADDRESS

CHAN.
CTRL

SOURCE
BASE

ADDRESS

SOURCE
BASE

ADDRESS

CHANNEL
X

REGISTER
DMA08 Reference Manual — Rev. 1.0

26 DMA Module Description MOTOROLA

DMA Module Description
Source and Destination Base Addresses
Source and Destination Base Addresses

Each channel has a 16-bit source base and a 16-bit destination base
address register. These registers are used to contain the base of
addresses for the data transfer process. The CPU writes the desired
addresses to these registers before the DMA transfer starts. Writing to
any of these locations clears the byte count register.

The state of these registers on reset is undefined. See DMA Source
Base Address Registers on page 62 and DMA Destination Base
Address Registers on page 63 for details.

NOTE: Source base and destination base registers are unchanged by the
transfer process. It is not advisable to write to these registers while
transfers on the corresponding channel are enabled.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Module Description 27

DMA Module Description
Address Extension Module

Support for this optional HC08 Family module is built into the DMA. By
programming and using the 8-bit DMA source base and destination base
extension registers provided in the address extension module (ADX), the
DMA has the capability to access up to 16 M of address space. In the
ADX module, each channel has a separate source base and destination
base address extension register pair.

Figure 5. Address Extension Registers

When the address extension capability is used, the DMA addresses are
formed by concatenating the source base (or destination base) address
register and the relevant address extension register to form the complete
address. The address extension register provides the most significant
bits of the address. The DMA operation has no other change.

DMAXS0

7 0

SOURCE BASE ADDRESSEXTENSION

DESTINATION BASE ADDRESSEXTENSION

23 0

EXTENDED SOURCE BASE ADDRESS

23 0

EXTENDED DESTINATION BASE ADDRESS

fi

fiD0SH

7 0

D0SL

7 0

DMAXD0

7 0

D0DH

7 0

D0DL

7 0
DMA08 Reference Manual — Rev. 1.0

28 DMA Module Description MOTOROLA

DMA Module Description
Byte Count
Byte Count

The byte count register is usually written to by the arithmetic logic unit
(ALU) of the DMA, although it is also accessible by the CPU. In normal
operation, the ALU increments the byte count register after every byte
that is transferred. See DMA Byte Count Register on page 65 for details.

This register is cleared:

• by reset

• at the end of a byte transfer, when its contents match those of the
block length register

• when either the source base or destination base registers are
written

• by writing zero to it
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Module Description 29

DMA Module Description
Block Length

The block length register is used to define the number of bytes to be
moved in a particular transfer operation. Prior to the start of a transfer,
the block length register should be written by the CPU.

When the content of the byte count register, which gets incremented by
one with each byte transferred, matches that of the block length register,
the current transfer is complete. Subsequent action depends on the
state of the loop bit; either the transfer restarts or control reverts to the
CPU.

The state of this register on reset is undefined. See DMA Block Length
Register on page 64.

NOTE: A block length of zero results in a block transfer of 256 bytes.

Figure 6. DMA Operation

SOURCE

DESTINATION

DMA
CONTROL
& STATUS

ADD/SUB

ALU

DESTINATION BASE ADDRESS

TRANSFER ADDRESS

SOURCE BASE ADDRESS

BYTE COUNT

BLOCK LENGTH

=? TRANSFER DATA

IBUS+1

CLEAR

CPU
CONTROL

AIN

BIN

NOP (ADD 0)
DMA08 Reference Manual — Rev. 1.0

30 DMA Module Description MOTOROLA

DMA Module Description
Arithmetic Logic Unit (ALU)
Arithmetic Logic Unit (ALU)

The ALU is used for calculation of the actual source and destination
transfer addresses and for incrementing the byte count register. The
ALU is a 16-bit subsystem and therefore can operate on the 16-bit
source and destination address registers in a single cycle.

Under the direction of the system control logic, the DMA combines the
content of the source (or destination) base address register with that of
the byte count register to form a transfer source (or destination) address.
This address is stored in the temporary address register and is output on
the internal bus (IBUS) at the appropriate time.

DMA Control and Status

The operation of the DMA module is defined and monitored by two
groups of registers: one group controls the entire DMA module and the
other group is specific to the individual DMA channel. See DMA Module
Registers on page 52 and DMA Channel Control Register on page 59 for
details.

Memory Stretch

For slow, off-chip or on-chip peripherals that require extra bus cycles,
the DMA can stretch the address phase of the bus cycle by an integer
number of bus cycles. When this operation is required, a stretch signal
is supplied to the DMA module for the number of bus cycles that the
address needs to operate correctly.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Module Description 31

DMA Module Description
Low-Power Modes

The CPU08 WAIT and STOP instructions put the MCU in low-power
consumption standby modes. The effect on DMA operation is explained
in the following paragraphs.

Wait Mode The DMA wait enable bit (DMAWE) controls the activity of the DMA in
wait mode.

• DMAWE set. The DMA can execute a transfer during wait mode,
whenever it receives a valid DMA service request. If a CPU WAIT
instruction is executed during a transfer, the transfer will continue
until completion.

• DMAWE clear. The DMA cannot respond to service requests in
wait mode. If a CPU WAIT instruction is executed during a
transfer, the transfer will be suspended and will resume when the
processor exits wait mode.

Stop Mode The DMA module is inactive during stop mode. A STOP instruction
suspends any DMA transfer in progress. If an external interrupt brings
the MCU out of stop mode, the suspended DMA transfer resumes. If a
reset brings the MCU out of stop mode, the transfer is aborted.
DMA08 Reference Manual — Rev. 1.0

32 DMA Module Description
 MOTOROLA

DMA Module Description
Breakpoints
Breakpoints

If an address match occurs on a DMA address, then the BREAK state is
not entered until the end of the current CPU instruction. Thus, a DMA
transfer cannot be aborted due to a match on a DMA address
comparison with one exception. A DMA transfer can be aborted if a DMA
transfer is pending after the BREAK state has been entered from an
address match on the previous CPU instruction.

DMA in Expanded Mode

The DMA can be used to access external resources. The control of
access to these devices is normally done via an EBI (external bus
interface) module. In general, if the CPU can address these external
components, so can the DMA.
DMA08 Reference Manual — Rev. 1.0
MOTOROLA DMA Module Description 33

DMA Module Description
DMA08 Reference Manual — Rev. 1.0

34 DMA Module Description
 MOTOROLA

DMA Transfers
DMA Transfers
Contents

DMA Operation .36

Transfer Types .37

Cycle-By-Cycle Operation .40
Byte Transfers .40
DMA Activity During a Byte Transfer .41
Word Transfers .42
DMA Activity During a Word Transfer .42

DMA Transfer Latency .44

Example of the DMA Transfer Programming Procedure 44

Address Calculation .46

Bandwidth Control .47
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Transfers 35

DMA Transfers
DMA Operation

To transfer a byte of data, the DMA first uses the contents of the source
base address register and the byte count register (according to the
instructions in the control registers) to generate a transfer source
address. The DMA then takes control of the IBUS to read a byte of data
from the source location at the transfer source address into a temporary
register in the DMA. The transfer destination address is then generated
in the same manner and the data byte is written to this destination
address.

NOTE: All DMA registers may be read from or written to at any time by the CPU
or by the DMA module. Accessing these registers during a transfer can
increase transfer latency. See DMA Transfer Latency on page 44.

Figure 7. DMA Operation

SOURCE

DESTINATION

DMA
CONTROL
& STATUS

ADD/SUB

ALU

TRANSFER ADDRESS

SOURCE BASE ADDRESS

BYTE COUNT

BLOCK LENGTH

=? TRANSFER DATA

IBUS+1

CLEAR

CPU
CONTROL

AIN

BIN

NOP (ADD 0)

DESTINATION BASE ADDRESS
DMA08 Reference Manual — Rev. 1.0

36 DMA Transfers MOTOROLA

DMA Transfers
Transfer Types
Transfer Types

The DMA module supports two main types of transfer: hardware
interrupt-driven and software-initiated.

Hardware interrupt-driven transfers may be initiated by one of the MCU
peripheral subsystems, for example, SCI, SPI, timer, A/D, etc. In this
type of transfer, one or more of the system’s peripherals is configured to
generate a request for DMA transfer. (This configuration is by means of
a read/write bit in one of the peripheral’s control registers.) The DMA
service request is passed to the DMA channel, assuming that this
transfer source has been allocated to the channel. The DMA module
then arbitrates between the channels, where necessary, and begins the
highest priority transfer by halting the CPU clocks and taking control of
the IBUS. The relative channel priority increases as the DMA channel
number decreases. This means that channel 0 has the highest priority,
channel 1 the next highest, and so on. Depending on the state of the
DMAP bit, CPU interrupts from other modules may be recognized within
a block transfer and the transfer is suspended as a consequence. The
transfer will then resume only if the transfer enable bit for the channel is
set again. See DMA Status and Control Register on page 54 for further
information on the operation of the DMAP bit.

Software-initiated transfers are similar in operation to those that are
hardware interrupt-driven. The major difference is that software-initiated
transfers are started by setting a bit in the DMA control register (DC2),
whereas hardware-initiated transfers are started by a peripheral module
setting a flag bit. Software-initiated transfers may be used to initiate a
DMA data block transfer. As before, whichever transfer source bit is
used to initiate the transfer must have been assigned to an enabled DMA
channel.

Interrupt-driven DMA transfers automatically clear the peripheral’s DMA
flag bit as the DMA reads or writes specific registers within the
peripheral. The user must take special care with registers that are
“write-cleared” with DMA bus bandwidths of 100%. Under these
conditions the number of CPU cycles between one channel finishing and
another starting can vary depending on when the interrupt was cleared.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Transfers 37

DMA Transfers
Figure 12 (a) shows a standard 100% bandwidth write-clearing transfer.
The DMA08 is not cleared for the next transfer, which is subsequently
aborted, until after the write to the destination. The DMA, therefore,
issues an unused source read.

Figure 12 (b), Figure 12 (c), and Figure 12 (d) show how the DMA
operation is affected under different circumstances.

Software-initiated transfers and read-clearing interrupts have DMA
behavior as shown in Figure 9 .
DMA08 Reference Manual — Rev. 1.0

38 DMA Transfers MOTOROLA

DMA Transfers
Transfer Types
Figure 8. Write-Clearing Interrupts at 100% Bandwidth

Figure 9. Software-Initiated Transfers/Read-Clearing Service Request
Flags Behavior with 100% Bandwidth

ADDRESS

DATA

ADDRESS

DATA

CHX (LOWER PRIORITY) CHY (HIGHER PRIORITY)

DEST.

DEST.

SOURCE DEST.

SOURCE DEST.

SOURCE DEST.

SOURCE DEST.

SOURCE

(a) Standard 100% Bandwidth with Write-Clearing DMA
Interrupt Flag

(b) Write-Clearing with Higher Priority Service Request Pending

DMA
 CLOCK

SOURCESOURCE

SOURCE

ADDRESS

DATA

CHX (HIGHER PRIORITY) CHY (LOWER PRIORITY)

SOURCE DEST.

SOURCE DEST.

SOURCE DEST.

SOURCE DEST.SOURCE

SOURCE

(c) Write-Clearing with Lower Priority Service Request Pending

ADDRESS

DATA

CHX (LAST OF BLOCK) CHY (NEXT CHANNEL)

SOURCE DEST.

SOURCE DEST.

SOURCE DEST.

SOURCE DEST.

(d) Write-Clearing with Last Transfer of the Block

DMA CONTROLLED BUS CYCLE CPU CONTROLLED BUS CYCLE

DMA

ADDRESS

DATA

DMA LATENCY

 CLOCK

CHX (FINISHED)

SOURCE DEST.

SOURCE DEST.

SOURCE DEST.

SOURCE DEST.

CHY (STARTING)
MOTOROLA
DMA08 Reference Manual — Rev. 1.0

DMA Transfers 39

DMA Transfers
Cycle-By-Cycle Operation

When the DMA transfers data, it takes control of the address bus, data
bus and read/write (R/W) line. During the transfer, the DMA instructs the
system integration module (SIM) to suspend the CPU clock; the state of
the CPU, therefore, remains unchanged until the end of the transfer
when the DMA relinquishes control of the buses and R/W line to the
CPU. The CPU then resumes operation as though nothing had
happened.

The DMA uses two bus cycles to transfer a byte and four cycles to
transfer a 16-bit word. A two cycle latency allows the DMA to respond to
an interrupt. During these two cycles normal CPU operation continues.
Selection of the transfer mode is via the byte-word control (BWC) bit in
the channel control register. The actions of the DMA for byte and word
transfer modes, respectively, are discussed in the following paragraphs.

NOTE: During a DMA transfer, any CPU interrupts can be recognized at the end
of a byte/word transfer. See DMA Module Registers on page 52.

Byte Transfers Figure 10 shows the timing of a single-byte DMA transfer, with reference
to the DMA clock, which is twice the bus frequency.

Figure 10. MCU Bus Activity During a DMA Byte Transfer

STATE

DMA

ADDRESS

1 2 3 4 5 6 7 8 9 10

DATA

DMA CONTROLLED BUS CYCLE CPU CONTROLLED BUS CYCLE

DMA LATENCY

CLOCK
DMA08 Reference Manual — Rev. 1.0

40 DMA Transfers MOTOROLA

DMA Transfers
Cycle-By-Cycle Operation
DMA Activity
During a Byte
Transfer

An explanation of principal DMA actions during each state is given in
Table 1 . The numbers refer to the state numbers shown in Figure 10 .

Table 1. Byte Transfer Activity

State Operation

1 Service request occurs (software or hardware)

2 Arbitrates channel priorities and activates a channel

3 Generates internal control signals

4
Calculates the source address

Stores the source address in a temporary register

5

Takes control of the address bus

Drives the source address onto the address bus

Takes control of the R/W line and drives it high

Calculates the destination address

Stores the destination address in a temporary register

6

Takes control of the data bus

Latches source data in a temporary register

Increments the byte count register

7

Drives the destination address onto the address bus

Drives the R/W line low

Subtracts the byte count register from the block length register.
If the result is zero, the channel enable bit is cleared.
Interrupts the CPU if the interrupt enable (IE) bit is set

8 Drives the source data onto the data bus

9 Releases the address bus and R/W to the CPU

10 Relinquishes the data bus to the CPU
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Transfers 41

DMA Transfers
Word Transfers A word transfer occurs when the source and/or destination is set to static
and the relevant BWC bit is set. Figure 12 shows the timing of a 16-bit
word DMA transfer, with reference to the DMA clock, which is at twice
the bus frequency.

Figure 11. MCU Bus Activity During a DMA
Word Transfer (100% Bandwidth)

Figure 12. MCU Bus Activity During a DMA
Word Transfer (50% Bandwidth)

DMA Activity
During a Word
Transfer

An explanation of principal DMA actions during each state is given in
Table 2 . The numbers refer to the state numbers shown in Figure 12 ,
that is, at 100% bandwidth.

STATE

DMA

ADDRESS

1 4 5 7 9 11 13 152 3 6 8 10 12 14 16

DATA

DMA CONTROLLED BUS CYCLE CPU CONTROLLED BUS CYCLE

DMA LATENCY

 CLOCK

17 18 19

STATE

DMA

ADDRESS

1 4 5 72 3 6 8

DATA

DMA CONTROLLED BUS CYCLE CPU CONTROLLED BUS CYCLE

DMA LATENCY

 CLOCK

9 11 13 1510 12 14
DMA08 Reference Manual — Rev. 1.0

42 DMA Transfers MOTOROLA

DMA Transfers
Cycle-By-Cycle Operation
Table 2. Word Transfer Activity

State Operation

1 Service request occurs (software or hardware)

2 Arbitrates channel priorities and activates a channel

3 Generates internal control signals

4 Calculates the source address and stores it in a temporary register

5

Takes control of the address bus

Drives the source address onto the address bus

Takes control of the R/W line and drives it high

Calculates the destination address

Stores the destination address in a temporary register

6

Takes control of the data bus

Latches source data in a temporary register

Increments the byte count register

7

Drives the destination address onto the address bus

Drives the R/W line low

Subtracts the byte count register from the block length register

8

Drives the source data onto the data bus

Calculates the source address for the second byte

Stores the source address in a temporary register

9

Drives the source address for the second byte onto the address bus

Drives the R/W line high

Calculates the destination address for the second byte

Stores the destination address in a temporary register

10
Latches source data into a temporary register

Increments the byte count register

11

Drives the destination address for the second byte onto the address
bus

Drives the R/W line low

Subtracts the byte count register from the block length register. If the
result is zero, the channel enable bit is cleared. Interrupts the CPU if
the interrupt enable (IE) bit set.

