an1060.htm

Page 1

AN1060

MCG68HC11 Bootstrap Mode

By Jim Sibigtroth, Mike Rhoades and John L angan

INTRODUCTION

M68HC11 MCUs have a bootstrap mode that allows a user-defined program to be loaded into the internal random access

memory (RAM) by way of the serial communications interface (SCI); the M68HC11 then executes this |oaded program. The

loaded program can do anything anormal user program can do as well as anything afactory test program can do because
protected control bits are accessible in bootstrap mode. Although the bootstrap mode is a single-chip mode of operation,

expanded mode resources are accessi ble because the mode control bits can be changed while operating in the bootstrap mode.

This application note explains the operation and application of the M68HC11 bootstrap mode. Although the basic concepts
associated with this mode are quite smple, the more subtle implications of these functions require careful consideration. Useful
applications of this mode are overlooked due to an incomplete understanding of the bootstrap mode. Also, common problems

associated with the bootstrap mode can be avoided by a more complete understanding of its operation and implications.

This application note includes the following topics.

Basic operation and use of M68HC11 bootstrap mode

Bootstrap Mode Logic
Detailed explanation of bootstrap firmware
0 EEPROM security
0 Automatic Baud rate selection
O Main bootloader
0 Uploader
0 Programming utility
Incorporating bootstrap mode into a system
0 Mode sdlect
0 Reset
0 RxD
o IxD
o Other
Driving bootstrap mode from another M68HC11
Driving bootstrap mode from a personal computer
0 Hardware
o Software
0 Maodifications
O Operation
Common bootstrap mode problems
0 Reset conditions
Special mode conditions
$FF Character string
Variable-length download
S-record conversion
EPROM emulation mode
ROM checksum
0 Double-buffered SCI data
Varieties of HC11 bootstrap ROMs

0O0O0OO0OO0OO

0 Commented listings for selected M68HC11 bootstrap ROMs

Tue, Apr 15, 1997

11:45

an1060.htm Page 2

BASIC BOOTSTRAP MODE

This section describes only basic functions of the bootstrap mode. Other functions of the bootstrap mode are described in detall
in the remainder of this application note.

When an M68HC11 isreset in bootstrap mode, the reset vector is fetched from asmall internal read-only memory (ROM)called
the bootstrap ROM or (boot ROM).The firmware program in this boot ROM then controls the bootloading pro- cess. First, the
on-chip SCI isinitialized. The first character received ($FF) determines which of two possible baud rates should be used for the
remaining characters in the download operation. Next, a binary program is received by the SCI system and is stored in RAM.
Finally, ajump instruction is executed to pass control from the bootloader firmware to the user's loaded program. Bootstrap
mode is useful both at the component level and after the MCU has been embedded into a finished user system.

At the component level, Motorola uses the bootstrap mode to control a monitored burn-in program for the on-chip electrically
erasable programmabl e read-only memory (EEPROM). Unitsto be tested are loaded into special circuit boards that each hold
fifty MCUS. These boards are then placed in burn-in ovens. Driver boards outside the ovens download an EEPROM exercise
and diagnostic program to all fifty MCUs in parallel. The MCUs under test independently exercise their internal EEPROM and
monitor programming and erase operations. This technique could be utilized by an end user to load program information into the
EPROM or EEPROM of an M68HC11 beforeit isinstalled into an end product. Asin the burn-in setup, many M68HC11s can
be gang programmed in parallel. This technique can also be used to program the EPROM of finished products after final
assembly.

Motorola also uses bootstrap mode for programming target devices on the M68HC11 EVM Evaluation Modules. Because
bootstrap mode is a privileged mode like special test, the EEPROM-based configuration register (CONFIG) can be programmed
using bootstrap mode on the EVM.

The greatest benefits from bootstrap mode are realized by designing the finished system so that bootstrap mode can be used after
final assembly. The finished system need not be a single-chip mode application for the bootstrap mode to be useful because the
expansion bus can be enabled after resetting the MCU in bootstrap mode. Allowing this capability requires amost no hardware
or design cost and the addition of this capability isinvisible in the end product until it is needed.

The ability to control the embedded processor through downloaded programs is achieved without the disassembly and chip-
swapping usually associated with such control. This mode provides an easy way to load non-volatile memories such as
EEPROM with calibration tables or to program the application firmware into a one-time programmable (OTP) MCU after find
assembly.

Another powerful use of bootstrap mode in afinished assembly isfor final test. Short programs can be downloaded to check
parts of the system, including components and circuitry external to the embedded MCU. If any problems appear during product
development, diagnostic programs can be down- loaded to find the problems, and corrected routines can be downloaded and
checked before incorporating them into the main application program.

Bootstrap mode can aso be used to interactively calibrate critical analog sensors. Since this calibration is done in the fina
assembled system, it can compensate for any errorsin discrete interface circuitry and cabling between the sensor and the analog
inputs to the MCU. Note that this calibration routine is a downloaded program that does not take up space in the normal
application program.

BOOTSTRAP MODE LOGIC

In the MC68HC11 very little logic is dedicated to the bootstrap mode: Thus, this mode adds almost no extra cost to the MCU
system. The biggest piece of circuitry for bootstrap mode is the small boot ROM. This ROM is 192 bytesin the origina
MC68HC11A8, but some of the newest members of the M68HC11 Family have as much as 448 bytes to accommodate added
features. Normally, this boot ROM is present in the memory map only when the MCU isreset in the bootstrap mode to prevent
interference with the user's normal memory space. The enable for this ROM is controlled by the read boot ROM (RBOQOT)
control bit in the highest priority interrupt (HPRIO) register. The RBOOT hit can be written by software whenever the MCU isir

Tue, Apr 15, 1997 11:45

an1060.htm Page 3

special test or specia bootstrap modes; when the MCU isin norma modes, RBOOT revertsto zero and becomes a read-only bit.
All other logic in the MCU would be present whether or not there was a bootstrap mode.