12 Drives the source data for the second byte onto the data bus

13 Releases the address bus and R/W to the CPU

14 Relinquishes the data bus to the CPU
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Transfers 43

DMA Transfers
DMA Transfer Latency

DMA transfer latency is usually two bus cycles, but it can be extended to
three if a read/write to a DMA channel register is taking place during the
last of these two cycles. The access does not have to be to the active
channel to increase latency. Applications that use multiple DMA
channels may have to allow for a 3-cycle latency in performance
calculations.

For comparison, the interrupt latency of the CPU is nine bus cycles.

Example of the DMA Transfer Programming Procedure

The following procedure illustrates the required sequence of actions to
program a DMA transfer. In all DMA channels, the operation and the
register structure are identical, so only channel 0 will be described here:

1. Turn off channel if previously enabled.

2. Write the source base address to source base address registers
(D0SH and D0SL).

3. Write the destination base address to destination base address
registers (D0DH and D0DL).

4. In the DMA channel control register (D0C):

a. Select increment/decrement/remain static for the source base
addresses and for the destination base addresses.

b. Select byte/word (takes effect only if source and/or destination
base address calculation is set to static).

c. Assign the DMA channel to a DMA transfer source input.

5. In the DMA channel block length register (D0BL), enter the
number of bytes to be transferred.

NOTE: Because each word equals two bytes, the block length should always be
an even number for word transfers.
DMA08 Reference Manual — Rev. 1.0

44 DMA Transfers MOTOROLA

DMA Transfers
Example of the DMA Transfer Programming Procedure
6. In the DMA status and control register (DSC):

a. Enable or disable looping of the source and destination
addresses for the channel.

b. Select DMA transfers priority.

c. Enable or disable DMA transfer operation during wait mode.

7. To control the DMA transfer with software, set the SWIx bit in DMA
control register 2 (DC2) that corresponds to the selected transfer
source input. The transfer will begin two cycles after the channel
is enabled.

8. For a hardware interrupt-driven transfer, the transfer begins two
cycles after the selected peripheral generates a DMA service
request, providing the DMA channel is enabled.

d. In DMA control register (DC1):

a. Enable or disable CPU interrupt request generation on
completion of DMA transfer.

b. Select the DMA bandwidth.

c. Enable the DMA channel.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Transfers 45

DMA Transfers
Address Calculation

The arithmetic logic unit (ALU) is a 16-bit subsystem that can calculate
the 16-bit source and destination addresses in one cycle. During a DMA
transfer, the ALU performs the following actions:

• Calculates the transfer source and transfer destination addresses

• Increments the byte count register for each byte transferred

• Determines when a block or loop transfer is complete by
comparing the content of the byte count register with the value
programmed into the block length register

The DMA source base address registers and destination base address
registers contain the base addresses for a DMA transfer. The ALU uses
these address registers as base pointers when it starts the transfer. The
byte count register contains the number of bytes transferred to this point
in the current DMA operation. The ALU uses the base address registers
and the byte count register to calculate the actual source and destination
addresses in the following manner:

• When an address is configured to increment, the ALU adds the
contents of the byte count register to the base address.

• When an address is configured to decrement, the ALU subtracts
the contents of the byte count register from the base address.

• When an address is configured to remain static, the ALU simply
uses the base address (for example, it adds $0000 to the base
address).

The DMA module can be programmed to stop after a number of bytes is
transferred (block mode) or to loop back to the base addresses and
continue the transfer (loop mode).

Figure 7 shows schematically how the DMA module calculates source
and destination addresses.
DMA08 Reference Manual — Rev. 1.0

46 DMA Transfers MOTOROLA

DMA Transfers
Bandwidth Control
Bandwidth Control

The bandwidth control bits in DMA control register 1 are used to
apportion the available MCU bus cycles between the DMA and the CPU.
By setting these two bits, it is possible to assign the DMA either 25, 50,
67, or 100% of the bus cycles. See DMA Control Register 1 on page 52
for information on setting the bus bandwidth bits. Together with the
DMAP bit, the bus bandwidth bits control the relative priorities of the
DMA and the CPU.

Figure 13. DMA and CPU Use of the IBUS

NOTE: Bus activity looks the same for both byte and word modes.

NOTE: Regardless of the bandwidth setting, the DMA only consumes bus
cycles during a transfer.

Table 3. DMA/CPU Bus Bandwidth Sharing

BB1:BB0

DMA/CPU Bus Bandwidth Sharing

Ratio
(DMA/CPU) DMA:CPU cycles

00 25/75% 2:6

01 50/50% 2:2

10 67/33% 2:1

11 100/0% The DMA controls the bus for as long as required.

IBUS CYCLE # 0 2 3 4 5 6 71 8

25 : 75

50 : 50

67 : 33

100 : 0

9

† THE CPU WILL ALWAYS GET AT LEAST ONE CYCLE EVERY TIME A CHANNEL STARTS A TRANSFER.

†

DMA CONTROLLED BUS CYCLE CPU CONTROLLED BUS CYCLE

DMA : CPU
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Transfers 47

DMA Transfers
When the bus bandwidth is set to 25%, two out of every eight bus cycles
are available for DMA transfers. Similarly, for 50% and 67%, the ratios
are two out of four and two out of three, respectively. This also applies
in word transfer mode. (See DMA Control Register 1 on page 52 for
more information.) When 100% is selected, the DMA is allocated every
available bus cycle.

NOTE: The CPU always executes at least one cycle before the next DMA loop
begins, even if the DMA has been allocated 100% of the bus bandwidth.
This ensures that it is impossible to lock out the CPU completely through
inadvertently programming an endless DMA transfer.

Clearly, since there is only one system bus for addressing memory,
sharing it with the DMA means that the performance of the CPU will be
affected. When deciding on the bus allocation, care needs to be taken to
understand the size and frequency of the expected DMA transfers, so
that an appropriate share of the common bus resource is chosen. For a
small and relatively infrequent transfer, it may be appropriate to give the
DMA 100% of the bus to ensure that the transfers occur as quickly as
possible. However, where large or frequent transfers are concerned, due
consideration must be given to the needs of the main CPU routines.
Further caution is required when DMA transfers are given priority over
CPU interrupts (by setting the DMAP bit) and the DMA is given 100% of
the bus bandwidth. For example:

1. When CPU interrupts have priority (DMAP bit = 0):

a. The CPU will have access to those bus cycles not allocated to
DMA.

b. Any CPU interrupt will suspend any current DMA transfer at
the end of the byte or word transfer in progress. All channel
enable bits are cleared. DMA operation will resume only when
a channel is specifically re-enabled.

2. When DMA transfers have priority:

a. The CPU will have access to those bus cycles not allocated to
DMA.

b. CPU interrupts will not be recognized until all current DMA
activity is complete.
DMA08 Reference Manual — Rev. 1.0

48 DMA Transfers MOTOROLA

DMA Registers
DMA Registers
Contents

Introduction .50

DMA Register Latency .51

DMA Module Registers .52
DMA Control Register 1 .52
DMA Status and Control Register .54
DMA Control Register 2 .57

Individual DMA Channel Registers .59
DMA Channel Control Register .59
DMA Source Base Address Registers .62
DMA Destination Base Address Registers63
DMA Block Length Register .64
DMA Byte Count Register .65
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Registers 49

DMA Registers
Introduction

The M68HC08 DMA module may be implemented on silicon with one to
seven independent DMA channels. Since the operation of each channel
is identical, only channel 0 is described here.

In addition to the general control registers that control the operation of
the entire DMA module, each channel requires seven 8-bit registers to
define the details of its own operation. Four of these registers are
concatenated into the two 16-bit source base and destination base
address registers; the others are used for individual channel control, for
specifying the size of the transfer block and for counting the number of
bytes transferred.

NOTE: Shaded bits are reserved for additional DMA channels. For the
maximum number of channels, registers DC1A and DSCA are required.
The extra TECx, IECx, Lx, and IFCx bits for each channel are added.

Reference should be made to the specific device data sheet for details
of the number of channels, register addresses, and bit names.

Register name Adress Bit 7 6 5 4 3 2 1 Bit 0

DMA control 1 (DC1) $xxxx BB1 BB0 TEC0 IEC0

DMA status and control (DSC) $xxxx DMAP L0 DMAWE IFC0

DMA control 2 (DC2) $xxxx SWI7 SWI6 SWI5 SWI4 SWI3 SWI2 SWI1 SWI0

Channel 0 register name Address Bit 7 6 5 4 3 2 1 Bit 0

Source base address (D0SH) $xxxx AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8

Source base address (D0SL) $xxxx+1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Destination base address (D0DH) $xxxx AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8

Destination base address (D0DL) $xxxx+1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Control (D0C) $xxxx SDC3 SDC2 SDC1 SDC0 BWC DTS2 DTS1 DTS0

Block length (D0BL) $xxxx+1 BL7 BL6 BL5 BL4 BL3 BL2 BL1 BL0

Byte count (D0BC) $xxxx BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0
DMA08 Reference Manual — Rev. 1.0

50 DMA Registers MOTOROLA

DMA Registers
DMA Register Latency
DMA Register Latency

The following registers control and monitor operation of the channel of
the DMA module:

• DMA control register 1 (DC1)

• DMA status and control register (DSC)

• DMA control register 2 (DC2)

NOTE: The operation of a single channel is described throughout this manual
for consistency.

DC1, DSC, and DC2 can be read/written during a DMA transfer with no
affect on DMA latency.

The following registers control operation of an individual DMA channel.
(Each channel has an identical set of these registers.)

• DMA channel 0 source base address register, high and low byte
(D0SH:D0SL)

• DMA channel 0 destination base address register, high and low
byte (D0DH:D0DL)

• DMA channel 0 control register (D0C)

• DMA channel 0 block length register (D0BL)

• DMA channel 0 byte count register (D0BC)

Writing to any of these registers during the cycle prior to a transfer can
add one cycle to DMA latency.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Registers 51

DMA Registers
DMA Module Registers

The following registers affect all the DMA channels.

DMA Control
Register 1

DMA control register 1 (DC1) is used to enable individual channels to
transfer data, to enable DMA interrupts to the CPU, and to allocate the
amount of the total bus bandwidth that the DMA can use.

BB1:BB0 — Bus bandwidth control bits

These read/write bits control the ratio of DMA to CPU bus activity. The
DMA can be allocated 25%, 50%, 67%, or 100% of the total bus
bandwidth, with the CPU taking the remaining cycles. After a DMA
transfer, the next transfer is inhibited until the required number of
cycles has been executed by the CPU. See Figure 7 on page 36 and
Figure 13 on page 47.

For DMA transfers of a few bytes, giving the DMA module 100% of the
bus bandwidth may be appropriate. However, for large,
software-initiated transfers, limiting the bus bandwidth of the DMA
module may be necessary to maintain an acceptable level of CPU
activity.

DC1 $xxxx

Bit 7 6 5 4 3 2 1 Bit 0

Read:
BB1 BB0 TEC0 IEC0

Write:

Reset: 0 0 0 0 0 0 0 0

= Reserved

Figure 14. DMA Control Register (DC1)
DMA08 Reference Manual — Rev. 1.0

52 DMA Registers MOTOROLA

DMA Registers
DMA Module Registers
TEC0 — Transfer enable (channel 0)

This read/write bit enables channel 0 to take control of the M68HC08
data and address buses two cycles after a valid request for DMA
transfer occurs.

1 = DMA channel 0 enabled.
0 = DMA channel 0 disabled.

This bit is cleared on completion of a block transfer if looping is disabled.
(See DMA Status and Control Register on page 54.)

NOTE: A CPU interrupt request (if recognized) will disable all DMA channels by
clearing the transfer enable control (TECx) bit for each channel if
DMAP = 0.

IEC0 — CPU interrupt enable (channel 0)

This read/write bit enables channel 0 to generate a CPU interrupt
when the interrupt flag IFC0 becomes set.

1 = DMA interrupt to the CPU enabled (channel 0)
0 = DMA interrupt to the CPU disabled (channel 0)
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Registers 53

DMA Registers
DMA Status and
Control Register

The DMA status and control register contains a flag that indicates the
completion of DMA block transfer. It also controls the DMA loopback
facility and the priority of DMA transfers with respect to CPU interrupts.
One bit is used to enable DMA operation during wait mode.

DMAP — DMA priority

This read/write bit controls the priority of DMA module transfers with
respect to CPU interrupt requests.

1 = DMA has priority.
DMA activity cannot be interrupted by the CPU. CPU interrupts
are recognized only after the DMA releases the internal bus.

0 = CPU has priority.
CPU interrupts are recognized at the end of the current byte or
word transfer.

When DMAP = 1, CPU interrupts are recognized only after the DMA
module releases the internal bus. In this case, the increase in CPU
interrupt latency depends on the size of the block and the state of the
bus bandwidth bits, BB0:BB1. For example, for a 256-byte block
transfer with a 100% bandwidth, the worst case latency is 512 cycles.
This is only true if the DMA request is permanently asserted, as is the
case with a software-initiated transfer. A hardware-initiated transfer
will continue to transfer bytes or words until the request bit is cleared.
This is normally done by reading or writing to a data register of the
module that made the request. In situations where the DMA does not
have 100% of the bus bandwidth, CPU interrupts will be serviced
during the CPU-controlled bus cycles.

DSC $xxxx

Bit 7 6 5 4 3 2 1 Bit 0

Read:
DMAP LO DMAWE IFCO

Write:

Reset: 0 0 0 0 0 0 0 0

= Reserved

Figure 15. DMA Status and Control Register (DSC)
DMA08 Reference Manual — Rev. 1.0

54 DMA Registers MOTOROLA

DMA Registers
DMA Module Registers
When DMAP = 0, CPU interrupts are recognized after the DMA
completes the byte or word transfer in progress; the CPU then disables
the DMA by clearing the transfer enable bit(s) for all channels.
Therefore, the DMA can increase CPU interrupt latency by up to three
cycles, or five in the case of a word transfer. Software must re-enable a
DMA channel, if required, by setting the channel enable bit (TEC0).
When this is done, the DMA transfer can continue.

L0 — Loop enable bit

This read/write bit enables DMA transfer looping. On completion of a
block transfer, the DMA restarts the transfer from the addresses
contained in the source base address and destination base address
registers. In this way, a circular buffer can be set up or serviced. Reset
clears the L0 bit.

1 = Looping is enabled (loop mode).
0 = Looping is disabled (block mode).

When looping is enabled (L0 = 1), the DMA module takes the
following actions after it has completed transferring the number of
bytes specified in the block length register:

• Sets the channel interrupt flag (IFC0)

• Generates an interrupt request, if enabled (IEC0 = 1)

• Clears the byte count register

• Continues transfer from the base address.

When looping is disabled (L0 = 0), the DMA module takes the
following actions after it has completed transferring the number of
bytes specified in the block length register:

• Sets the channel interrupt flag (IFC0)

• Generates an interrupt request, if enabled (IEC0 = 1)

• Clears the byte count register

• Disables the channel by clearing the TEC0 bit

NOTE: The CPU always executes at least one cycle before the next DMA loop
begins, even if the DMA has been allocated 100% of the bus bandwidth.
This ensures that it is impossible to lock out the CPU completely through
inadvertently programming an endless DMA transfer. Care must be
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Registers 55

DMA Registers
taken when using the settings DMAP =1, BB1:BB0 = 11, and L0 = 1
during a software-initiated transfer.

DMAWE — DMA wait enable

This read/write bit is used to enable DMA operation while the CPU is
in wait mode. Reset clears the DMAWE bit.

1 = DMA transfer possible during wait mode.
0 = DMA transfers suspended in wait mode.

IFC0 — Interrupt flag

This read/write bit becomes set when a DMA transfer is complete or
at the end of each transfer loop. The interrupt flag (IFC0) becomes set
when the content of the byte count register equals that of the block
length register. IFC0 = 1 will generate a CPU interrupt request if the
corresponding IEC0 bit is set in the DMA status and control register.
If interrupts are disabled, IFC0 can be polled by software to see when
a transfer or loop is complete. But care must be taken not to
inadvertently clear the IFCx bits of other channels in a multi-channel
implementation. IFC0 is cleared by reading it and then writing a zero
to it. Reset clears this bit.

1 = DMA transfer complete
0 = DMA transfer not complete
DMA08 Reference Manual — Rev. 1.0

56 DMA Registers MOTOROLA

DMA Registers
DMA Module Registers
DMA Control
Register 2

DMA control register 2 is used to initiate a DMA transfer.

SWI7–SWI0 — Software initiate 7–0

Each of these read/write bits is used to initiate a DMA request from
one of the eight DMA transfer sources (see Table 4). For the transfer
to begin, the channel first must be enabled by the TEC0 bit in the DMA
control register. The channel also must be assigned, by its DMA
channel control register, to the relevant DMA transfer input.

1 = Start software-initiated DMA transfer
0 = No software-initiated DMA transfer

The DMA responds to the setting of an SWIx bit in the same way that it
responds to a hardware service request. The DC2 bit position
corresponds to the DTS [2:0] assignment in the channel. The SWIx bit is
ORed with the hardware service request. The SWIx bits are cleared only
by a write to the DC2 registers.

DC2 $xxxx

Bit 7 6 5 4 3 2 1 Bit 0

Read:
SWI7 SWI6 SWI5 SWI4 SWI3 SWI2 SWI1 SWI0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 16. DMA Control Register 2 (DC2)

Table 4. DMA Transfer Source Selection

DTS[2:0] Interrupt-Driven Transfer Source Software-Driven

000 DMA service request input 0 SWI0

001 DMA service request input 1 SWI1

010 DMA service request input 2 SWI2

011 DMA service request input 3 SWI3

100 DMA service request input 4 SWI4

101 DMA service request input 5 SWI5

110 DMA service request input 6 SWI6

111 DMA service request input 7 SWI7
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Registers 57

DMA Registers
NOTE: Because the SWIx bits are ORed with the hardware service requests,
take care when choosing which SWIx bits to use. Choose a bit that
corresponds to a hardware service request that is not being used. The
DMA service request enable bit in the corresponding peripheral should
be turned off.

A software-initiated DMA transfer differs from a normal
hardware-initiated transfer in that the entire block of data can be
transferred before any CPU interrupts are recognized. In the case of
loop mode, the CPU may have only one cycle in every 512 cycles to
execute its code. SWIx remains asserted after a transfer is complete, but
TEC will be cleared. To repeat the same transfer, it is only necessary to
reassert TEC.
DMA08 Reference Manual — Rev. 1.0

58 DMA Registers MOTOROLA

DMA Registers
Individual DMA Channel Registers
Individual DMA Channel Registers

Each channel in the DMA module has the following set of registers.

DMA Channel
Control Register

The DMA channel control register (D0C) contains bits to control the
calculation of the source base and destination base addresses
throughout a transfer, selects byte or word transfer mode, and assigns
the channel to one of the eight possible DMA transfer sources. The state
of the bits in the DMA channel control register is undefined after reset.

SDC3–SDC0 — Source/destination base address control bits 3–0

These read/write bits control calculation of the source base and
destination base addresses as shown in Table 5 .

D0C $xxxx

Bit 7 6 5 4 3 2 1 Bit 0

Read:
SDC3 SDC2 SDC1 SDC0 BWC DTS2 DTS1 DTS0

Write:

Reset: Unaffected by Reset

Figure 17. DMA Channel Control Register (D0C)

Table 5. DMA Channel Control Register

SDC[3:0] Source Address Destination Address

1010 Increment Increment

1001 Increment Decrement

1000 Increment Static

0110 Decrement Increment

0101 Decrement Decrement

0100 Decrement Static

0010 Static Increment

0001 Static Decrement

0000 Static Static
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Registers 59

DMA Registers
The DMA calculates an incremented address by adding the contents
of the byte count register to the base address contained in the source
base (or destination base) address register. Similarly, to calculate a
decremented address, the DMA subtracts the byte count register from
the base address. For static addressing modes, the DMA simply adds
zero or one to the base address, depending on whether the DMA is
configured for byte or word transfers.

BWC — Byte/word control

This read/write bit determines whether the DMA channel transfers
8-bit bytes or 16-bit words. A DMA byte transfer takes two bus cycles
and a word transfer takes four bus cycles. CPU interrupts can be
recognized only after the completion of a byte or word transfer.

1 = 1 = DMA transfers 16-bit words
0 = 0 = DMA transfers 8-bit bytes

The BWC bit has no effect unless either the source base or
destination base address is static or both are static. Table 6 shows
how the DMA calculates addresses in word transfers. When both the
source base and destination base addresses are static, the first byte
of the word transfers from the source base address to the destination
base address. The second byte transfers from the source base
address plus one to the destination base address plus one. When
either the source base or destination base address increments or
decrements, the DMA module transfers bytes from or to incrementing
or decrementing addresses.
DMA08 Reference Manual — Rev. 1.0

60 DMA Registers MOTOROLA

DMA Registers
Individual DMA Channel Registers
DTS2–DTS0 — DMA transfer source bits 2–0

These read/write bits assign the individual DMA channel to one of the
eight transfer source inputs, as shown in Table 4 . This information is
hardwired for each M68HC08 device. For details about peripheral
module interrupts designated as service request inputs, refer to the
specific device data sheet.

Table 6. DMA Word Transfer

S
TA

T
IC

 S
O

U
R

C
E

S
TA

T
IC

 D
E

S
T

IN
AT

IO
N

IN
C

R
E

M
E

N
T

E
D

 S
O

U
R

C
E

S
TA

T
IC

 D
E

S
T

IN
AT

IO
N

S
TA

T
IC

 S
O

U
R

C
E

IN
C

R
E

M
E

N
T

E
D

 D
E

S
T

IN
AT

IO
N

D
E

C
R

E
M

E
N

T
E

D
 S

O
U

R
C

E

S
TA

T
IC

 D
E

S
T

IN
AT

IO
N

S
TA

T
IC

 S
O

U
R

C
E

D
E

C
R

E
M

E
N

T
E

D
 D

E
S

T
IN

AT
IO

N

Word Byte From To From To From To From To From To

1
1 SBA DBA SBA DBA SBA DBA SBA DBA SBA DBA

2 SBA+1 DBA+1 SBA+1 DBA+1 SBA+1 DBA+1 SBA–1 DBA+1 SBA+1 DBA–1

2
3 SBA DBA SBA+2 DBA SBA DBA+2 SBA–2 DBA SBA DBA–2

4 SBA+1 DBA+1 SBA+3 DBA+1 SBA+1 DBA+3 SBA–3 DBA+1 SBA+1 DBA–3

3
5 SBA DBA SBA+4 DBA SBA DBA+4 SBA–4 DBA SBA DBA–4

6 SBA+1 DBA+1 SBA+5 DBA+1 SBA+1 DBA+5 SBA–5 DBA+1 SBA+1 DBA–5

n

2n–1 SBA DBA
SBA+
2n–2

DBA SBA
DBA+
2n–2

SBA–
(2n–2)

DBA SBA
DBA–
(2n–2)

2n SBA+1 DBA+1
SBA+
2n–1

DBA+1 SBA+1
DBA+
2n–1

SBA–
(2n–1)

DBA+1 SBA+1
DBA–
(2n–1)

Note: SBA = Source Base Address, DBA = Destination Base Address
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Registers 61

DMA Registers
DMA Source Base
Address Registers

The DMA channel reads its data from the source base address defined
in the 16-bit source base address register. During a block transfer, the
DMA determines successive source base addresses by adding to
(increment) or subtracting from (decrement) the base address. In static
address transfers, the DMA finds the source address by simply adding
zero or one to the address, depending on whether the DMA is configured
for byte or word transfers.

D0SH $xxxx

Bit 7 6 5 4 3 2 1 Bit 0

Read:
AD15 AD14 AD13 AD12 AD11‘ AD10 AD9 AD8

Write:

Reset: Unaffected by Reset

D0SL $xxxx + 1

Bit 7 6 5 4 3 2 1 Bit 0

Read:
AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Write:

Reset: Unaffected by Reset

Figure 18. DMA Source Base Address Registers (D0SH and D0SL)
DMA08 Reference Manual — Rev. 1.0

62 DMA Registers MOTOROLA

DMA Registers
Individual DMA Channel Registers
DMA Destination
Base Address
Registers

The DMA channel writes data to the destination address defined by the
16-bit destination base address register. During a block transfer, the
DMA determines successive destination base addresses by adding to
(increment) or subtracting from (decrement) the base address. In static
address transfers, the DMA finds the destination base address by simply
adding zero or one to the base address, depending on whether the DMA
is configured for byte or word transfers. The state of the destination base
address registers is undefined after reset.

NOTE: Support for the optional address extension module is built into the DMA.
In this case, the source base and destination base address registers are
effectively 24 bits. See Address Extension Module on page 28.

D0DH $xxxx

Bit 7 6 5 4 3 2 1 Bit 0

Read:
AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8

Write:

Reset: Unaffected by Reset

D0DL $xxxx + 1

Bit 7 6 5 4 3 2 1 Bit 0

Read:
AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Write:

Reset: Unaffected by Reset

Figure 19. DMA Destination Base Address Registers (D0DH and
D0DL)
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Registers 63

DMA Registers
DMA Block Length
Register

The read/write block length register controls the number of bytes
transferred. In word mode, the block length register must be written with
the number of words times two. During a block transfer, the DMA
compares the number programmed into the DMA block length register
to the number in the DMA byte count register. When the byte count
reaches the value in the block length register, the DMA does the
following:

• Sets the channel interrupt flag (IFC0)

• Generates CPU interrupt request, if enabled (IEC0 = 1)

• Clears the byte count register

If looping is disabled (L0 = 0), the DMA then stops the transfer by
clearing the TEC0 bit in DMA control register 1, thus disabling the
channel. If looping is enabled (L0 = 1), the DMA continues the transfer
from the base address.

A value of $00 in the register designates the maximum block length of
256 bytes. After reset, the state of the DMA block length registers is
undefined.

D0BL $xxxx

Bit 7 6 5 4 3 2 1 Bit 0

Read:
BL7 BL6 BL5 BL4 BL3 BL2 BL1 BL0

Write:

Reset: Unaffected by Reset

Figure 20. DMA Block Length Register (D0BL)
DMA08 Reference Manual — Rev. 1.0

64 DMA Registers
 MOTOROLA

DMA Registers
Individual DMA Channel Registers
DMA Byte Count
Register

The read/write DMA byte count register contains the number of bytes
transferred on the channel during the current DMA transfer.

Writing to the source base address or destination base address register
clears the byte count register. The byte count register also is cleared
when its count reaches the value in the block length register. Reset
clears the byte count register.

D0BC $xxxx

Bit 7 6 5 4 3 2 1 Bit 0

Read:
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

Write:

Reset: Unaffected by Reset

Figure 21. DMA Byte Count Register (D0BC)
DMA08 Reference Manual — Rev. 1.0
MOTOROLA DMA Registers 65

DMA Registers
DMA08 Reference Manual — Rev. 1.0

66 DMA Registers
 MOTOROLA

DMA Application Examples
DMA Application Examples
Contents

Introduction .68

Software-Initiated Block Transfer .69
A – Simple, Small Block Transfer .69
B – Flexible, Large Block Transfer .71
Summary .73

DMA Service of Serial Communications .73
A – Transmitting a Buffered Message Using the CPU74
B – Servicing the SCI Transmitter Using the DMA75
Summary .76

DMA Timer Servicing .77
A – Generating a Pseudo Buffered PWM 77
B – Buffering Input Captures for Period Calculation 81
Summary .83

Full Assembler Listings .84
Listing 1 – Fixed Block Length Transfer .84
Listing 2 – Variable Block Length Transfer 86
Listing 3 – SCI Transmitter .90
Listing 4 – SCI Transmitter .92
Listing 5 – Timer Output Compare .94
Listing 6 – PWM Generation .96
Listing 7 – Timer Input Capture .98
Listing 8 – Period Measurement .101
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 67

DMA Application Examples
Introduction

The examples provided in the following sections are intended to provide
a greater understanding of the operation of the DMA08 module, together
with ideas on how to apply the DMA to various applications.

Due to the modular nature of the MC68HC705 Family and the DMA
module in particular, the addresses of the DMA registers and various
memory areas used in the examples may change in different devices. All
of the examples in this manual are based on the memory and register
map of the CPU08, which has three DMA channels. Each of the
examples, except the multichannel one, is based on DMA channel 0 for
consistency.

The user of these examples must take into account any other DMA
channels that are active. For simplicity, except where indicated
otherwise, the examples assume that no other DMA channels are active
except those being used in the example. Where this is not the case in a
real application, some of the software may have to be changed to avoid
interfering with other active DMA channels — for example, change MOV
instructions to multiple BSET/BCLRs.
DMA08 Reference Manual — Rev. 1.0

68 DMA Application Examples MOTOROLA

DMA Application Examples
Software-Initiated Block Transfer
Software-Initiated Block Transfer

This example is designed to show the DMA’s efficiency in moving blocks
of data around the system. Two examples are given: one with minimum
setup and fixed operation, the other with flexible boundaries and
assuming that the DMA channel has previously been used. In both
cases, the setup overhead and time taken to transfer different sized
blocks of memory are compared with the traditional CPU software
method.

A – Simple, Small
Block Transfer

This example shows the simplest form of software-initiated block
transfer. It involves moving a known number of data bytes (up to 256)
from one fixed address to another fixed address. The transfer is
performed once (that is, no looping) and does not generate any CPU
interrupts. A typical use of this type of transfer would be to move the
contents of an input buffer to another area of memory for subsequent
CPU processing, thus freeing the input buffer for further activity.

This example shows how to transfer a block of code using the DMA.
(See Listing 1 – Fixed Block Length Transfer on page 84 for a full
assembler listing.)

This code assumes that the DMA module is still in the reset condition
with no other channels active and all registers in their reset states.

The software should configure all DMA registers relating to the operation
of channel 0 that need to be changed from their reset condition. Note
that the enable bit for the channel is written last. This is good
programming practice and ensures that no spurious transfers can occur
due to a partially configured channel.

The various DMA registers are configured as follows:

• DC1 = $C2: DMA has 100% of the bus bandwidth, DMA interrupt
requests disabled, channel 0 enabled

• DSC = $00: (reset state) No looping, DMA disabled in WAIT mode,
CPU interrupts higher priority than DMA
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 69

DMA Application Examples
• DC2 = $01: Force a DMA request on channels configured to
service transfer source 0

• D0C = $A0: Increment source base and destination base, transfer
bytes, service transfer source 0

The number of bus cycles taken by each instruction in the example code
is shown in parenthesis in the comment field. The total setup overhead
for the transfer is 30 cycles. The DMA takes two bus cycles to transfer
each byte. On completion of the transfer, the transfer enable bit for
channel 0 (TEC0) will be cleared and the interrupt flag (ICF0) will be set.
The software-initiate bit in DC2 remains set. This means that to repeat
the same transfer, it is only necessary to re-enable the channel by
setting TEC0 in DC1.

To show the relative performance of the DMA compared with a full
software transfer of the data, the corresponding code for a
software-driven transfer is given. The overhead of this method is just two
cycles, but it takes 11 cycles to transfer each byte.

In this case, the software method uses fewer bytes of program memory
than using the DMA. But it is obvious that once more than a few bytes
are to be transferred then the DMA has a significant performance
advantage. Table 7 compares the total number of bus cycles required to
transfer various sized blocks of data using the two methods.

Table 7. Relative Performance in Two Block Transfer Methods

Number of Bytes in Block 4 8 16 32 64 128 256

Number of
Bus Cycles

Software
Method 46 90 178 354 706 1410 2818

DMA Method 38 46 62 94 158 286 542

Relative Performance 1.21 1.96 2.87 3.77 4.47 4.93 5.20
DMA08 Reference Manual — Rev. 1.0

70 DMA Application Examples MOTOROLA

DMA Application Examples
Software-Initiated Block Transfer
B – Flexible, Large
Block Transfer

This example shows a further development of the software-initiated
block transfer. It involves moving a variable number of data bytes (up to
64 K) from one address to another address. The code, shown in full in
Listing 2 – Variable Block Length Transfer on page 86, is structured as
a general-purpose subroutine. The source base address, destination
base address, and number of bytes to transfer are all specified by 16-bit
parameters in RAM and can, therefore, be different each time the routine
is called. The transfer is performed once (that is, no looping) and does
not generate any CPU interrupts. As an example, this type of transfer
would be used to move around pages of on-screen display data in a TV
application.