Figure 1 shows the composite memory map of the MC68HC711E9 in its four basic modes of operation, including bootstrap
mode. The active mode is determined by the mode A (MDA) and special mode (SMOD) control bits in the HPRIO control
register. These control bits are in turn controlled by the state of the mode A (MODA) and mode B (MODB) pins during reset.
Table 1 shows the relationship between the state of these pins during reset, the selected mode, and the state of the MDA, SMOD,
and RBOQOT control bits. Refer to the composite memory map and Table 1 for the following discussion.

wnim — - - -

[ty BE FENKRRE D
qmgyTE | TO ANV K EDUNDRAY
WiiFF — — ¥ — — ¥ \ FLo
EXTERMAL EXTERMAL
o — — 1 — — 1
W-E¥TE | (MO EE PEMEPRED
BIGF— - - - FEGETER | TOANYLE EDUNDARY
T T :
EXTERMAL EXTERMAL
J J f““_ (M EE DESRLED
VEm — - - - SE-BYTE | By op EEP FOM BIT]
EERROIM
WEFF— - - -
i i i
BT
ENTERRGL ENTERRGL __ﬂf SPECLAL
¥EFN — — - - ROM _//_ WODE
¥EFCD — - - - Jff" WEFFF
WEFFF — - - -
_f,.r'f [ty BE DEAELED
poo — — — 12k GER | BY AN EERFDM EN)
EFS_:II_FI.I RFFC
ur
(ar CTF] _//_ NOIRIEL
o - - - — o
WFFFF— — — —
SING LE EX PANDED & P L0L & P L0L WFFFF
C:HP MLLTIRLEX ED ECUITS TRGP TEST
(Taliy O 1 (Taliy O 1
WODE- 1 WODE- 1 WODE- 0 WODE-

MOTE: S0 Mg can change some aspec Eof ha mamory mag aner rasat

Figure 1 MC68HC711E9 Composite Memory Map

| Table 1 Mode Selection Summary |
| Input Pins | Mode Selected | Control Bitsin HPRIO |
| ™MobB || MODA | | RBOOT || svmoD || MDA |
Normal Single
I I B
1 I 1		Normal Expanded		0 I	1		
0	0		Specia Bootstrap		1		0
0	L [Spedid Test		0	L	1		

Tue, Apr 15, 1997 11:45

an1060.htm Page 4

The MDA control bit is determined by the state of the MODA pin asthe MCU leaves reset. MDA selects between single-chip
and expanded operating modes. When MDA is zero, a single-chip mode is selected, either normal single chip or special
bootstrap mode. When MDA is one, an expanded mode is selected, either normal expanded mode or specia test mode

The SMOD control bit is determined by the inverted state of the MODB pin asthe MCU leaves reset. SMOD controls whether a
normal mode or a special mode is selected. When SMOD is zero, one of the two normal modes is selected, either normal single-
chip or normal expanded mode. When SMOD is one, one of the two special modes is selected, either special bootstrap mode or
specia test mode. When either special modeisin effect (SMOD = 1), certain privileges arein effect- i.e., the ability to write to
the mode control bits and fetching the reset and interrupt vectors from $BFxx rather than $FFxx.

The alternate vector locations are achieved by simply driving address bit Al 4 low during all vector fetchesif SMOD = 1. For
special test mode, the aternate vector locations assure that the reset vector can be fetched from external memory space so the test
system can control MCU operation. In specia bootstrap mode, the small boot ROM is enabled in the memory map by RBOOT
=1 so the reset vector will be fetched from this ROM and the bootloader firmware will control MCU operation.

RBOOT isreset to one in bootstrap mode to enable the small boot ROM. In the other three modes, RBOOT isreset to zero to
keep the boot ROM out of the memory map. While in special test mode, SMOD = 1; which allows the RBOOT control bit to be
written to one by software to enable the boot ROM for testing purposes.

BOOT ROM FIRMWARE

The main program in the boot ROM is the bootloader, which is automatically executed as aresult of resetting the MCU in
bootstrap mode. Some newer versions of the M68HC11 Family have additional utility programs that can be called from a
downloaded program. One utility is available to program EPROM or OTP versions of the M68HC11. A second utility allows
the contents of memory locations to be uploaded to a host computer. In the MC68HC711K4 boot ROM, a section of codeis
used by Motorolafor stress testing the on-chip EEPROM. These test and utility programs are similar to self-test ROM programs
in other MCUs except that the boot ROM does not use valuable space in the normal memory map.

EEPROM SECURITY

Bootstrap firmware is also involved in an optional EEPROM security function on some versions of the M68HC11. This
EEPROM security feature prevents a software pirate from seeing what is in the on-chip EEPROM. The secured state isinvoked
by programming the no security (NOSEC) EEPROM bit in the CONFIG register. Once this NOSEC bit is programmed to
zero, the MCU will ignore the mode A pin and always come out of reset in normal single-chip mode or special bootstrap mode,
depending on the state of the mode B pin. Normal single-chip mode is the usual way a secured part would be used. Specia
bootstrap mode is used to disengage the security function (only after the contents of EEPROM and RAM have been erased).
Refer to the M6BHC11RM/AD, M68HC11 Reference Manual for additional information on the security mode and complete
listings of the boot ROM s that support the EEPROM security functions.

AUTOMATIC SELECTION OF BAUD RATE

The bootloader program in the MC68HC711E9 accommaodates either of two baud rates. The higher of these baud rates (7812
baud at a2-MHz E-clock rate) is used in systems that operate from a binary frequency crystal such as 223 Hz (8.389 MHz). At
this crystal frequency the baud rate is 8192 baud which was used extensively in automotive applications based on the MC6801
MCU. The second baud rate available to the M68HCI | bootloader is 1200 baud at a 2-MHz E-clock rate. Some of the newest
versions of the M68HC11 accommodate other baud rates using the same differentiation technique explained here. Refer to the
reference numbers in square brackets in Figure 2 during the following explanation.

NOTE: Software can change some aspects of the memory map after reset.