Since the DMA can transfer up to 256 bytes at a time, and the number
of bytes here could be up to 64 K, a loop structure is used to transfer the
whole block successfully. The DMA is first configured to transfer 256
bytes at a time until the upper byte of the block size is zero, when the
DMA is configured to transfer the remaining number of bytes. The loop
to transfer multiple blocks of 256 bytes can be very simple since only the
upper bytes of the source base and destination base addresses need to
be incremented and the channel re-enabled to transfer the next 256
bytes.

A further difference from example A is that this code does not assume
the reset state of the DMA module. For this reason, the DMA channel is
first turned off before configuration begins and the DSC register must be
written.

The following shows how various DMA control registers are configured
before the first transfer:

• DC1 = $C2: DMA has 100% of the bus bandwidth, DMA interrupt
requests disabled, channel 0 enabled.

• DSC = $00: No looping, DMA disabled in wait mode, CPU
interrupts higher priority than DMA.

• DC2 = $01: Force a DMA request on channels configured to
service transfer source 0.

• D0C = $A0: Increment source base and destination base, transfer
bytes, service transfer source 0.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 71

DMA Application Examples
The number of bus cycles taken by each instruction in the code is shown
in parenthesis in the comment field. Due to the possibility of multiple
transfers, the setup time is dependent on the number of bytes to be
transferred. The total setup overhead can be estimated using the
formula below. In each transfer, the DMA takes two bus cycles to
transfer each byte.

It follows that

To show the relative performance of the DMA compared with a full
software transfer of the data, the corresponding code for a
software-driven transfer is also given:

The transfer time for this method is:

Table 8 compares the total number of bus cycles required to transfer
various blocks of data using the two methods:

Table 8. Relative Performance in Two Block Transfer Methods

Number of Bytes in Block 32 64 128 256 512 1024 2048

Number of
Bus Cycles

Software Method 1004 1964 3884 7734 15424 30804 61564

DMA Method 122 186 314 593 1128 2198 4338

Relative Performance 8.23 10.56 12.37 13.04 13.67 14.01 14.19

Setup time (bus cycles) 23 SRCESIZE
256

--------------------------------×
 
 
 

58+=

Total transfer time 58 23 SRCESIZE
256

--------------------------------×
 
 
 

SRCESIZE 2×{ }+ +=

Total transfer time 44 10 SRCESIZE
256

--------------------------------×
 
 
 

SRCESIZE 30×{ }+ +=
DMA08 Reference Manual — Rev. 1.0

72 DMA Application Examples MOTOROLA

DMA Application Examples
DMA Service of Serial Communications
Summary As can be seen from the two examples, the DMA module provides major
performance improvements in moving blocks of data around the system.
Even if only a small amount of data is to be moved, and time is critical,
the DMA can increase performance. The above examples were
performed with the bus 100% dedicated to the DMA module for the
duration of the transfer. However, because of the performance
improvement caused by the DMA, in many cases the DMA could be
assigned only 67% or 50% of the bus bandwidth and still provide a
significant performance increase while allowing the CPU to continue
other tasks. In this case, the DMA could be configured to interrupt the
CPU when the entire block has been transferred, or alternately, the
software could poll the TEC bit to see if the transfer was complete.

DMA Service of Serial Communications

This example shows the benefit, in terms of overhead, of using the DMA
module to service the asynchronous serial communications interface
(SCI). An overhead comparison is made between CPU and DMA
methods of servicing the SCI.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 73

DMA Application Examples
A – Transmitting a
Buffered Message
Using the CPU

In this example, a multi-character message contained in a buffer has to
be transmitted using the SCI. The code to initialize the SCI and transmit
a message using CPU interrupts is shown in Listing 3 – SCI Transmitter
on page 90. The transmit buffer is contained in RAM starting at an
address pointed to by TXADDR; the end of the message is indicated by
a pointer TXEND. For simplicity, it is assumed that another routine has
placed a message in the transmit buffer and has initialized the TXADDR
and TXEND pointers to point to the start of the message and the byte
following the end of the message respectively.

The code begins with the steps needed to initialize the SCI, including the
transfer format and the baud rate to enable the SCI and CPU interrupts.

The transmit interrupt service routine (ISR) checks the TXADDR pointer
and compares it with the TXEND pointer. If they are not equal, the byte
pointed to by TXADDR is moved to the SCI data register (SCD), the
pointer is incremented by one, and the interrupt flag is cleared before the
routine exits. If they are equal, the complete message has been
transmitted and the routine ends by disabling the SCI transmitter.

This CPU routine can be analyzed to predict the number of CPU cycles
required to transmit a message of arbitrary length:

1. Initializing the SCI takes 14 cycles.

2. For each character that is transmitted, 33 cycles will be executed
plus a minimum of nine cycles to enter the ISR.

3. While the last character is being transmitted, one final ISR will be
generated which will take the branch to TCEND. This takes 30
cycles plus the nine overhead cycles.

From these figures, the total number of CPU cycles to transmit a
message of length N is

This is the best case figure; the actual number will be somewhat larger
because interrupts can be taken only on instruction boundaries.
Therefore, it is likely that there will be one or more additional cycles of
latency for each interrupt service entry. Note that the H register is
pushed onto the stack for the duration of the ISR. This is normal practice
on the HC08 in any ISR that uses the H register.

TcyclesIRQ 14 N 33 9+() 30 9+()+ +=

42N 53+()=
DMA08 Reference Manual — Rev. 1.0

74 DMA Application Examples MOTOROLA

DMA Application Examples
DMA Service of Serial Communications
B – Servicing the
SCI Transmitter
Using the DMA

The DMA module can also be configured to service the SCI transmitter.
The required code is shown in Listing 4 – SCI Transmitter on page 92.
The code assumes operation from reset conditions. First, the SCI is
initialized as in the CPU service case, except this time the DMA is
assigned to handle the TDRE interrupts. The DMA is then
configured.This involves initializing the DMA source base and
destination base addresses (TXADDR and SCD respectively), setting
the block length (number of bytes to be transferred) and transfer type,
and assigning the channel to service the SCI TX interrupt. A CPU
interrupt also is enabled after the last DMA transfer is complete. The
total initialization process takes 46 cycles and the various DMA control
registers are configured as follows:

• D0C = $87: Increment source base, static destination base,
transfer bytes, service transfer source 7.

• D0BL = $0D: Block length = 13 bytes (characters).

• DSC = $00 (reset state): No looping, DMA disabled in wait mode,
CPU interrupts have priority over DMA transfers.

• DC2 = $00 (reset state): No software-initiated transfer.

• DC1 = $03: DMA has 25% of bus, enable transfers, and CPU
interrupt from DMA channel 0.

NOTE: Since overhead and not performance is the criteria in this example and
the DMA will only transfer one byte for each request, the bus bandwidth
value is not important. The overhead is not affected by this assignment.

The mapping of the DMA transfer source base bits in the DMA channel
control registers to specific peripheral interrupt sources varies from
device to device, depending on the peripherals present and their
relevant importance. On the 708XL36, the SCI transmitter is selected
when DTS2:0 = 111, hence $87 is written to D0C in the example. Refer
to the applicable data book for details of DTS bit assignments for devices
other than the 708XL36.

Once the SCI transmitter is enabled, the DMA takes two bus cycles to
transfer each byte to the transmit register. After the last DMA transfer is
completed, a CPU DMA interrupt occurs. The ISR checks to see if DMA
channel 0 made the interrupt request. If so, the SCI transmitter is
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 75

DMA Application Examples
disabled and the DMA interrupt flag is cleared. This takes 24 cycles plus
nine to enter the ISR. (See A – Transmitting a Buffered Message Using
the CPU on page 74 for information regarding ISR entry delays.)

From the above analysis, the total number of cycles for the DMA to
transmit a message of N characters is:

Table 9 shows the number of cycles needed by the CPU and DMA
methods for several sizes of messages.

Summary From Table 9 it can be seen that when servicing the SCI, the DMA
provides significant savings in overhead compared with the CPU. In this
case, the number of cycles needed to transmit even one byte is less with
the DMA method. A small code size penalty is paid for using the DMA
(14 bytes in this example), but in most cases the throughput
improvement will easily justify the additional bytes of code.

The DMA can be used in a similar manner to service input or output on
the serial peripheral interface (SPI), resulting in overhead benefits
comparable to those proven for the SCI in this example. Latency is also
improved.

Table 9. Relative Performance in DMA and CPU Transfer Methods

Message Size # Clocks CPU # Clocks DMA Relative Performance

1 95 81 1.17

2 137 83 1.65

4 221 87 2.54

6 305 91 3.35

8 389 95 4.09

10 473 99 4.78

20 893 119 7.50

50 2153 179 12.03

256 10805 591 18.28

TcyclesDMA 46 N 2() 24 9+()+ +=

79 2N+()=
DMA08 Reference Manual — Rev. 1.0

76 DMA Application Examples MOTOROLA

DMA Application Examples
DMA Timer Servicing
DMA Timer Servicing

This example shows the possible performance benefits from servicing
the timer module with the DMA module instead of the CPU. The timer is
a flexible peripheral, and it is not possible to cover all uses of the DMA
in conjunction with the timer. Two examples are given, one using an
output compare to generate a pulse-width modulator (PWM) and the
other buffering an input capture for period calculation by the CPU. In
both cases, the performance is compared with CPU control.

A – Generating a
Pseudo Buffered
PWM

The timer interface module offers two types of PWM capability, buffered
and unbuffered. In buffered PWM the pulse width (duty cycle) can be
changed in software at any time and the timer hardware synchronizes
the duty cycle change to the beginning of the next period. In this way, a
smooth transition from one duty cycle to another is achieved with no
glitches. However, this function requires two timer channels per buffered
PWM output.

Unbuffered PWM operation requires only one channel, but an
unsynchronized change in pulse width can cause improper operation for
up to two periods. Refer to the Timer Interface Module Reference
Manual for more details on the operation of buffered and unbuffered
PWMs. CPU output compare interrupts can be used to buffer the PWM
generation, but the minimum duty cycle is limited by the latency and
service time of the interrupt. For example, when switching from a high
duty cycle to a low duty cycle, the CPU has very little time to respond to
the previous output compare and write the new output compare value for
the low duty cycle. If the CPU is late, no output compare will take place
in the next cycle, resulting in improper operation.

This example shows that by using the DMA to service the timer, a single
timer channel can create a pseudo buffered PWM with pulse widths as
short as four bus cycles. Suitable code for such a function is shown in
Listing 5 – Timer Output Compare on page 94.

First, timer channel 0 is configured for unbuffered PWM operation. The
timer is reset and stopped. An 8-bit PWM is selected by writing $FF to
the timer counter modulo register. The channel is configured as an
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 77

DMA Application Examples
output compare, set to toggle on timer overflow and clear on compare.
The high time value, contained in the RAM location PWMHI, is copied
into the timer channel 0 register. The timer channel is configured for
DMA service.

DMA channel 0 is then set up to service the compare interrupt from timer
channel 0. The various DMA control registers are configured as follows:

• D0C = $00: Static source base, static destination base, transfer
bytes, service transfer source 0.

• D0BL = $01: Block length = 1 byte.

• DSC = $10: Loop on channel 0, DMA disabled in wait mode, CPU
interrupts have priority over DMA transfers.

• DC2 = $00 (reset state): No software initiated transfer.

• DC1 = $C2: DMA has 100% of bus, enable transfers on DMA
channel 0, no DMA interrupts to CPU.

NOTE: The mapping of the DMA transfer source base bits in the DMA channel
control registers to specific peripheral interrupt sources varies from
device to device, depending on the peripherals present and their
relevant importance. On the 708XL36, timer channel 0 is selected when
DTS2:0 = 000, hence $28 is written to D0C in the example. Refer to the
applicable data book for details of DTS bit assignments for devices other
than the 708XL36.

Finally, the TSTOP bit is cleared to enable the timer and start PWM
generation. Each output compare event generates a DMA request and
in response the DMA moves the latest high time value from PWMHI into
the channel compare register. In this way, PWMHI can be changed at
any time by the CPU, but the transfer to the timer channel is
synchronized by the DMA, resulting in a pseudo buffered PWM.

Assuming only one DMA channel is active, with 100% of the bus, the
channel will always receive the required bus cycles when the compare
DMA request occurs. The DMA requires two cycles to transfer a byte
plus an initial two cycles for address calculation so that the minimum
time between output compares will be:

2 2+ 4 cycles=
DMA08 Reference Manual — Rev. 1.0

78 DMA Application Examples MOTOROLA

DMA Application Examples
DMA Timer Servicing
This corresponds to the minimum PWM high time that can usually be
achieved.

 If more than one DMA channel is running, the possibility of two
additional cycles per active channel must be taken into account if
channel interrupts coincide.

For comparison, Listing 6 – PWM Generation on page 96 shows code
used to perform the same operation without the aid of the DMA module.
Timer setup is identical to the DMA version except that the TDMA
register is left in its reset state ($00) so that the timer will be serviced by
the CPU. The timer channel 0 interrupt service routine (ISR) moves the
latest PWM high time value from PWMHI to the lower byte of the channel
register. The output compare flag is then cleared before the routine exits.
The minimum reliable pulse width is dependant on the latency of the ISR
and the actual execution time of the ISR, since one interrupt must be
serviced fully before the next can occur. The execution time of the ISR
is 20 cycles. Assuming that timer channel 0 is the highest priority CPU
interrupt enabled (best case), then the latency is nominally nine cycles.
However, since CPU interrupts can only be taken on instruction
boundaries, the cycle count of the longest instruction used in the
program must also be added for reliable performance. The longest
instruction that is likely to be used in a user application is the DIV
instruction which takes seven cycles.

The minimum period between interrupt requests is therefore:

This corresponds to the minimum PWM high time that can be
guaranteed under all circumstances. Smaller high times can be
generated, but they may result in the previously described glitch of
incorrect operation when written while the PWM is generating a very
high duty cycle (see Figure 22).

This example shows that using the DMA to service the timer allows
reliable generation of PWM pulse widths almost 10 times smaller than
with CPU servicing.

20 9 7+ + 36 cycles=
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 79

DMA Application Examples
Figure 22. Minimum PWM High Time

NEW DUTY CYCLEOLD DUTY CYCLE

T

If T < 36 cycles, then glitches of incorrect operation will occur, as
shown below.

NEW DUTY CYCLEOLD DUTY CYCLE NEW DUTY CYCLE,
OK RESULTACTIVE, BUT

INCORRECT
RESULT
DMA08 Reference Manual — Rev. 1.0

80 DMA Application Examples MOTOROLA

DMA Application Examples
DMA Timer Servicing
B – Buffering Input
Captures for
Period Calculation

A common use of the timer module’s input capture function is input
signal period measurement. To perform this function, the timer pin is
configured to capture the timer value on one edge type (rising or falling).
By storing the captured time in a buffer and subtracting from the next
captured value, the period of the input signal can be deduced. Sampling
more than two edges and then averaging the result in software to get a
more accurate and reliable result is normal. The example provided
captures two periods (three edges) and calculates the average period
which is stored in a 16-bit result register.

This operation can be performed entirely by the CPU, responding to
each input capture interrupt, but the minimum period that can be reliably
measured is limited by the latency and service time of the interrupt
service routine. The CPU must respond to and store the results from one
input capture before the next can be detected. Using the DMA to store
captured values in a buffer and then calling the CPU once three values
have been received allows much smaller periods to be resolved.

The code required to perform this period measuring task using the DMA
is shown in Listing 7 – Timer Input Capture on page 98. First, timer
channel 0 is initialized as a rising edge input capture channel and
configured to be serviced by the DMA. Next, DMA channel 0 is
configured to service timer channel 0; the transfer source base address
is set up as the timer channel 0 register and the destination base as a
buffer in RAM starting at address ICBUFFER. By programming the DMA
to have a static source base and incrementing destination base,
subsequent input capture values will be stored in the buffer. The DMA is
configured to interrupt the CPU once the 6-byte buffer is full. Since the
timer channel registers are 16 bits in length, the DMA is configured to
transfer a word of data for each request. The code assumes operation
from reset conditions. The DMA control registers are configured as
follows:

• D0C = $28: Static source base, increment destination base,
transfer words, service transfer source 0.

• D0BL = $06: Block length = 6 bytes (3 words)

• DSC = $80: No looping, DMA disabled in wait mode, DMA has
priority over CPU interrupts.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 81

DMA Application Examples
• DC2 = $00 (reset state): No software-initiated transfer.

• DC1 = $C3: DMA has 100% of bus, enable transfers and CPU
interrupt from DMA channel 0.

NOTE: Since the DMA will transfer only one word for each timer input capture,
it is safe to assign the DMA a higher priority than CPU interrupts (DSC =
$80) and 100% of the bus (DC1 = $C3) without danger of locking out the
CPU. However, if another channel were to be used for a
software-initiated block transfer, then the bus bandwidth allocation may
need to be changed.

The mapping of the DMA transfer source base bits in the DMA channel
control registers to specific peripheral interrupt sources varies from
device to device depending on the peripherals present and their relevant
importance. On the 708XL36, timer channel 0 is selected when DTS2:0
= 000, hence $28 is written to D0C in the example. Refer to the relevant
technical summary for details of DTS bit assignments for other M68HC05

Microcontroller Applications Guide Family devices.

Once configured, the DMA will transfer the contents of timer channel 0
register to the buffer in RAM in response to each rising edge on the
device pin associated with timer channel 0. After three words have been
transferred (three edges -> two signal periods), the DMA interrupts the
CPU which calculates the mean of the two periods and stores the result
in PERIOD before reinitializing DMA channel 0 to repeat the process.

The DMA takes four cycles to transfer a word of data and an additional
two cycles to set up and calculate addresses. This means that the
minimum time between input edges on the capture pin is six CPU cycles.

Therefore, with the timer clocked at a bus frequency of 8 MHz, the
maximum frequency input signal that can be measured is:

1/(0.125 µS x 6) = 1.33 MHz

The code required to perform the same operation without the DMA
module is found in Listing 8 – Period Measurement on page 101. The
timer is again initialized, but this time it is configured for CPU servicing.
In this case, every input capture results in a CPU interrupt and the
interrupt service routine (ISR) must store the captured timer value
DMA08 Reference Manual — Rev. 1.0

82 DMA Application Examples MOTOROLA

DMA Application Examples
DMA Timer Servicing
manually in the buffer and keep track of the number of edges via a
counter. When the counter indicates that the third edge has been
captured, the ISR calculates the mean period in the same manner as the
DMA example before restarting the measurement process.

The execution time of the ISR (excluding the third edge/calculation case)
is 46 cycles. To calculate performance, the latency of entering the ISR
must also be taken into account. Assuming that timer channel 0 is the
highest priority CPU interrupt enabled (best case), then the latency is
nominally nine cycles. However, since CPU interrupts can be taken only
on instruction boundaries, the cycle count of the longest instruction used
in the program must also be added for reliable performance. The longest
instruction that is likely to be used in a user application is the seven-cycle
DIV instruction.

The minimum period between interrupt requests is, therefore,
46 + 9 + 7 = 62 cycles which with an 8-MHz bus speed corresponds to
a maximum measurable frequency of:

1(0.125µS x 62) = 129 KHz

The DMA, therefore, provides a factor of 10x improvement in
measurement performance in this example.

Summary Both of the examples using the timer in conjunction with the DMA show
a major benefit in performance over traditional CPU servicing. Not only
is the timer performance enhanced, but the CPU is released to perform
its other tasks more efficiently.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 83

DMA Application Examples
Full Assembler Listings

The following assembler listings give full details of the setup and
execution for each of the examples discussed in this chapter.

Listing 1 – Fixed Block Length Transfer

* COPYRIGHT (c) MOTOROLA 1994
* FILE NAME: BLOKMV1.S08
*
* PURPOSE: To demonstrate the block move capabilities of DMA08 and
* compare with traditional software methods.
*
* ASSEMBLER: IASM08 VERSION: 3.03
*
* DESCRIPTION:
* Transfer assuming no DMA channels have been used since reset
* Fixed source base and destination base addresses and fixed block
* length - transfer $80 bytes starting at $100 to address starting at
* $200
*

* Register definitions for DMA channel 0 as mapped on the 68HC708XL36

D0SH EQU $0034 ; DMA Channel 0 Source High
D0SL EQU $0035 ; DMA Channel 0 Source Low
D0DH EQU $0036 ; DMA Channel 0 Destination High
D0DL EQU $0037 ; DMA Channel 0 Destination Low
D0C EQU $0038 ; DMA Channel 0 Control
D0BL EQU $0039 ; DMA Channel 0 Block Length
D0BC EQU $003B ; DMA Channel 0 Byte Count

DC1 EQU $004C ; DMA Control 1
DSC EQU $004D ; DMA Status/Control
DC2 EQU $004E ; DMA Control 2
DMA08 Reference Manual — Rev. 1.0

84 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings
* Program equates for example code.

SOURCE EQU $100 ; Start address of block to be
; transferred.

DESTIN EQU $200 ; Start address of destination of
; block.

BLSIZE EQU $80 ; Transfer 128 bytes.

ORG $7000 ; Code area

FIRSTDMA
LDHX #SOURCE ; (3) Get start addr of source block.
STHX D0SH ; (4) Store in channel0 source

; address.

LDHX #DESTIN ; (3) Get start addr of
; destination
; block.

STHX D0DH ; (4) store in channel0
; destination address

MOV #BLSIZE,D0BL; (4) No. of bytes into block
; length register.

MOV #$A0,D0C ; (4) Inc source & dest, xfer
; bytes,
; DTS=0

MOV #$01,DC2 ; (4) Set software initiate bit
; for DTS=0.

DOIT
MOV #$C2,DC1 ; (4) 100% bus for DMA, enable

; chan0 to start xfer.
BRA * ; End of example

* Below is the code required for the CPU08 to perform the same task
* as above but without the aid of the DMA module

SWEXAMPA
LDX #BLSIZE ; (2) Use X as byte counter &

; pointer.
XFERLOOP

LDA SOURCE,X ; (4) Get source byte.
STA DESTIN,X ; (4) Transfer to destination
DBNZX XFERLOOP ; (3) Move pointer and check for

; end of block
DONE

BRA * ; End of example
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 85

DMA Application Examples
Listing 2 – Variable Block Length Transfer

* COPYRIGHT (c) MOTOROLA 1994
* FILE NAME: BLOKMV2.S08
*
* PURPOSE: To Demonstrate the block move capabilities of DMA08 and
* compare with traditional software methods.
*
* ASSEMBLER: IASM08 VERSION: 3.03
*
* DESCRIPTION:
* Variable sized transfer, structured as a subroutine with transfer
* size and addresses passed as RAM variables. Does not assume reset
* state
*

* Register definitions for DMA channel 0 as mapped on the 68HC708XL36

D0SH EQU $0034 ; DMA Channel 0 Source High
D0SL EQU $0035 ; DMA Channel 0 Source Low
D0DH EQU $0036 ; DMA Channel 0 Destination High
D0DL EQU $0037 ; DMA Channel 0 Destination Low
D0C EQU $0038 ; DMA Channel 0 Control
D0BL EQU $0039 ; DMA Channel 0 Block Length
D0BC EQU $003B ; DMA Channel 0 Byte Count

DC1 EQU $004C ; DMA Control 1
DSC EQU $004D ; DMA Status/Control
DC2 EQU $004E ; DMA Control 2

* Bit definitions

SWI0 EQU 0
TEC0 EQU 1
IEC0 EQU 0

ORG $60 ; RAM data area

*variables required for example.
SRCEADDRRMB 2 ; Start address of source block to be

; moved
DESTADDRRMB 2 ; Destination address of first byte

; in block.
SRCESIZERMB 2 ; Length in bytes of block to be moved
SADDTEMPRMB 2 ; Temporary variables for software

; version
DADDTEMPRMB 2
SIZETEMPRMB 1

ORG $7000 ; Code area

NEWDMA
JSR COPY
BRA *
DMA08 Reference Manual — Rev. 1.0

86 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings

*
* NAME: COPY
*
* PURPOSE: Uses DMA to transfer a variable size block of memory
* and A to B
*
* ENTRY CONDITIONS: SRCEADDR = 16bit start address of block to be
* copied
*
* DESTADDR = 16bit start address of destination of copy
* SRCESIZE = Number of bytes in the block - 16bits.
*
* EXIT CONDITIONS: H, X destroyed, SRCEADDR, DESTADDR, SRCESIZE, Acc
* unchanged.
*
* DMA channel 0 disables, but configuration changed.
*
* STACK SPACE USED (Bytes): 1 RAM USAGE (Bytes): 0
* EXTERNALVARIABLESUSED:SRCEADDR,DESTADDR,SRCESIZE
*

COPY

MOV #0,DC1 ; (4) Turn off DMA channels and
; interrupts.

LDHX SRCEADDR ; (4) Get start addr of source block.
STHX D0SH ; (4) Store in channel0 source

; address.
LDHX DESTADDR ; (4) Get start addr of destination

; block.
STHX D0DH ; (4) store in channel0 destination

; address
MOV #$A0,D0C ; (4) Inc source & dest, xfer bytes,

; DTS=0
BSET SWI0,DC2 ; (4) Set software initiate bit for

; DTS=0.
MOV #0,DSC ; (4) Disable looping and DMA in wait

; mode.
LDX SRCESIZE ; (3) get upper byte of block length.
PSHX ; (2) Store upper half of byte count

; on stack.
BEQ DOLOWER ; (3) If upper = 0 then just do lower

; byte
CLR D0BL ; (3) Transfer 256 bytes.

DOXFER
MOV #$C2,DC1 ; (4) Assign DMA 100% of bus & enable

; chan0.
BRSET TEC0,DC1,* ; (5) Wait for this xfer to complete.
INC D0SH ; (4) 256 bytes done; update source

; addr.
INC D0DH ; (4) - and update destination addr.
DBNZ 1,SP,DOXFER ; (6) Loop until all 256 byte blocks

; done.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 87

DMA Application Examples
DOLOWER
PULX ; (2) Clean up stack.
LDX SRCESIZE+1 ; (3) Get lower byte of block length.
BEQ ALLDONE ; (3) Test for zero.
STX D0BL ; (3) Set up last transfer.
MOV #$C2,DC1 ; (4) Assign DMA 100% of bus & enable

; chan0.
ALLDONE

RTS

* Below is the code required for the CPU08 to perform the same task as
* above without the aid of the DMA module

SWEXAMPB
JSR COPYSW
BRA *

* NAME: COPYSW
*
* PURPOSE: Uses software to transfer variable size data block from A
* to B
*
* ENTRY CONDITIONS: SRCEADDR = 16bit start address of block to be copied
*
* DESTADDR = 16bit start address of destination of copy
* SRCESIZE = Number of bytes in the block - 16bits.
*
* EXIT CONDITIONS: H, X, Acc destroyed,
* SRCEADDR,DESTADDR,SRCESIZE
* DMA channel 0 disables, but configuration changed.
*
* STACK SPACE USED (Bytes): 2 RAM USAGE (Bytes): 4
*
* EXTERNAL VARIABLES USED: SRCEADDR, DESTADDR,
* SRCESIZE
*
**

COPYSW
LDHX SRCEADDR ; (4) Store transfer addresses in

; temporary.
STHX SADDTEMP ; (4) variables.
LDHX DESTADDR ; (4)
STHX DADDTEMP ; (4)
LDX SRCESIZE ; (3) Get high byte of block size and

; inc it.
INCX ; (1) - to compensate for later test.
PSHX ; (2) Store modified high byte on

; stack.
LDX SRCESIZE+1 ; (3) Get low byte.
PSHX ; (2) - store it on the stack.
BEQ DOHIGH ; (3) Skip first loop if low byte = 0.
DMA08 Reference Manual — Rev. 1.0

88 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings
XFERATOB
LDHX SADDTEMP ; (4) Get source address of byte.
LDA ,X ; (2) Get the data.
AIX #1 ; (2) Increment source addr for next

; byte.
STHX SADDTEMP ; (4)
LDHX DADDTEMP ; (4) Get destination address.
STA ,X ; (2) Transfer byte
AIX #1 ; (2) Increment destination for next

; byte.
STHX DADDTEMP ; (4)
DBNZ 1,SP,XFERATOB; (6) Check for end of loop.

DOHIGH:
CLR 1,SP ; (4)
DBNZ 2,SP,XFERATOB; (6) Decrement & test block length

; high byte
DONEB

PULX ; (2) Clean up stack and return.
PULX ; (2)
RTS
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 89

DMA Application Examples
Listing 3 – SCI Transmitter

* COPYRIGHT (c) MOTOROLA 1994
* FILENAME:SCISW.S08
*
* PURPOSE: To show a CPU driven SCI transmitter for comparison with DMA
*
* ASSEMBLER: IASM08 VERSION: 3.03
*
* DESCRIPTION:
* This routine uses a CPU SCI TX IRQ to send a buffered message. The
* message has been placed in the buffer by a separate routine along
* with the start address of the message and an end pointer that is 1
* plus the address of the last byte to be sent.
*

* Register definitions for SCI as mapped on the 68HC708XL36
SCC1 EQU $0013 ; SCI Control register 1
SCC2 EQU $0014 ; SCI Control register 2
SCC3 EQU $0015 ; SCI Control register 3
SCS1 EQU $0016 ; SCI Status register 1
SCS2 EQU $0017 ; SCI Status register 2
SCD EQU $0018 ; SCI Data Register
SCBR EQU $0019 ; SCI Baud Rate Register
*

Memory

ORG $60
MESSAGEDB 'HELLO WORLD! '
TXSTARTFDB MESSAGE
TXEND FDB MESSAGE+13T
*
**

ORG $6E00 ; beginning of program area
START EQU *
**
* Init Routine

* Initialize the SCI

mov #$40,SCC1 ; (4) ensci
mov #$03,SCBR ; (4) 9600 baud
mov #$88,SCC2 ; (4) enable transmitter and TDRE

; IRQ
cli ; (2) enable CPU interrupts
bra * ; (3) wait for irq
DMA08 Reference Manual — Rev. 1.0

90 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings
* SCI Transmit Interrupt Service Routine

TXISR pshh ; (2) Stack H.
ldhx TXSTART ; (4) Point to next byte.
cphx TXEND ; (4) Have we sent the last byte?
beq TCEND ; (3) Yes, go to end of message

; shutdown.
lda SCS1 ; (3) Dummy read to clear the flag.
mov x+, scd ; (4) No, send another character.
sthx TXSTART ; (4) Save the pointer for next time.
pulh ; (2) Restore H.
rti ; (7)

TCEND bclr 7,SCC2 ; (4) disable transmitter
pulh ; (2) Restore H
rti ; (7)

ORG $FFE2
SCITXVDW TXISR ; SCI TX ISR VECTOR

ORG $FFFE
RESETVDW $6e00 ; RESET VECTOR
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 91

DMA Application Examples
Listing 4 – SCI Transmitter
**
* COPYRIGHT (c) MOTOROLA 1994
* FILE NAME: SCIEX.S08
*
* PURPOSE: To show the use of the DMA module with an SCI transmitter
*
* ASSEMBLER: IASM08 VERSION: 3.03
*
* DESCRIPTION:
* This routine uses the DMA on the 708XL36 to service the SCI
* transmitter and send a buffered message. The message has been placed
* in the buffer by a separate routine along with the start address of
* the message and a byte count.
*
**

* Register definitions for DMA channel 0 as mapped on the 68HC708XL36
D0SH EQU $0034 ; DMA Channel 0 Source High
D0SL EQU $0035 ; DMA Channel 0 Source Low
D0DH EQU $0036 ; DMA Channel 0 Destination High
D0DL EQU $0037 ; DMA Channel 0 Destination Low
D0C EQU $0038 ; DMA Channel 0 Control
D0BL EQU $0039 ; DMA Channel 0 Block Length
D0BC EQU $003B ; DMA Channel 0 Byte Count

DC1 EQU $004C ; DMA Control 1
DSC EQU $004D ; DMA Status/Control
DC2 EQU $004E ; DMA Control 2

* Register definitions for SCI as mapped on the 68HC708XL36
SCC1 EQU $0013 ; SCI Control register 1
SCC2 EQU $0014 ; SCI Control register 2
SCC3 EQU $0015 ; SCI Control register 3
SCS1 EQU $0016 ; SCI Status register 1
SCS2 EQU $0017 ; SCI Status register 2
SCD EQU $0018 ; SCI Data Register
SCBR EQU $0019 ; SCI Baud Rate Register

**
* Memory
*

ORG $60
MESSAGEDB 'HELLO WORLD! '
TXSTARTFDB MESSAGE
COUNT DB $D

**

ORG $6E00 ; beginning of program area
START EQU *

**
DMA08 Reference Manual — Rev. 1.0

92 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings
* Init Routine

* Initialize the SCI

MOV #$40,SCC1 ; (4) ENSCI, 8bits, idle line, no
; parity

MOV #$10,SCC3 ; (4) DMATE enabled.
MOV #$03,SCBR ; (4) 9600 baud

* Initialize the DMA

MOV #$87,D0C ; (4) Inc/static, byte, sci tx
MOV COUNT,D0BL ; (5) block length = 13
LDHX TXSTART ; (4) init channel 0 source address
STHX D0SH ; (4)
LDHX #SCD ; (3) init channel 0 destination

; address
STHX D0DH ; (4)
MOV #$03,DC1 ; (4) TEC0 and IEC0 enabled

* Begin transmission

MOV #$08,SCC2 ; (4) Start transmission.
CLI ; (2) Enable CPU interrupts.
BRA * ; (3)

DMAISRbrclr 0,DSC,DMAEND; (5) Check for interrupt source.
bclr 7,SCC2 ; (4) Disable TDRE IRQs.
bclr 3,SCC2 ; (4) Disable transmitter.
bclr 0,DSC ; (4) Clear the interrupt flag.