Tue, Apr 15, 1997 11:45

an1060.htm Page 5

]]]]]]]]]
#FFCHARCCTER STFATE BTO | BIT1 | BIT2 | BXT3 | ENT | ENTS | BTG | ETT | STOP | Tx D&I®LIME DLES HIGH
0TI 2 BALD
comsoms 144 444 4444 Mg
50 1 1 1 1[211 1 1 1 1
[et
—1 Al ' i
WFFCHORCTER STAT =) BT,
012 B LD |

Foc LW S PLES: T’T ’T ’T[E]‘T ’T ’I 1‘[[9]1[’T ’TM“«—UE]—---

[FORTE12ERUD] 5 @] 0 1] 0
[TE 1]
orwEY [10]

Figure 2 Automatic Detection of Baud Rate

Figure 2 shows how the bootloader program differentiates between the default baud rate (7812 baud at a 2-MHz E-clock rate)
and the alternate baud rate (1200 baud at a2-MHz E-clock rate). The host computer sends an initial $FF character, which isused
by the bootloader to determine the baud rate that will be used for the downloading operation. The top half of Figure 2 shows
normal reception of $FF. Receive data samples at [1] detect the falling edge of the start bit and then verify the start bit by taking a
sample at the center of the start bit time. Samples are then taken at the middle of each bit time [21 to reconstruct the value of the
received character (all onesin thiscase). A sample isthen taken at the middle of the stop bit time as aframing check (aoneis
expected) [3]. Unless another character immediately follows this $FF character, the receive dataline will idle in the high state as
shown at [4].

The bottom half of Figure 2 shows how the receiver will incorrectly receive the $FF character that is sent from the host at 1200
baud. Because the receiver is set to 7812 baud, the receive data samples are taken at the same times as in the upper half of Figure
2. The start bit at 1200 baud [5] is 6.5 times as long as the start bit at 7812 baud [6].

Samplestaken at [7] detect the failing edge of the start bit and verify it isalogic zero. Samplestaken at the middle of what the
receiver thinks are the first five bit times [8] detect logic zeros. The sample taken at the middle of what the receiver thinksis bit 5
[9] may detect either a zero or a one because the receive data has arising transition at about thistime. The samplesfor bits 6 and
7 detect ones, causing the receiver to think the received character was $CO or $E0 [10] at 7812 baud instead of the $FF which
was sent at 1200 baud. The stop bit sample detects a one as expected [11], but this detection is actually in the middle of bit O of
the 1200 baud $FF character. The SCI receiver is not confused by the rest of the 1200 baud $FF character because the receive
datalineishigh [12] just asit would be for the idle condition. If acharacter other than $FF is sent as the first character, an SCI
receive error could result.

MAIN BOOTLOADER PROGRAM

Figure 3isaflowchart of the main bootloader program in the MC68HC711E9. This bootloader demonstrates the most important
features of the bootloaders used on al M68HC11 Family members. For complete listings of other M68HC11 versionsrefer to
Listings 3 through 8 , and appendix B of the M68BHC11RM/AD, M68HC11 Reference Manual

Tue, Apr 15, 1997 11:45

an1060.htm Page 6

[1 (SAT) FROMRESET
IN EDNOT MOLE

[MITLAL ESTIOM: [
SP= TOR OF REMn 1FR
X = STORTOF REGS [(H1000]
SPCR = 20 (5 ET DWOM BT
BOLD - 02 [4| [TET5 B0 2 MY
SCCFE = 020 (T & P ON
TOCT = DE LY COMSTONT [S20 = d S0 10 HOROC TER TINES|

v
| SEND EREAK | [

| L
Mo RECEME D FIRSTCHALRYET 7

M

.], VES
ves [JUNPTOSTORT
FIFSTC HOA - 000 2 'I OF EEPROM[N 50} |
[T
vEs § NOTZERD HOTE THATA EFE AL,
FIRSTCHaR= §FF 7 CHARACTERE AL=0
Tw . REC ENVEDSS #00

SW M:H TO SLOW ER SC | RATE ..
Bal0 = B3 [+T; <3| [0 BSLD 07 by
£ HAMG E DELSY CONSTRNT..
TOC = 3504 (i 501 AP TER TINES|

.u-"-"I LDk,

[POWTTOSTATOF Ao v gobon| | [6]
M war =

[inmaLeE TMEOUTCOWNT | [

.u-"-"I W TWOOR

RECEWE DI, RESLDY 7

¥ MO LOOP =

14
DEC: PE WE NT TIMEOUT COUNT
| | CYCLES

veg Bl

Mo TIMED QUTYET?

] JvEs

——

| STORE REC EME D Wi TO R] | [11]

[TRoMsmmiECHD FORVERFY | [E]

[poINTar NECTROMDGETON | [E]

no [#]

ReST END OF Poin?

.| VEs [5]
’1 TR

SETUP ROR PROG Pkl LTILITY:
X = PAOG R IG TIE CORSTENT [¥]
V= STRATOF EPROM

JUMP TOSTRAT .
oF Ry | (7]

Figure 3 M C68HC711E9 Bootloader Flowchart

The reset vector in the boot ROM pointsto the start [1] of this program. The initialization block [2] establishes starting conditions
and sets up the SCI and port D. The stack pointer is set because there are push and pull instructions in the bootloader program.

Tue, Apr 15, 1997 11:45

an1060.htm Page 7

The X index register is pointed at the start of the register block ($1000) so indexed addressing can be used. Indexed addressing
takes one less byte of ROM space than extended instructions, and bit manipulation instructions are not available in extended
addressing forms. The port D wire-OR mode (DWOM) bit in the serial peripheral interface control register (SPCR) is set to
configure port D for wired-OR operation to minimize potential conflicts with external systems that use the PDL/TxD pin as an
input. The baud rate for the SCI isinitially set to 7812 baud at a 2-MHz E-clock rate but can automatically switch to 1200 baud
based on the first character received. The SCI receiver and transmitter are enabled. The receiver isrequired by the bootloading
process, and the transmitter is used to transmit data back to the host computer for optional verification. The last item in the
initialization isto set an inter character delay constant used to terminate the down- load when the host computer stops sending
data to the MC68HC711E9. This delay constant is stored in the timer output compare 1 (TOCL1) register, but the on-chip timer is
not used in the bootloader program. This example illustrates the extreme measures used in the bootloader firmware to minimize
memory usage. However such measures are not usually considered good programming technique because they are misleading to
someone trying to understand the program.