DMAENDrti ;(7)

 ORG $FFF6
DMAV DW DMAISR ; DMA ISR VECTOR

 ORG $FFFE
RESETV DW $6e00 ; RESET VECTOR
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 93

DMA Application Examples
Listing 5 – Timer Output Compare
**
* COPYRIGHT (c) MOTOROLA 1994
* FILENAME: TIMPWMEX.S08
*
* PURPOSE: To show the use of the DMA module with timer output compare *
* ASSEMBLER: IASM08 VERSION: 3.03
*
* DESCRIPTION:
* This routine uses the DMA on the 708XL36 to service the timer.
* It does a single transfer loop from a memory location to the TCH0L
* register at each output compare time. A CPU routine can write a new
* value to this register to change the PWM high time. This allows the
* CPU to change the PWM high time without regard to the position of any
* PWM edges.
*
**

* Register definitions for DMA channel 0 as mapped on the 68HC708XL36
D0SH EQU $0034 ; DMA Channel 0 Source High
D0SL EQU $0035 ; DMA Channel 0 Source Low
D0DH EQU $0036 ; DMA Channel 0 Destination High
D0DL EQU $0037 ; DMA Channel 0 Destination Low
D0C EQU $0038 ; DMA Channel 0 Control
D0BL EQU $0039 ; DMA Channel 0 Block Length
D0BC EQU $003B ; DMA Channel 0 Byte Count

DC1 EQU $004C ; DMA Control 1
DSC EQU $004D ; DMA Status/Control
DC2 EQU $004E ; DMA Control 2

* Register definitions for Timer channel 0 as mapped on the
* 708XL36
TSC EQU $0020 ; Timer Status/Control
TDMA EQU $0021 ; Timer DMA select
TCNTH EQU $0022 ; Timer Counter High
TCNTL EQU $0023 ; Timer Counter Low
TMODH EQU $0024 ; Timer Counter Modulo High
TMODL EQU $0025 ; Timer Counter Modulo Low

TSC0 EQU $0026 ; Timer Channel 0 Status/Control
TCH0H EQU $0027 ; Timer Channel 0 High
TCH0L EQU $0028 ; Timer Channel 0 Low

ORG $60 ; RAM data area
* variables required for example.

PWMHI DB $80
*

DMA08 Reference Manual — Rev. 1.0

94 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings
**

ORG $6E00 ; beginning of program area
START EQU *

**

* Init Routine

*Initialize the Timer
MOV #$30,TSC ; (4) Stop & reset timer.
MOV #$01,TDMA ; (4) Service timer with DMA.
MOV #$00,TMODH ; (4) Set to 8-bit PWM.
MOV #$FF,TMODL ; (4)
MOV #$00,TCH0H ; (4) Set initial PWMHI.
MOV PWMHI,TCH0L ; (5)
MOV #$5A,TSC0 ; (4) unbuff, TOV, low compare,

; en IRQ
*Initialize the DMA for Timer

MOV #$10,DSC ; (4) channel 0 loop enable
MOV #$00,D0C ; (4) static/static,byte,timer0
MOV #$01,D0BL ; (4) block length = 1
LDHX #PWMHI ; (3) init channel 0 source address
STHX D0SH ; (4)
LDHX #TCH0L ; (3) init channel 0 destn. address
STHX D0DH ; (4)
MOV #$C2,DC1 ; (4) 100% bandwidth, TEC0 enabled
LDA TSC ; (3) Clear TSTOP to begin.
AND #$DF ; (2)
STA TSC ; (3)

DONE BRA * ; (3)

ORG $FFFE
RESETVDW $6e00
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 95

DMA Application Examples
Listing 6 – PWM Generation
**
* COPYRIGHT (c) MOTOROLA 1994
* FILE NAME: TIMPWMSW.S08
*
* PURPOSE: To generate a PWM using CPU servicing for comparison with DMA
*
* ASSEMBLER: IASM08 VERSION: 3.03
*
* DESCRIPTION:
* Timer chan 0 is configured to generate an unbuffered PWM. Each output * compare
is serviced by the CPU which copies the latest high time from
* RAM thus creating a semi or pseudo buffered PWM.
**

* Register definitions for Timer channel 0 as mapped on the
* 708XL36
TSC EQU $0020 ; Timer Status/Control
TDMA EQU $0021 ; Timer DMA select
TCNTH EQU $0022 ; Timer Counter High
TCNTL EQU $0023 ; Timer Counter Low
TMODH EQU $0024 ; Timer Counter Modulo High
TMODL EQU $0025 ; Timer Counter Modulo Low

TSC0 EQU $0026 ; Timer Channel 0 Status/Control
TCH0H EQU $0027 ; Timer Channel 0 High
TCH0L EQU $0028 ; Timer Channel 0 Low

ORG $60 ; RAM data area
* variables required for example.

PWMHI DB $80
*
**

ORG $6E00 ; beginning of program area
START EQU *

**
DMA08 Reference Manual — Rev. 1.0

96 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings
* Init Routine

* Initialize the Timer
MOV #$30,TSC ; (4) Stop & reset timer.
MOV #$00,TMODH ; (4) Set to 8-bit PWM.
MOV #$FF,TMODL ; (4)
MOV #$00,TCH0H ; (4) Set initial PWMHI.
MOV PWMHI,TCH0L ; (5)
MOV #$5A,TSC0 ; (4) unbuff, TOV, low compare,

; en IRQ
LDA TSC ; (3) Clear TSTOP to begin.
AND #$DF ; (2)
STA TSC ; (3)
CLI ; (2) Enable interrupts.

DONE BRA * ; (3)

TIMOCIRQEQU * ; Service timer output compare.
MOV PWMHI,TCH0L ; (5) Update high time.
LDA TSC0 ; (3)
AND #$7F ; (2) Clear channel flag
STA TSC0 ; (3)
RTI ; (7)

ORG $FFF4
TIM0V DW TIMOCIRQ ; Timer channel 0 vector

ORG $FFFE
RESETVDW START ; Reset vector
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 97

DMA Application Examples
Listing 7 – Timer Input Capture

* COPYRIGHT (c) MOTOROLA 1994
*
* FILENAME: TIMICEX.S08
*
* PURPOSE: To demonstrate the use of the HC08 DMA with the timer module.
*
* ASSEMBLER: IASM08 VERSION: 3.03
*
* DESCRIPTION:
* The DMA is used to store timer values corresponding to input capture
* edges. After three edges have been captured, a CPU interrupt is
* generated and the average of the two periods calculated and stored
* in a result register.
*

* Register definitions for DMA channel 0 as mapped on the 68HC708XL36
D0SH EQU $0034 ; DMA Channel 0 Source High
D0SL EQU $0035 ; DMA Channel 0 Source Low
D0DH EQU $0036 ; DMA Channel 0 Destination High
D0DL EQU $0037 ; DMA Channel 0 Destination Low
D0C EQU $0038 ; DMA Channel 0 Control
D0BL EQU $0039 ; DMA Channel 0 Block Length
D0BC EQU $003B ; DMA Channel 0 Byte Count

DC1 EQU $004C ; DMA Control 1
DSC EQU $004D ; DMA Status/Control
DC2 EQU $004E ; DMA Control 2

* Register definitions for Timer channel 0 as mapped on the
* 708XL36
TSC EQU $0020 ; Timer Status/Control
TDMA EQU $0021 ; Timer DMA select
TCNTH EQU $0022 ; Timer Counter High
TCNTL EQU $0023 ; Timer Counter Low
TMODH EQU $0024 ; Timer Counter Modulo High
TMODL EQU $0025 ; Timer Counter Modulo Low

TSC0 EQU $0026 ; Timer Channel 0 Status/Control
TCH0H EQU $0027 ; Timer Channel 0 High
TCH0L EQU $0028 ; Timer Channel 0 Low

ORG $60 ; RAM data area
* variables required for example.

PERIODRMB2 ; Result calculated in CPU interrupt ; routine.
ICBUFFERRMB 6 ; Buffer for captured Timer values.

ORG $7000 ; Code area
DMA08 Reference Manual — Rev. 1.0

98 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings
TIMICDMA
* Setup Timer channel 0

MOV #$00,TSC ; (4) Disable Overflow IRQ, clock at
; bus speed.

MOV #$01,TDMA ; (4) Service channel 0 with the DMA
MOV #$44,TSC0 ; (4) Enable chan0 IRQs, capture on

; rising edge

* Setup DMA channel 0
LDHX #TCH0H ; (3) Get addr of timer channel0

; register.
STHX D0SH ; (4) Store in channel0 source

; address.
LDHX #ICBUFFER ; (3) Get start addr of destination

; buffer.
STHX D0DH ; (4) Store in channel0 destination

; address.
MOV #$28,D0C ; (4) Static srce, inc dest, xfer

; words-Tim Ch0
MOV #$06,D0BL ; (4) Buffer size - 3 edges->3 words-

; >6 bytes
MOV #$80,DSC ; (4) Disable looping, DMA has

; priority over CPU.
DOIT

CLI ; (2) Enable interrupts.
MOV #$C3,DC1 ; (4) 100% for DMA, enable chan0 xfer

; & IRQ.
BRA * ; (3)

DMA0IRQ
* Service the DMA interrupt and calculate and store period.

LDA ICBUFFER+3 ; (3) Calculate and store the two
; periods.

SUB ICBUFFER+1 ; (3)
STA ICBUFFER+1 ; (3)
LDA ICBUFFER+2 ; (3)
SBC ICBUFFER ; (3)
STA ICBUFFER ; (3)
LDA ICBUFFER+5 ; (3)
SUB ICBUFFER+3 ; (3)
STA ICBUFFER+3 ; (3)
LDA ICBUFFER+4 ; (3)
SBC ICBUFFER+2 ; (3)
STA ICBUFFER+2 ; (3)
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 99

DMA Application Examples
AVERAGE
LDA ICBUFFER+3 ; (3) Average period by adding and
ADD ICBUFFER+1 ; (3) - shifting right.
STA ICBUUFER+3 ; (3)
LDA ICBUFFER+2 ; (3)
ADC ICBUFFER ; (3)
RORA ; (1) Divide by 2.
STA PERIOD ; (3)
LDA ICBUFFER+3 ; (3)
RORA ; (1)
STA PERIOD+1 ; (3) PERIOD now contains 16bit

; average.
LDA DSC ; (3)
AND #$FE ; (2)
STA DSC ; (3) Clear DMA chan0 interrupt flag.
MOV #$C3,DC1 ; (4) Re-enable channel0 transfers.
RTI ; (7)

ORG $FFF6 ; Vectors

FDB DMA0IRQ ; Setup DMA interrupt vector.

ORG $FFFE

FDB TIMICDMA ; Setup Reset vector.
DMA08 Reference Manual — Rev. 1.0

100 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings
Listing 8 – Period Measurement

* COPYRIGHT (c) MOTOROLA 1994
*
* FILE NAME: TIMICSW.S08
*
* PURPOSE: To demonstrate period measurement in s/w for comparison
* with DMA
*
* ASSEMBLER: IASM08 VERSION: 3.03
*
* DESCRIPTION:
* Signal is fed to an input capture channel. Input capture interrupt
* service routine stores captured value in buffer and calculates
* average period every third edge.
*
**

* Register definitions for DMA channel 0 as mapped on the 68HC708XL36
D0SH EQU $0034 ; DMA Channel 0 Source High
D0SL EQU $0035 ; DMA Channel 0 Source Low
D0DH EQU $0036 ; DMA Channel 0 Destination High
D0DL EQU $0037 ; DMA Channel 0 Destination Low
D0C EQU $0038 ; DMA Channel 0 Control
D0BL EQU $0039 ; DMA Channel 0 Block Length
D0BC EQU $003B ; DMA Channel 0 Byte Count

DC1 EQU $004C ; DMA Control 1
DSC EQU $004D ; DMA Status/Control
DC2 EQU $004E ; DMA Control 2

* Register definitions for Timer channel 0 as mapped on the
* 708XL36
TSC EQU $0020 ; Timer Status/Control
TDMA EQU $0021 ; Timer DMA select
TCNTH EQU $0022 ; Timer Counter High
TCNTL EQU $0023 ; Timer Counter Low
TMODH EQU $0024 ; Timer Counter Modulo High
TMODL EQU $0025 ; Timer Counter Modulo Low

TSC0 EQU $0026 ; Timer Channel 0 Status/Control
TCH0H EQU $0027 ; Timer Channel 0 High
TCH0L EQU $0028 ; Timer Channel 0 Low

ORG $60 ; RAM data area
* variables required for example.

PERIODRMB 2 ; Result calculated in CPU interrupt
; routine.

ICBUFFERRMB 4 ; Buffer for captured Timer values
TEMP RMB 1

ORG $7000 ; Code area
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 101

DMA Application Examples
TIMICSW
* Setup Timer channel 0

MOV #$00,TSC ; (4) Disable Overflow IRQ, clock at
; bus speed.

MOV #$00,TDMA ; (4) Service all timer channels with
; the CPU.

MOV #$44,TSC0 ; (4) Enable chan0 IRQs, capture on
; rising edge.

CLR TEMP ; (3) Clear edge counter.
DOIT

CLI ; (2) Enable interrupts.
BRA * ; (3)

TIC0IRQ
* Service the TIC interrupt, calculate and store period every 3rd edge.

PSHH ; (2) Stack H
LDA TEMP ; (3) Check edge counter.
CMP #2 ; (2) 3rd edge?
BEQ DO_CALC ; (3) - Yes, so go calculate period.
LDHX TCH0H ; (4) - No, so get captured value
INC TEMP ; (4) Increment edge counter.
TSTA ; (1)
BNE STORE_2ND ; (3) 1st or 2nd edge?
STHX ICBUFFER ; (4) Store captured time in buffer.
BRA CLRIRQ ; (3)

STORE_2ND
STHX ICBUFFER+2 ; (4)
BRA CLRIRQ ; (3)

DO_CALC
LDA ICBUFFER+3 ; (3) Calculate and store the 2

; periods.
SUB ICBUFFER+1 ; (3)
STA ICBUFFER+1 ; (3)
LDA ICBUFFER+2 ; (3)
SBC ICBUFFER ; (3)
STA ICBUFFER ; (3)
LDA TCH0L ; (3)
SUB ICBUFFER+3 ; (3)
STA ICBUFFER+3 ; (3)
LDA TCH0H ; (3)
SBC ICBUFFER+2 ; (3)
STA ICBUFFER+2 ; (3)
DMA08 Reference Manual — Rev. 1.0

102 DMA Application Examples MOTOROLA

DMA Application Examples
Full Assembler Listings
AVERAGE
LDA ICBUFFER+3 ; (3) Average period by adding and
ADD ICBUFFER+1 ; (3) - shifting right.
STA ICBUUFER+3 ; (3)
LDA ICBUFFER+2 ; (3)
ADC ICBUFFER ; (3)
RORA ; (1) Divide by 2.
STA PERIOD ; (3)
LDA ICBUFFER+3 ; (3)
RORA ; (1)
STA PERIOD+1 ; (3) PERIOD now contains 16bit

; average.
CLR TEMP ; (3) Reinitialize edge counter.

CLRIRQ
LDA TSC0 ; (3)
AND #$7F ; (2) Clear channel flag
STA TSC0 ; (3)
PULH ; (2) Restore H.
RTI ; (7)

ORG $FFF4 ; Vectors

FDB TIC0IRQ ; Setup DMA interrupt vector.

ORG $FFFE

FDB TIMICSW ; Setup Reset vector.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Application Examples 103

DMA Application Examples
DMA08 Reference Manual — Rev. 1.0

104 DMA Application Examples MOTOROLA

DMA Module
DMA Module
Contents

Introduction .106

708XL36 DMA Registers .107

708XL36 DMA Transfer Source Mapping .108

708XL36 Peripheral Interrupt Prioritization .108
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Module 105

DMA Module
Introduction

As an example of an actual implementation of the DMA module, this
section contains register, bit and channel assignment details for the
708XL36 device. Refer to the applicable data book for full details of this
MCU.

Figure 23. Diagram of the MC68HC708XL36 Layout

As can be seen from Figure 23 , the 708XL36 contains a clock
generation module (CGM), a system integration module (SIM), a timing
interface module (TIM), a serial peripheral interface module (SPI), and a
serial communications interface module (SCI) as well as a 3-channel
DMA module. The TIM, SPI, and SCI modules can all generate requests
for DMA transfers.

CPU08

LVI

COP

TIMING
INTERFACE

MODULE

SERIAL
PERIPHERAL
INTERFACE

MODULE

SYSTEM
INTEGRATION

MODULE

CLOCK
GENERATION

MODULE

SERIAL
COMMUNICATIONS

INTERFACE

RANDOM
ACCESS
MEMORY

ELECTRICALLY
PROGRAMMABLE

READ-ONLY MEMORY

INTERNAL BUS (IBUS)

I/O

DMA y

y

x

Note: ‘x’ indicates the direction in which the modules may be expanded;
‘y’ is the standard module height
DMA08 Reference Manual — Rev. 1.0

106 DMA Module MOTOROLA

DMA Module
708XL36 DMA Registers
708XL36 DMA Registers

NOTE: Table 10 shows only those parts of the 708XL36 register block
concerned with its three DMA channels and its modules’ service request
enable bits. (Refer to the applicable data book for details).

Table 10. MC68HC708XL36 DMA Registers

Register name Address Bit 7 6 5 4 3 2 1 Bit 0

SPI control (SPCR) $0010 SPIE DMAS SPMSTR CPOL CPHA SPWOM SPE

SCI control 3 (SCC3) $0015 R8 T8 DMARE DMATE ORIE NEIE FEIE PEIE

Timer DMA select (TDMA) $0021 DMA3S DMA2S DMA1S DMA0S

Ch. 0 source address (D0SH) $0034 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
Ch. 0 source address (D0SL) $0035 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Ch. 0 destination address (D0DH) $0036 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
Ch. 0 destination address (D0DL) $0037 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Ch. 0 control (D0C) $0038 SDC3 SDC2 SDC1 SDC0 BWC DTS2 DTS1 DTS0
Ch. 0 block length (D0BL) $0039 BL7 BL6 BL5 BL4 BL3 BL2 BL1 BL0

Ch. 0 byte count (D0BC) $003B BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0
Ch. 1 source address (D1SH) $003C AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
Ch. 1 source address (D1SL) $003D AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Ch. 1 destination address (D1DH) $003E AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
Ch. 1 destination address (D1DL) $003F AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Ch. 1 control (D1C) $0040 SDC3 SDC2 SDC1 SDC0 BWC DTS2 DTS1 DTS0
Ch. 1 block length (D1BL) $0041 BL7 BL6 BL5 BL4 BL3 BL2 BL1 BL0

Ch. 1 byte count (D1BC) $0043 BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0
Ch. 2 source address (D2SH) $0044 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
Ch. 2 source address (D2SL) $0045 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Ch. 2 destination address (D2DH) $0046 AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8
Ch. 2 destination address (D2DL) $0047 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Ch. 2 control (D2C) $0048 SDC3 SDC2 SDC1 SDC0 BWC DTS2 DTS1 DTS0
Ch. 2 block length (D2BL) $0049 BL7 BL6 BL5 BL4 BL3 BL2 BL1 BL0

Ch. 2 byte count (D2BC) $004B BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0
DMA control 1 (DC1) $004C BB1 BB0 TEC2 IEC2 TEC1 IEC1 TEC0 IEC0

DMA status and control (DSC) $004D DMAP L2 L1 L0 DMAWE IFC2 IFC1 IFC0
DMA control 2 (DC2) $004E SWI7 SWI6 SWI5 SWI4 SWI3 SWI2 SWI1 SWI0
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA Module 107

DMA Module
708XL36 DMA Transfer Source Mapping

Bits DTS[2:0] in the channel control register assign the individual DMA
channels to one of the eight transfer source inputs, as shown in Table
11. See DMA Channel Control Register on page 59 for further
information on the DTS bits.

708XL36 Peripheral Interrupt Prioritization

Dependent on the state of the DMAP bit, DMA transfers can be either
higher or lower in priority to the CPU interrupts shown. See DMA Status
and Control Register on page 54 for further information on the DMAP bit.

Table 11. DTS Bits

DTS[2:0] Transfer Source

000 DMA service request input 0 = TIM channel 0

001 DMA service request input 1 = TIM channel 1

010 DMA service request input 2 = TIM channel 2

011 DMA service request input 3 = TIM channel 3

100 DMA service request input 4 = SPI receive

101 DMA service request input 5 = SPI transmit

110 DMA service request input 6 = SCI receive

111 DMA service request input 7 = SCI transmit

Table 12. MC68HC708XL36 Peripheral
Interrupt Prioritization

Interrupt Source

Highest priority Software interrupt

External interrupt

Peripheral interrupt 1 = Timer interrupt

Peripheral interrupt 2 = SPI interrupt

Lowest priority Peripheral interrupt 3 = SCI interrupt
DMA08 Reference Manual — Rev. 1.0

108 DMA Module MOTOROLA

DMA08 Version B
DMA08 Version B
DMA Version B

\Version B of the DMA08 also has three channels, but has a different
word mode operation from version A. In version B all word transfers are
allocated 100% of the total bandwidth irrespective of the bus bandwidth
control bits in DMA Control Register 1. During word transfers there are
no CPU cycles between the high and low bytes of the word or, in the
case of block transfers, between words. This ensures that all words are
transferred coherently, i.e., once a word transfer has started, the CPU
cannot modify the source data values until the DMA releases the internal
bus.

Whenever the active DMA channel changes or between block transfers
when the DMA is configured for loop transfers, the number of CPU
cycles is controlled by the bus bandwidth control bits according to
Table 13 .

Figure 24 highlights the difference between byte and word transfers for
Versions A and B of the DMA. The particular case shown is Channel X
finishing a transfer and Channel Y starting a 4-byte (2-word) transfer with
a bandwidth of 50%. Note that on Version A of DMA08 the bus activity
is the same for both byte and word transfers.

Table 13. DMA/CPU Bus Bandwidth
Sharing (DMA08 Version B)

BB1:BB0
DMA/CPU Bus Bandwidth Sharing

Ratio (DMA/CPU) Number of CPU cycles

00 25/75% 6

01 50/50% 2

10 67/33% 1

11 100/0% 1
DMA08 Reference Manual — Rev. 1.0

MOTOROLA DMA08 Version B 109

DMA08 Version B
Figure 24. MCU Bus Activity During DMA Byte and Word Transfers
(50% Bandwidth)

DMA CONTROLLED BUS CYCLE CPU CONTROLLED BUS CYCLE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190IBUS CYCLE

BYTE MODE

WORD MODE

CHX
FINISHED

CHY
STARTED

CHY
FINISHED

CHX
FINISHED

CHY
STARTED

CHY
FINISHED

DLSL C C C C C C C C C C

CCCCCCCCCC

S1 S2 S3 S4

SL S1 S2 S3 S4

D1 D2 D3 D4

D4D3D2D1DL

BYTE/WORD

CHX
FINISHED

CHY
STARTED

CHY
FINISHED

DLSL C C C C C C C C C CS1 S2 S3 S4D1 D2 D3 D4

Version A of the DMA08

Version B of the DMA08

MODE
DMA08 R

110
eference Manual — Rev. 1.0

DMA08 Version B MOTOROLA

Glossary
Glossary
$xxxx — The digits following the “$” are in hexadecimal format.

#xxxx — The digits following the “#” indicate an immediate operand.

A — Accumulator. See accumulator.

accumulator (A) — An 8-bit general-purpose register in the CPU08.
The CPU08 uses the accumulator to hold operands and results
of arithmetic and non-arithmetic operations.

address bus — The set of conductors used to select a specific
memory location so that the CPU can write information into the
memory location or read its contents.

addressing mode — The way that the CPU obtains (addresses) the
information needed to complete an instruction. The M68HC08
CPU has 16 addressing modes.

algorithm — A set of specific procedures by which a solution is
obtained in a finite number of steps, often used in numerical
calculation.

ALU — Arithmetic logic unit. See arithmetic logic unit.

arithmetic logic unit (ALU) — The portion of the CPU of a computer
where mathematical and logical operations take place. Other
circuitry decodes each instruction and configures the ALU to
perform the necessary arithmetic or logical operations at each
step of an instruction.

assembly language — A method used by programmers for
representing machine instructions (binary data) in a more
convenient form. Each machine instruction is given a simple,
short name, called a mnemonic (or memory aid), which has a
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Glossary 111

Glossary
one-to-one correspondence with the machine instruction. The
mnemonics are translated into an object code program which a
microcontroller can use.

ASCII — American Standard Code for Information Interchange. A
widely accepted correlation between alphabetic and numeric
characters and specific 7-bit binary numbers.

asynchronous — Refers to circuitry and operations without common
clock signals.

BCD — Binary-coded decimal. See binary-coded decimal.

binary — The binary number system using 2 as its base and using only
the digits 0 and 1. Binary is the numbering system used by
computers because any quantity can be represented by a series
of ones and zeros. Electrically, these ones and zeros are
represented by voltage levels of approximately VDD (input) and
VSS (ground), respectively.

binary-coded decimal (BCD) — A notation that uses binary values to
represent decimal quantities. Each BCD digit uses 4 binary bits.
Six of the possible 16 binary combinations are considered illegal.

bit — A single binary digit. A bit can hold a single value of zero or one.

Boolean — A mathematical system of representing logic through a
series of algebraic equations that can only be true or false, using
operators such as AND, OR, and NOT.

branch instructions — Computer instructions that cause the CPU to
continue processing at a memory location other than the next
sequential address. Most branch instructions are conditional.
That is, the CPU will continue to the next sequential address (no
branch) if a condition is false, or continue to some other address
(branch) if the condition is true.

bus — A collection of logic lines (conductor paths) used to transfer
data.

byte — A set of exactly eight binary bits.
DMA08 Reference Manual — Rev. 1.0

112 Glossary MOTOROLA

Glossary
C — Abbreviation for carry/borrow in the condition code register of the
CPU08. The CPU08 sets the carry/borrow flag when an addition
operation produces a carry out of bit 7 of the accumulator or
when a subtraction operation requires a borrow. Some logical
operations and data manipulation instructions also clear or set
the C flag (as in bit test and branch instructions and shifts and
rotates).

CCR — Abbreviation for condition code register in the CPU08. See
condition code register.

central processor unit (CPU) — The primary functioning unit of any
computer system. The CPU controls the execution of
instructions.

checksum — A value that results from adding a series of binary
numbers. When exchanging information between computers, a
checksum indicates the integrity of the data transfer. If values
were transferred incorrectly, it is unlikely that the checksum
would match the value that was expected.

clear — Establish logic zero state on a bit or bits; the opposite of set.

clock — A square wave signal used to sequence events in a computer.

condition code register (CCR) — An 8-bit register in the CPU08 that
contains the interrupt mask bit and five bits (flags) that indicate
the results of the instruction just executed.

control unit — One of two major units of the CPU. The control unit
contains logic functions that synchronize the machine and direct
various operations. The control unit decodes instructions and
generates the internal control signals that perform the requested
operations. The outputs of the control unit drive the execution
unit, which contains the arithmetic logic unit (ALU), CPU
registers, and bus interface.

CPU — Central processor unit. See central processor unit.

CPU08 — The central processor unit of the M68HC08 Family.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Glossary 113

Glossary
CPU cycles — A CPU clock cycle is one period of the internal bus-rate
clock, normally derived by dividing a crystal oscillator source by
two or more so the high and low times will be equal. The length
of time required to execute an instruction is measured in CPU
clock cycles.

CPU registers — Memory locations that are wired directly into the CPU
logic instead of being part of the addressable memory map. The
CPU always has direct access to the information in these
registers. The CPU registers in an M68HC08 are:

— A (8-bit accumulator)

— H:X (16-bit accumulator)

— SP (16-bit stack pointer)

— PC (16-bit program counter)

— CCR (condition code register containing the V, H, I, N, Z,
and C bits)

cycles — See CPU cycles.

data bus — A set of conductors used to convey binary information from
a CPU to a memory location or from a memory location to a
CPU.

decimal — Base 10 numbering system that uses the digits zero
through nine.

direct address — Any address within the first 256 addresses of
memory ($0000–$00FF). The high-order byte of these
addresses is always $00. Special instructions allow these
addresses to be accessed using only the low-order byte of their
address. These instructions automatically fill in the assumed $00
value for the high-order byte of the address.

direct addressing mode — Direct addressing mode uses a
program-supplied value for the low-order byte of the address of
an operand. The high-order byte of the operand address is
assumed to be $00 and so it does not have to be explicitly
specified. Most direct addressing mode instructions can access
any of the first 256 memory addresses.
DMA08 Reference Manual — Rev. 1.0

114 Glossary MOTOROLA

Glossary
direct memory access (DMA) — One of a number of modules that
handle a variety of control functions in the modular M68HC08
Family. The DMA can perform interrupt-driven and
software-initiated data transfers between any two
CPU-addressable locations. Each DMA channel can
independently transfer data between any addresses in the
memory map. DMA transfers reduce CPU overhead required for
data movement interrupts.

direct page — The first 256 bytes of memory ($0000–$00FF); also
called page 0.

DMA — Direct memory access. See direct memory access.

effective address (EA) — The address where an instruction operand is
located. The addressing mode of an instruction determines how
the CPU calculates the effective address of the operand.

EPROM — Erasable, programmable, read-only memory. A non-volatile
type of memory that can be erased by exposure to an ultraviolet
light source.

execution unit (EU) — One of the two major units of the CPU
containing the arithmetic logic unit (ALU), CPU registers, and
bus interface. The outputs of the control unit drive the execution
unit.

extended addressing mode — In this addressing mode, the
high-order byte of the address of the operand is located in the
next memory location after the opcode. The low-order byte of the
operand address is located in the second memory location after
the opcode. Extended addressing mode instructions can access
any address in a 64-Kbyte memory map.

H — Abbreviation for the upper byte of the 16-bit index register (H:X) in
the CPU08.

H — Abbreviation for half-carry in the condition code register of the
CPU08. This bit indicates a carry from the low-order four bits of
the accumulator value to the high-order four bits. The half-carry
bit is required for binary-coded decimal arithmetic operations.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Glossary 115

Glossary
The decimal adjust accumulator (DAA) instruction uses the state
of the H and C flags to determine the appropriate correction
factor.

hexadecimal — Base 16 numbering system that uses the digits 0
through 9 and the letters A through F. One hexadecimal digit can
exactly represent a 4-bit binary value. Hexadecimal is used by
people to represent binary values because a two-digit number is
easier to use than the equivalent eight-digit number.

high order — The leftmost digit(s) of a number.

H:X — Abbreviation for the 16-bit index register in the CPU08. The
upper byte of H:X is called H. The lower byte is called X. In the
indexed addressing modes, the CPU uses the contents of H:X to
determine the effective address of the operand. H:X can also
serve as a temporary data storage location.