After initialization, abreak character istransmitted [3] by the SCI. By connecting the TxD pin to the RxD pin (with a pullup
because of port D wired-OR mode), this break will be received as a $00 character and cause an immediate jJump [4] to the start of
the on-chip EEPROM ($B600 in the MC68HC711E9). Thisfeatureis useful to pass control to a program in EEPROM
essentially from reset. Refer to COMMON BOOTSTRAP MODE PROBLEMS before using this feature.

If the first character is received as $FF, the baud rate is assumed to be the default rate (7812 baud at a 2-MHz E-clock rate). If
$FF was sent at 1200 baud by the host, the SCI will receive the character as $EO or $CO because of the baud rate mismatch, and
the bootloader will switch to 1200 baud [5] for the rest of the download operation. When the baud rate is switched to 1200 baud,
the delay constant used to monitor the intercharacter delay must also be changed to reflect the new character time.

At [6], the Y index register isinitialized to $0000 to point to the start of on-chip RAM. Theindex register Y isused to keep track
of where the next received data byte will be stored in RAM. The main loop for loading begins at [7].

The number of data bytes in the downloaded program can be any number between zero and 512 bytes (the size of on-chip
RAM). This procedure is called ‘variable-length down- load' and is accomplished by ending the download sequence when anidle
time of at least four character times occurs after the last character to be downloaded. In M68HC11 Family members which have
256 bytes of RAM, the download length is fixed at exactly 256 bytes plus the leading $FF character.

The intercharacter delay counter is started [8] by loading the delay constant from TOCL into the X index register. The 19-E-cycle
wait loop is executed repeatedly until either a character isreceived [9] or the allowed intercharacter delay time expires [10]. For
7812 baud, the delay constant is 10,241 E cycles (539 X 19 E cycles per loop). Four character times at 7812 baud is 10,240 E
cycles (baud prescale of 4 X baud divider of 4X 16internal SCI clocksg/bit time X 10 bit times/character X 4 character times). The
delay from reset to the initial $FF character is not critical since the delay counter is not started until after the first character ($FF)
isreceived.

To terminate the bootl oading sequence and jump to the start of RAM without downloading any data to the on-chip RAM, ssimply
send $FF and nothing else. This feature is similar to the jump to EEPROM at [4] except the $FF causes ajump to the start of
RAM. This procedure requires that the RAM has been loaded with a valid program since it would make no senseto jump to a
location in uninitialized memory.

After receiving a character, the downloaded byteis stored in RAM [11]. The datais transmitted back to the host [12] as an
indication that the download is progressing normally. At [13], the RAM pointer isincremented to the next RAM address. If the
RAM pointer has not passed the end of RAM, the main download loop (from [7] to [141) is repeated.

When all data has been downloaded, the bootloader goesto [16] because of an intercharacter delay timeout [10] or because the
entire 512-byte RAM has been filled [15]. At [16], the X and Y index registers are set up for calling the PROGRAM utility
routine, which saves the user from having to do thisin a downloaded program. The PROGRAM utility isfully explained in
EPROM PROGRAMMING UTILITY. Thefina step of the bootloader program isto jump to the start of RAM [1 7], which
starts the user's downloaded program.

UPLOAD UTILITY

The UPLOAD utility subroutine transfers data from the MCU to a host computer system over the SCI serial datalink. Note that
M68HC11 versions that support EEPROM security do not include this utility. Verification of EPROM contents is one example
of how the UPLOAD utility could be used. Before calling this program, the Y index register isloaded (by user firmware) with
the address of the first data byte to be uploaded. If a baud rate other than the current SCI baud rate isto be used for the upload

Tue, Apr 15, 1997 11:45

an1060.htm Page 8

process, the user's firmware must also write to the BAUD register. The UPLOAD program sends successive bytes of data out
the SCI transmitter until areset isissued (the upload loop isinfinite). For a complete commented listing of the UPLOAD utility,
refer to Listings 3 through 8.

EPROM PROGRAMMING UTILITY

The EPROM programming utility is one way of programming data into the internal EPROM of the MC68HC711E9 MCU. An
external 12-V programming power supply is required to program on-chip EPROM. The simplest way to use this utility program
Isto bootload a three-byte program consisting of a single jump instruction to the start of the PROGRAM utility program
($BF00). The bootloader program setsthe X and Y index registers to default values before jumping to the down- loaded
program (see [16] at the bottom of Figure 3). When the host computer sees the $FF character, data to be programmed into the
EPROM is sent, starting with the character for location $D000. After the last byte to be programmed is sent to the
MC68HC711E9 and the corresponding verification datais returned to the host, the programming operation is terminated by
resetting the MCU.

The number of bytesto be programmed, the first address to be programmed, and the programming time can be controlled by the
user if values other than the default values are desired.

To understand the detailed operation of the EPROM programming utility, refer to Figure 4 during the following discussion.
Figure 4 is composed of three interrelated parts. The upper-left portion shows the flowchart of the PROGRAM utility running in
the boot ROM of the MCU (For a complete commented listing of the PROGRAM utility, refer to Listings 3 through 8). The
upper-right portion shows the flowchart for the user-supplied driver program running in the host computer. The lower portion of
Figure 4 is atiming sequence showing the relationship of operations between the MCU and the host computer. Reference
numbers in the flowcharts in the upper half of Figure 4 have matching numbersin the lower half to help the reader relate the three
parts of the figure.

Tue, Apr 15, 1997 11:45

an1060.htm Page 9

PIRCHG FLa LI In c Crier Program in HOS T
INMALEE... HCEST MORMELLY WAITS FORN FF
X = PROG REMTIME FROIM MCL EE FORE SENDING DTS,
= FIFGTADDRESS FOIF: EF FCIM PRCKG P MNG
Vern- PR R
[l INDKC:HTES READY Fl
|ssri|:| IFF | T T |SEP-[IFIF!E=LTI:F.'I'P.E'|'1'E |
WA - LR
| W L WORE [V TO SERD 7
AHY DA, FEC ERVED 7 IS
VES L
L SEND MEXT DT, | [4] [F]
[PROG Re EVTE | [10] [13] ™
I
R
PIEAD PROG R4 E [VT,
ANDSENDTOVERFY | [1] [14] VERIFY D'“'-P'\:::EMD?
¥ L
AORT 0 FENT DTN VERIFY DR CORFEET 7 e [INDKC.ATE ERROR |
0 BE PRI RAMIED AR
[E105] ¥ T NORETOVERFY T
H)
£y
P PG P M CONTHUES |
£ LONG &5 DA,
& FECENED (_TONE)
wE AIFY DT IO HOST F W W W T
(5000 25 WE LT DETY "":"m } £l |} EA ™ 1 wostecnoms
DT FOR,
[l 'lf'_‘%. 'lf’j : ol M L EPFOM
NG U FEC ENVE WiTy FFROIM HOST | RN | N | [™ |
[1'3] [13] l
EP F M PRO REbiANG P "‘L e [“] = '\L A Egmsg
[?[12] [15] l B DG PR LOOP
Ll TRAHE T DV [WE FIFY] Eﬂwﬁ;ﬂw| Eﬂwﬁﬂu|

Figure 4 Host and MCU Activity during EPROM PROGRAM Utility

The shaded area [1] refers to the software and hardware latency in the MCU leading to the transmission of a character (in this
case, the $FF). The shaded area [21 refersto asimilar latency in the host computer (in this case, leading to the transmission of the
first data character to the MCU).

The overdl operation begins when the MCU sends the first character ($FF) to the host computer, indicating that it is ready for the
first data character. The host computer sends the first data byte [3] and entersits main loop. The second data character is sent [41,
and the host then waits [51 for the first verify byte to come back from the MCU.

After the MCU sends $FF [8], it entersthe WAITL1 loop [9] and waits for the first data character from the host. When this
character isreceived [10] the MCU programsit into the address pointed to by the Y index register. When the programming time
delay is over, the MCU reads the programmed data, transmits it to the host for verification [11], and returns to the top of the
WAIT1 loop to wait for the next data character [12]. Because the host previoudly sent the second data character, it is already
waiting in the SCI receiver of the MCU. Steps[13], [14], and [15] correspond to the second pass through the WAIT1 loop.

Back in the host,thefirstverifycharacterisreceived,and the third data character is sent [6]. The host then waits for the second verify
character [7] to come back from the MCU. The sequence continues as long as the host continues to send data to the MCU. Since
the WAIT1 loop in the PROGRAM utility is an indefinite loop, reset is used to end the process in the MCU after the host has
finished sending data to be programmed

Tue, Apr 15, 1997 11:45

an1060.htm Page 10

ALLOWING FOR BOOTSTRAP MODE

Since bootstrap mode requires very few connections to the MCU, it is easy to design systems that accommodate the boot- strap
mode. Bootstrap mode is useful for diagnosing or repairing systems that have failed due to changes in the CONFIG register or
failures of the expansion address/data buses, (rendering programs in external memory useless). Bootstrap mode can also be used
to load information into the EPROM or EEPROM of an M68HC11 after final assembly of a module. Bootstrap mode is also
useful for performing system checks and calibration routines. The following paragraphs explain system requirements for use of
bootstrap mode in a product.

MODE SELECT PINS

It must be possible to force the MODA and MODB pinsto logic zero, which implies that these two pins should be pulled UP to
VDD through resistors rather than being tied directly to VDD. If mode pins are connected directly to VDD it is not possible to
force a mode other than the one the MCU is hard wired for. It isaso good practice to use pulldown resistorsto VSS rather than
connecting mode pins directly to VSS because it is sometimes a useful debug aid to attempt reset in modes other than the one the
system was primarily designed for. Physically, this requirement sometimes calls for the addition of atest point or awire
connected to one or both mode pins. Mode selection only uses the mode pinswhile RESET is active.

RESET

It must be possible to initiate a reset while the mode select pins are held low. In systems where there is no provision for manual
reset, it isusually possible to generate a reset by turning power off and back on.

RxD PIN

It must be possible to drive the PDO/RxD pin with serial datafrom a host computer (or another MCU). In many systems, this
pinisalready used for SCI communications; thus no changes are required.

In systems where the PDO/RXD pin is normally used as a general -purpose output, a serial signal from the host can be connected
to the pin without resulting in output driver conflicts. It may be important to consider what the existing logic will do with the SCI
serial datainstead of the signals that would have been produced by the PDO pin. In systems where the PDO pin is normally used
as a general-purpose input, the driver circuit that drives the PDO pin must be designed so that the serial data can override this
driver, or the driver must be disconnected during the bootstrap download. A simple series resistor between the driver and the
PDO pin solves this problem as shown in Figure 5. The serial data from the host computer can then be connected to the
PDO/RxD pin, and the series resistor will prevent direct conflict between the host driver and the normal PDO driver.

_— CONMECTE DONLY DURKG
HosT —— _ EDOTIDADING
SYSTEM v
RSTE - NCAEH 11
LEVEL '
SHFTER :
EXETING '
COMNTAOL {>o A dg—| FeDWON
S NoL SERIES (EEING LSED
EXETING RESETOR =5 INPLT]
DRKER -

Figure 5 Preventing Driver Conflict
TxD PIN

The bootloader program uses the PD1/TxD pin to send verification data back to the host computer. To minimize the possibility
of conflicts with circuitry connected to this pin, port D is configured for wire-OR mode by the bootloader program during
initialization. Since the wire-OR configuration prevents the pin from driving active high levels, apullup resistor to VDD is
needed if the TxD signal is used.

In systems where the PDL/TxD pin is normally used as a general-purpose output, there are no output driver conflicts. It may be

Tue, Apr 15, 1997 11:45

an1060.htm Page 11

important to consider what the existing logic will do with the SCI seria datainstead of the signals that would have been produced
by the PD1 pin.

In systems where the PD1 pin is normally used as a general- purpose input, the driver circuit that drives the PD1 pin must be
designed so that the PD1/TxD pin driver in the MCU can over- ride thisdriver. A ssimple series resistor between the driver and
the PD1 pin can solve this problem. The TxD pin can then be configured as an output, and the series resistor will prevent direct
conflict between the internal TxD driver and the external driver connected to PD1 through the seriesresistor.

OTHER

The bootloader firmware sets the DWOM control bit, which configures all port D pinsfor wire-OR operation. During the
bootloading process, al port D pins except the PD1/TXD pin are configured as high-impedance inputs. Any port D pin that is
normally used as an output should have a pullup resistor so it does not float during the bootloading process.

DRIVING BOOT MODE FROM ANOTHER M68HC11

A second M68HC11 system can easily act as the host to drive bootstrap loading of an M68HC11 MCU. This method is used to
examine and program nonvolatile memoriesin target M68HC11s in Motorola EVMs. The following hardware and software
example will demonstrate this and other bootstrap mode features.

The schematic in Figure 6 shows the circuitry for asimple EPROM duplicator for the MC68HC711E9. The circuitry isbuilt in
the wire-wrap area of an M68HC11 EVBU Evaluation Board to ssmplify construction. The schematic shows only the important
portions of the EVBU circuitry to avoid confusion. To see the complete EVBU schematic, refer to the M6BHC11EVBU/D,
M68HC11EVBU Universal Evaluation Board User's Manual.

Tue, Apr 15, 1997 11:45

an1060.htm Page 12

PROG FRbib G PO ER
com + 85

WG HC: 11 EVEL l l

aa

PREW REDAFES © WIREW PaP ARER

" : - A1l ¢':'"
+ : + _':’I pp

o—_0 oFF
: &
og L5 50, 50
WRSTER : -
WU :
I WCRG HT 11ED
- €
: - TPt pp
o L 35 .35 i T_| ey
: 3R
Yoo
oy |41 TR RE,,. I"T[E 5|,
. 1K 'J'FEI:I o oo
H 2 RE 1] 0.1 pF 1
PE s
1k, HGF!EEH Yeg
— — TAFGET
il = = U
ey |8 g o ML AN T oo W
: g g
WaDE | 5"‘1}1:
T r—/\/\,—?“" PET
= - AT
: EE
oo L2 2.2 I -
: RE
: Wk
a2 2,5, 20 11—
: 3
L. P : T
& &
IR £ | wooe
L I O LN I B —
TOWEROM :
RS237 LEWEL
TROKE LATOR
m

-
aa R L L LT L

WCTE: iy he mostimporian o bors o F EVELekeu by e shoun.

Figure 6 MCU to MCU EPROM Duplicator Schematic

The default configuration of the EVBU must be changed to make the appropriate connections to the circuitry in the wire-wrap
area and to configure the master MCU for bootstrap mode. A fabricated jumper must be installed at J6 to connect the X TAL
output of the master MCU to the wire-wrap connector P5, which has been wired to the EXTAL input of the target MCU. Cut
traces that short across J8 and J9 must be cut on the solder side of the printed circuit board to disconnect the normal SCI
connections to the RS232 level trandator (U4) of the EVBU. The J8 and J9 connections can easily be restored at alater time by
installing fabricated jumpers on the component side of the board. A fabricated jJumper must be installed across J3 to configure the

Tue, Apr 15, 1997 11:45

an1060.htm Page 13
master MCU for bootstrap mode.

One MC68HC711E9 is first programmed by other means with a desired 12K-byte program in its EPROM and a small
duplicator program in its EEPROM. Alternately, the ROM program in an MC68HC11E9 can be copied into the EPROM of a
target MC68HC711E9 by programming only the duplicator program into the EEPROM of the master MC68HC11E9. The
master MCU isinstalled in the EVBU at socket U3. A blank MC68HC711E9 to be programmed is placed in the socket in the
wire-wrap area of the EVBU (U6).

With the VPP power switch off, power is applied to the EVBU system. As power is applied to the EVBU, the master MCU
(U3) comes out of reset in bootstrap mode. Target MCU (U6) is held in reset by the PB7 output of master MCU (U3). The PB7
output of U3 isforced to zero when U3 isreset. The master MCU will later release the reset signal to the target MCU under
software control. The RxD and TxD pins of the target MCU (U6) are high-impedance inputs while U6 isin reset so they will not
affect the TxD and RxD signals of the master MCU (U3) while U3 is coming out of reset. Since the target MCU isbeing held in
reset with MODA and MODB at zero, it is configured for the EPROM emulation mode, and PB7 is the output enable signal for
the EPROM data |/O pins. Pullup resistor R7 causes the port D pinsincluding RxD and TxD, to remain in the high-impedance
state so they do not interfere with the RxD and TxD pins of the master MCU as it comes out of reset.

As U3 leavesreset, its mode pins select bootstrap mode so the bootloader firmware begins executing. A break is sent out the
TxD pin of U3. Pullup resistor R10 and resistor R9 cause the break character to be seen at the RxD pin of U3.

The bootloader performs ajump to the start of EEPROM in the master MCU (U3) and starts executing the duplicator program.
This sequence demonstrates how to use bootstrap mode to pass control to the start of EEPROM after reset. Listing lisa
complete listing for the duplicator program in the EEPROM of the master MCU.

The duplicator program in EEPROM clears the DWOM control bit to change port D (thus, TxD) of U3 to normal driven
outputs. This configuration will prevent interference due to R9 when TxD from the target MCU (U6) becomes active. Series
resistor R9 demonstrates how TxD of U3 can drive RxD of U3 and later TxD of U6 can drive RxD of U3 without a destructive
conflict between the TxD output buffers.

NOTE: Only the most important portions of EVBU circuitry are shown.

Asthe target MCU (U6) leaves reset, its mode pins select bootstrap mode so the bootloader firmware begins executing. A break
is sent out the TXD pin of U6. At thistime, the TxD pin of U3 isat adriven high so R9 acts as a pullup resistor for TxD of the
target MCU (U6). The break character sent from U6 is received by U3 so the duplicator program that is running in the
EEPROM of the master MCU knows that the target MCU is ready to accept a bootloaded program.

The master MCU sends aleading $FF character to set the baud rate in the target MCU. Next, the master MCU passes a three-
instruction program to the target MCU and pauses so the bootstrap program in the target MCU will stop the loading process and
jump to the start of the downloaded program. This sequence demonstrates the variable-length download feature of the
MC68HC711E9 bootloader.

The short program downloaded to the target MCU clears the DWOM bit to change its TxD pin to anormal driven CMOS output
and jumps to the EPROM programming utility in the bootstrap ROM of the target MCU.

Note that the small downloaded program did not have to set up the SCI or initialize any parameters for the EPROM
programming process. The bootstrap software that ran prior to the loaded program left the SCI turned on and configured in a
way that was compatible with the SCI in the master MCU (the duplicator program in the master MCU also did not have to set up
the SCI for the same reason). The programming time and starting address for EPROM programming in the target MCU were
also set to default values by the bootloader software before jumping to the start of the downloaded program.

Before the EPROM in the target MCU can be programmed, the VPP power supply must be available at the XIRQ/V PPE pin of
the target MCU. The duplicator program running in the master MCU monitors this voltage (for presence or absence - not level)
at PE7 through resistor divider R14 - RI5. The PE7 input was chosen because the internal circuitry for port E pins can tolerate
voltages dightly higher than VDD; therefore resistors R14 and R15 are less critical. No data to be programmed is passed to the
target MCU until the master MCU senses that VPP has been stable for about 200 ms.

When VPP is ready, the master MCU turns on the red LEE and begins passing data to the target MCU. EPROM
PROGRAMMING UTILITY explainsthe activity as datais sent from the master MCU to the target MCU and programmed

Tue, Apr 15, 1997 11:45

an1060.htm Page 14

into the EPROM of the target. The master MCU in the EVBU corresponds to the HOST in the programming utility description
and the "PROGRAM utility in MCU" is running in the bootstrap ROM of the target MCU.

Each byte of data sent to the target is programmed and then the programmed location is read and sent back to the master for
verification. If any byte fails, the red and green LEDs are turned off, and the programming operation is aborted. If the entire 12K
bytes are programmed and verified successfully, the red LED isturned off, and the green LED is turned on to indicate success.
The programming of all 12K bytes take about 30 sec.

After a programming operation, the VPP switch (S2) should be turned off before the EVBU power isturned off.

DRIVING BOOT MODE FROM A PERSONAL COMPUTER

In this example, a personal computer is used as the host to drive the bootloader of an MC68HC711E9. An M68HCII EVBU is
used for the target MC68HC711E9. A large program is transferred from the personal computer into the EPROM of the target
MC68HC711E9.

HARDWARE

Figure 7 shows a small modification to the EVBU to accommodate the 12-V (nominal) EPROM programming voltage. The
XIRQ pin is connected to a pullup resistor, two jumpers, and the 60-pin connectors, P4 and P5. The object of the modificationis
to isolate the XIRQ pin and then connect it to the programming power supply. Carefully cut the trace on the solder side of the
EVBU asindicated in Figure 7. This disconnects the pullup resistor RN1 D from XIRQ but leaves P4-18, P5-18, and jumpers
J7 and J14 connected so the EVBU can till be used for other purposes after programming is done. Remove any fabricated
jumpers from J7 and J14. The EVBU normally has ajumper at J7 to support the trace function

o CUT TRAC E
&5 SHOW N
RN1D
L7k
O MU
TRV \
pE =
PIN
3 P K]
JT o0
,; L T
FH:,;,‘;E;EUF'" LA P5-1 e e
cd
RENCIVE JT o e
JUNMPER o
[=]
Jid oo
0 oo
WCRHET =2 © o
ESURE O oo
JUNPERE o
OnNJH oo

Figure 7 Isolating EVBU XIRQ Pin

Figure 8 shows a small circuit that is added to the wire-wrap area of the EVBU. The three-termina jumper allows the XIRQ line
to be connected to either the programming power supply or to a substitute pullup resistor for XIRQ. The 100-ohm resistor isa
current limiter to protect the 12-V input of the MCU. Theresistor and LED connected to P5 pin 9 (port C bit 0) is an optional
indicator that lights when programming is complete.

Tue, Apr 15, 1997 11:45

an1060.htm Page 15

o1 | MOREL EvEl
OPE RETION
TOPs €
L A 1
oo PROSG Re PRE
25 YW — = | EPAOM
+ JUNPER
PROIS Pl G oy
POWER

COMMON —

Figure 8 PC to M CU Programming Cir cuit
SOFTWARE

BASIC was chosen as the programming language due to its readability and availability in parallel versions on both the IBM PC
and the Macintosh. Listing 2 is acommented listing of the BASIC program. The program demonstrates several programming
techniques for use with an M68HC11 and is not necessarily intended to be a finished, commercia program. For example, there
isvery little error checking, and the user interface is very elementary. The following paragraphs include a detailed discussion of
the program as it pertains to communicating with and programming the target MC68HC711E9.

Lines 25-45 initialize and define the variables and array used in the program. Changes to this section would alow for other
programs to be downloaded.

Lines 50-95 read in the small bootloader from DATA statements at the end of the listing. The source code for this bootloader is
presented in the DATA statements. The bootloaded code makes port C bit O low, initializesthe X and Y registersfor use by the
EPROM programming utility routine contained in the boot ROM, and then jumps to tha troutine. The hexadecimal valuesread in
from the DATA statements are converted to binary values by a subroutine. The binary values are then saved as one string
(BOOTCODES).

The next long section of code (lines 97-1250) reads in the S-records from an external disk file (in this case, BUF34.S1 9),
converts them to integer, and saves them in an array. The techniques used in this section show how to convert ASCII S-records
to binary form that can be sent (bootloaded) to an M68HC11.

This S-record trandator only looks for the S1 records that contain the actual object code. All other S-record types are ignored.
When an S1 record isfound (line 1000-1024), the next two characters form the hex byte giving the number of hex bytesto
follow. This byte is converted to integer by the same subroutine that converted the bootloaded code from the DATA statements.
ThisBYTECOUNT is adjusted by subtracting 3, which accounts for the address and checksum bytes and leaves just the number
of object-code bytesin the record.

Starting at line 1100, the two-byte (four-character) starting address is converted to decimal. This addressis the starting address
for the object-code bytes to follow. Anindex into the CODE% array isformed by subtracting the base addressinitialized at the
start of the program from the starting address for this S-record.

A FOR-NEXT loop starting at line 1130 converts the object-code bytes to decimal and saves them in the CODE% array. When
all the object-code bytes have been converted from the current S-record, the program loops back to find the next S1 record.

A problem arose with the BASIC programming technique used. The draft versions of this program tried saving the object-code
bytes directly as binary in astring array. This caused "Out of Memory" or "Out of String Space" errors on both a2M Macintosh

Tue, Apr 15, 1997 11:45

an1060.htm Page 16

and a640K PC. The solution was to make the array an integer array and perform the integer-to-binary conversion on each byte as
it is sent to the target part.

The one compromise made to accommodate both Macintosh and PC versions of BASIC isin lines 1500 and 1505. Useline
1500 and comment out line 1505 if the program isto be run on a Macintosh and, conversely, use line 1505 and comment out line
1500 if a PC isused.

After the COM port is opened, the code to be bootloaded is modified by adding the $FF to the start of the string. $FF
synchronizes the bootloader in the MC68HC711E9 to 1200 baud. The entire string is simply sent to the COM port by PRINTing
the string. Thisis possible since the string is actually queued in BASIC's COM buffer, and the operating system takes care of
sending the bytes out one at atime. The M68HCII echoes the data received for verification. No automatic verification i sprovided,
though the datais printed to the screen for manual verification.

Once the MCU has received this bootloaded code, the bootloader automatically jumps to it. The small bootloaded program in
turn includes ajump to the EPROM programming routine in the boot ROM.

Refer to the previous explanation of the EPROM PROGRAMMING UTILITY for the following discussion. The host system
sends the first byte to be programmed through the COM port to the SCI of the MCU. The SCI port on the MCU buffers one
byte while receiving another byte, increasing the throughput of the EPROM programming operation by sending the second byte
while the first is being programmed.

When the first byte has been programmed, the MCU reads the EPROM location and sends the result back to the host system.
The host then compares what was actually programmed to what was originally sent. A message indicating which byte is being
verified is displayed in the lower half of the screen. If thereisan error, it is displayed at the top of the screen.

As soon as the first byte is verified, the third byte is sent. In the meantime, the MCU has already started programming the second
byte. This process of verifying and queueing a byte continues until the host finishes sending data. If the programming is
completely successful, no error messages will have been displayed at the top of the screen. Subroutines follow the end of the
program to handle some of the repetitive tasks. These routines are short, and the commenting in the source code should be
sufficient explanation.

MODIFICATIONS

This example programmed version 3.4 of the BUFFALO monitor into the EPROM of an MC68HC711E9; the changes to the
BASIC program to download some other program are minor.

The necessary changes are:

1. Inline 30, the length of the program to be downloaded must be assigned to the variable "CODESIZE%".

2. Alsoinline 30, the starting address of the program is assigned to the variable "ADRSTART".

3. Inline 9570, the start address of the program is stored in the third and fourth itemsin that DATA statement in
hexadecimal.

4. If any changes are made to the number of bytesin the boot code in the DATA statementsin lines 9500-9580, then the
new count must be set in the variable "BOOTCOUNT" in line 25.

OPERATION

Configure the EVBU for boot mode operation by putting a jumper at J3. Ensure that the trace command jumper at J7 is not
installed because this would connect the 12-V programming voltage to the OC5 output of the MCU.

Connect the EVBU to its DC power supply. When it is time to program the MCU EPROM, turn on the 12-V programming
power supply to the new circuitry in the wire-wrap area.

Connect the EVBU seria port to the appropriate serial port on the host system. For the Macintosh, this is the modem port with a
modem cable. For the MS-DOS computer, it is connected to COM1 with a"straight through" or modem cable. Power up the
host system and start the BASIC program. If the program has not been compiled, thisis accomplished from within the
appropriate BASIC compiler or interpreter. Power up the EVBU.

Answer the prompt for filename with either a[RETURN] to accept the default shown or by typing in a new filename and
pressing [RETURN].

Tue, Apr 15, 1997 11:45

an1060.htm Page 17

The program will inform the user that it is working on converting the file from S-records to binary. This process will take from
30 sec to afew minutes, depending on the compter.

A prompt reading, "Comm port open?' will appear at the end of the file conversion. Thisisthe last chance to ensure that
everything is properly configured on the EVBU. Pressing [RETURN] will send the bootcode to the target MC68HC711E9. The
program then informs the user that the bootload code is being sent to the target, and the results of the echoing of this code are
displayed on the screen.

Another prompt reading "Programming is ready to begin. Are you?" will appear. Turn on the 12-V programming power supply
and press [RETURN] to start the actual programming of the target EPROM.

A count of the bytebeingverified will be continually updated on the screen as the programming progresses. Any failures will be
flagged as they occur.

When programming is complete, a message will be displayed as well as a prompt requesting you to press [RETURN] to quit.

Turn off the 12-V programming power supply before turning off 5V to the EVBU.

COMMON BOOTSTRAP MODE PROBLEMS

It isnot unusual for a user to encounter problems with bootstrap mode because it is new to many users. By knowing some of the
common difficulties, the user can avoid them or at least recognize and quickly correct them.

Reset conditions vs. conditions as bootloaded program starts

It is common to confuse the reset state of systems and control bits with the state of these systems and control bits when a
bootloaded program in RAM starts. Between these times, the bootloader program is executed, which changes the states of some
systems and control bits.

® The SCI systemisinitialized and turned on (RxandTx).

® The SCI system has control of the PDO and PD1 pins.

e Port D outputs are configured for wire-OR operation.

® The stack pointer isinitialized to the top of RAM.

® Time has passed (two or more SCI character times).

® Timer has advanced from its reset count value.
Special mode conditions

Users also forget that bootstrap mode is a special mode; thus privileged control bits are accessible, and write protection for some
registersis not in effect. The bootstrap ROM isin the memory map. The DISR bit in the TEST1 control register is set, which
disables resets from the COP and clock monitor systems.

Since bootstrap is a special mode, these conditions can be changed by software. The bus can even be switched from single-chip
mode to expanded mode to gain access to external memories and peripherals.

Connecting RxD to