I — Abbreviation for interrupt mask bit in the condition code register of
the CPU08. When I is set, all interrupts are disabled. When I is
cleared, interrupts are enabled.

immediate addressing mode — In immediate addressing mode, the
operand is located in the next memory location(s) after the
opcode. The immediate value is one or two bytes, depending on
the size of the register involved in the instruction.

index register (H:X) — A 16-bit register in the CPU08. The upper byte
of H:X is called H. The lower byte is called X. In the indexed
addressing modes, the CPU uses the contents of H:X to
determine the effective address of the operand. H:X can also
serve as a temporary data storage location.

indexed addressing mode — Indexed addressing mode instructions
access data with variable addresses. The effective address of
the operand is determined by the current value of the H:X
register added to a 0-, 8-, or 16-bit value (offset) in the
instruction. There are separate opcodes for 0-, 8-, and 16-bit
variations of indexed mode instructions, and so the CPU knows
how many additional memory locations to read after the opcode.
DMA08 Reference Manual — Rev. 1.0

116 Glossary MOTOROLA

Glossary
indexed, post increment addressing mode — In this addressing
mode, the effective address of the operand is determined by the
current value of the index register, added to a 0- or 8-bit value
(offset) in the instruction, after which the index register is
incremented. Operands with variable addresses can be
addressed with the 8-bit offset instruction.

inherent addressing mode — The inherent addressing mode has no
operand because the opcode contains all the information necessary
to carry out the instruction. Most inherent instructions are one byte
long.

input/output (I/O) — Input/output interfaces between a computer
system and the external world. A CPU reads an input to sense
the level of an external signal and writes to an output to change
the level on an external signal.

instructions — Instructions are operations that a CPU can perform.
Instructions are expressed by programmers as assembly
language mnemonics. A CPU interprets an opcode and its
associated operand(s) and instruction.

instruction set — The instruction set of a CPU is the set of all
operations that the CPU can perform. An instruction set is often
represented with a set of shorthand mnemonics, such as LDA,
meaning load accumulator (A). Another representation of an
instruction set is with a set of opcodes that is recognized by the
CPU.

interrupt — Interrupts provide a means to temporarily suspend normal
program execution so that the CPU is freed to service sets of
instructions in response to requests (interrupts) from peripheral
devices. Normal program execution can be resumed later from
its original point of departure. The CPU08 can process up to
128 separate interrupt sources, including a software interrupt
(SWI).

I/O — Input/output. I/O interfaces between a computer system and the
external world. A CPU reads an input to sense the level of an
external signal and writes to an output to change the level on an
external signal.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Glossary 117

Glossary
IRQ — Interrupt request. The overline indicates an active-low signal.

least significant bit (LSB) — The rightmost digit of a binary value.

logic one — A voltage level approximately equal to the input power
voltage (VDD).

logic zero — A voltage level approximately equal to the ground voltage
(VSS).

low order — The rightmost digit(s) of a number.

LS — Least significant.

LSB — Least significant bit. The rightmost digit of a binary value.

M68HC08 — A Motorola family of 8-bit MCUs.

machine codes — The binary codes processed by the CPU as
instructions. Machine code includes both opcodes and operand
data.

MCU — Microcontroller unit. A complete computer system, including a
CPU, memory, a clock oscillator, and input/output (I/O) on a
single integrated circuit.

memory location — In the M68HC08, each memory location holds
one byte of data and has a unique address. To store information
into a memory location, the CPU places the address of the
location on the address bus, the data information on the data
bus, and asserts the write signal. To read information from a
memory location, the CPU places the address of the location on
the address bus and asserts the read signal. In response to the
read signal, the selected memory location places its data onto
the data bus.

memory map — A pictorial representation of all memory locations in a
computer system.

memory-to-memory addressing mode — In this addressing mode,
the accumulator has been eliminated from the data transfer
process, thereby reducing execution cycles. This addressing
mode, therefore, provides rapid data transfers because it does
not require use of the accumulator and associated load and
DMA08 Reference Manual — Rev. 1.0

118 Glossary MOTOROLA

Glossary
store instructions. There are four memory-to-memory addressing
mode instructions. Depending on the instruction, operands are
found in the byte following the opcode, in a direct page location
addressed by the byte immediately following the opcode, or in a
location addressed by the index register.

microcontroller — Microcontroller unit (MCU). A complete computer
system, including a CPU, memory, a clock oscillator, and
input/output (I/O) on a single integrated circuit.

mnemonic — Three to five letters that represent a computer operation.
For example, the mnemonic form of the load accumulator
instruction is LDA.

most significant bit (MSB) — The leftmost digit of a binary value.

MS — Abbreviation for most significant.

MSB — Most significant bit. The leftmost digit of a binary value.

N — Abbreviation for negative, a bit in the condition code register of the
CPU08. The CPU sets the negative flag when an arithmetic
operation, logical operation, or data manipulation produces a
negative result.

nibble — Half a byte; four bits.

object code — The output from an assembler or compiler that is itself
executable machine code, or is suitable for processing to
produce executable machine code.

one — A logic high level, a voltage level approximately equal to the
input power voltage (VDD).

one’s complement — An infrequently used form of signed binary
numbers. Negative numbers are simply the complement of their
positive counterparts. One’s complement is the result of a
bit-by-bit complement of a binary word, all ones are changed to
zeros and all zeros changed to ones. One’s complement is two’s
complement without the increment.

opcode — A binary code that instructs the CPU to do a specific
operation in a specific way.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Glossary 119

Glossary
operand — The fundamental quantity on which a mathematical
operation is performed. Usually a statement consists of an
operator and an operand. The operator may indicate an add
instruction; the operand, therefore, will indicate what is to be
added.

oscillator — A circuit that produces a constant frequency square wave
that is used by the computer as a timing and sequencing
reference.

page 0 — The first 256 bytes of memory ($0000–$00FF). Also called
direct page.

PC — Program counter. A 16-bit register in the CPU08. See program
counter.

pointer — Pointer register. An index register is sometimes called a
pointer register because its contents are used in the calculation
of the address of an operand and, therefore, points to the
operand.

program — A set of computer instructions that causes a computer to
perform a desired operation or operations.

programming model — The registers of a particular CPU.

program counter (PC) — A 16-bit register in the CPU08. The PC
register holds the address of the next instruction or operand that
the CPU will use.

pull — The act of reading a value from the stack. In the M68HC08, a
value is pulled by the following sequence of operations. First, the
stack pointer register is incremented so that it points to the last
value saved on the stack. Next, the value at the address
contained in the stack pointer register is read into the CPU.

push — The act of storing a value at the address contained in the stack
pointer register and then decrementing the stack pointer so that
it points to the next available stack location.
DMA08 Reference Manual — Rev. 1.0

120 Glossary MOTOROLA

Glossary
RAM — Random access memory. All RAM locations can be read or
written by the CPU. The contents of a RAM memory location
remain valid until the CPU writes a different value or until power
is turned off.

read — To transfer the contents of a memory location to the CPU.

registers — Memory locations wired directly into the CPU logic instead
of being part of the addressable memory map. The CPU always
has direct access to the information in these registers. The CPU
registers in an M68HC08 are:

— A (8-bit accumulator)

— (H:X) (16-bit accumulator)

— SP (16-bit stack pointer)

— PC (16-bit program counter)

— CCR (condition code register containing the V, H, I, N, Z,
and C bits)

Memory locations that hold status and control information for
on-chip peripherals are called input/output (I/O) and control
registers.

relative addressing mode — Relative addressing mode is used to
calculate the destination address for branch instructions. If the
branch condition is true, the signed 8-bit value after the opcode
is added to the current value of the program counter to get the
address where the CPU will fetch the next instruction. If the
branch condition is false, the effective address is the content of
the program counter.

reset — Reset is used to force a computer system to a known starting
point and to force on-chip peripherals to known starting
conditions.

ROM — Read-only memory. A type of memory that can be read but
cannot be changed (written). The contents of ROM must be
specified before manufacturing the MCU.

set — To establish a logic one state on a bit or bits; opposite of clear.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Glossary 121

Glossary
signed — A form of binary number representation accommodating both
positive and negative numbers. The most significant bit is used
to indicate whether the number is positive or negative, normally
zero for positive and one for negative, and the other seven bits
indicate the magnitude.

SIM — System integration module. One of a number of modules that
handle a variety of control functions in the modular M68HC08
Family. The SIM controls mode of operation, resets and
interrupts, and system clock generation.

SP — Stack pointer. A 16-bit register in the CPU08. See stack pointer.

stack — A mechanism for temporarily saving CPU register values
during interrupts and subroutines. The CPU maintains this
structure with the stack pointer (SP) register, which contains the
address of the next available (empty) storage location on the
stack. When a subroutine is called, the CPU pushes (stores) the
low-order and high-order bytes of the return address on the stack
before starting the subroutine instructions. When the subroutine
is done, a return from subroutine (RTS) instruction causes the
CPU to recover the return address from the stack and continue
processing where it left off before the subroutine. Interrupts work
in the same way except that all CPU registers are saved on the
stack instead of just the program counter.

stack pointer (SP) — A 16-bit register in the CPU08 containing the
address of the next available (empty) storage on the stack.

stack pointer addressing mode — Stack pointer (SP) addressing
mode instructions operate like indexed addressing mode
instructions except that the offset is added to the stack pointer
instead of the index register (H:X). The effective address of the
operand is formed by adding the unsigned byte(s) in the stack
pointer to the unsigned byte(s) following the opcode.

subroutine — A sequence of instructions to be used more than once in
the course of a program. The last instruction in a subroutine is a
return from subroutine (RTS) instruction. At each place in the
main program where the subroutine instructions are needed, a
jump or branch to subroutine (JSR or BSR) instruction is used to
DMA08 Reference Manual — Rev. 1.0

122 Glossary MOTOROLA

Glossary
call the subroutine. The CPU leaves the flow of the main
program to execute the instructions in the subroutine. When the
RTS instruction is executed, the CPU returns to the main
program where it left off.

synchronous — Refers to two or more things made to happen
simultaneously in a system by means of a common clock signal.

system integration module (SIM) — One of a number of modules that
handle a variety of control functions in the modular M68HC08
Family. The SIM controls mode of operation, resets and
interrupts, and system clock generation.

table — A collection or ordering of data (such as square root values)
laid out in rows and columns and stored in a computer memory
as an array.

two’s complement — A means of performing binary subtraction using
addition techniques. The most significant bit of a two’s
complement number indicates the sign of the number (1
indicates negative). The two’s complement negative of a number
is obtained by inverting each bit in the number and then adding
one to the result.

unsigned — Refers to a binary number representation in which all
numbers are assumed positive. With signed binary, the most
significant bit is used to indicate whether the number is positive
or negative, normally zero for positive and one for negative, and
the other seven bits indicating the magnitude.

variable — A value that changes during the course of executing a
program.

word — Two bytes or 16 bits, treated as a unit.

write — The transfer of a byte of data from the CPU to a memory
location.

X — Abbreviation for the lower byte of the index register (H:X) in the
CPU08.
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Glossary 123

Glossary
Z — Abbreviation for zero, a bit in the condition code register of the
CPU08. The CPU08 sets the zero flag when an arithmetic
operation, logical operation, or data manipulation produces a
result of $00.

zero — A logic low level, a voltage level approximately equal to the
ground voltage (VSS).
DMA08 Reference Manual — Rev. 1.0

124 Glossary MOTOROLA

Index
Index
A
address bus – see IBUS

address calculation . 46, 59

address extension registers. 28

ADX . 28

ALU . 31, 46

assembler listing . 84

B
bandwidth control . 47

base addresses . 27, 46, 59–63

BB1, BB0 bits in DC1 . 52

block diagrams
DMA module . 22, 26
DMA operation . 30, 36
MC68HC708XL . 36 20, 106

breakpoints . 33

buses
bandwidth. 47
BB1, BB0 – bandwidth control bits. 52
DMA/CPU use of IBUS . 47
during byte transfer . 41
during word transfer . 42

IBUS . 36, 41, 42
priority . 47

BWC — bit in D0C .60

byte transfers. 40
DMA08 Reference Manual — Rev. 1.0

MOTOROLA Index 125

Index
C
control registers . 31, 52

CPU
interrupt latency . 20
limitations . 18

D
D0BC – byte count register . 29, 65

D0BL – block length register . 30, 64

D0C – channel control register . 59

D0DH, D0DL – destination address registers 63

D0SH, D0SL – source address registers. 62

data bus – see IBUS

DC1 – control register 1. 52

DC2 – control register 2. 57

destination addresses – see base addresses

DMAP — bit in DSC . 54

DMAWE-bit in DSC . 56

DSC – control/status register. 54

DTS2-DTS0 bits in D0C . 61

E
examples

large block transfer. 71
small block transfer . 69

F
features list . 23

I
IBUS .36, 41, 42

IEC0 — bit in DC1 . 53

IFC0 – interrupt flag. 56
DMA08 Reference Manual — Rev. 1.0

126 Index
 MOTOROLA

Index
interrupts
IFC0 . 56
transfer interrupt priority . 54

L
L0 — bit in DSC. 55

latency
CPU . 20
DMA register latency . 51
DMA transfer latency . 20, 44

looping . 55

low power modes
stop mode . 32
wait mode. 32

M
MC68HC708XL36 . 106

block diagram. 20, 106
interrupt priority . 108
register summary . 107
transfer sources . 108

memory stretch . 31

modes of operation
expanded . 33
normal . 36
stop . 32
wait. 32

R
register summary .50

S
SDC3–SDC0 bits in D0C .59

source addresses – see base addresses

source selection. 61

status registers . 31, 54
DMA08 Reference Manual — Rev. 1.0
MOTOROLA Index 127

Index
stop mode . 32

SW17-SW10 bits in DC2 . 57

T
TEC0 — bit in DC1 . 53

timing diagrams
byte transfers . 40
DMA/CPU use of IBUS . 47
word transfers . 42, 110

transfers
bus cycles . 40
byte transfers . 40
hardware interrupt-driven . 37
looping . 55
priority . 54
programming procedure. 44
software-initiated . 37
word transfers . 42

W
wait mode . 32, 56

word transfers . 42
DMA08 Reference Manual — Rev. 1.0

128 Index
 MOTOROLA

DMA08RM/AD

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.1-800-441-2447 or

602-303-5454
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan.

03-81-3521-8315
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

	List of Sections
	Preface
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contents
	Introduction
	The DMA08 Module

	Overview and Features
	Contents
	Introduction
	Features

	DMA Module Description
	Contents
	Introduction
	Source and Destination Base Addresses
	Address Extension Module
	Byte Count
	Block Length
	Arithmetic Logic Unit (ALU)
	DMA Control and Status
	Memory Stretch
	Low-Power Modes
	Wait Mode
	Stop Mode

	Breakpoints
	DMA in Expanded Mode

	DMA Transfers
	Contents
	DMA Operation
	Transfer Types
	Cycle-By-Cycle Operation
	Byte Transfers
	DMA Activity During a Byte Transfer
	Word Transfers
	DMA Activity During a Word Transfer

	DMA Transfer Latency
	Example of the DMA Transfer Programming Procedure
	Address Calculation
	Bandwidth Control

	DMA Registers
	Contents
	Introduction
	DMA Register Latency
	DMA Module Registers
	DMA Control Register 1
	DMA Status and Control Register
	DMA Control Register 2

	Individual DMA Channel Registers
	DMA Channel Control Register
	DMA Source Base Address Registers
	DMA Destination Base Address Registers
	DMA Block Length Register
	DMA Byte Count Register

	DMA Application Examples
	Contents
	Introduction
	Software-Initiated Block Transfer
	A – Simple, Small Block Transfer
	B – Flexible, Large Block Transfer
	Summary

	DMA Service of Serial Communications
	A – Transmitting a Buffered Message Using the CPU
	B – Servicing the SCI Transmitter Using the DMA
	Summary

	DMA Timer Servicing
	A – Generating a Pseudo Buffered PWM
	B – Buffering Input Captures for Period Calculatio...
	Summary

	Full Assembler Listings
	Listing 1 – Fixed Block Length Transfer
	Listing 2 – Variable Block Length Transfer
	Listing 3 – SCI Transmitter
	Listing 4 – SCI Transmitter
	Listing 5 – Timer Output Compare
	Listing 6 – PWM Generation
	Listing 7 – Timer Input Capture
	Listing 8 – Period Measurement

	DMA Module
	Contents
	Introduction
	708XL36 DMA Registers
	708XL36 DMA Transfer Source Mapping
	708XL36 Peripheral Interrupt Prioritization

	DMA08 Version B
	DMA Version B

	Glossary
	Index

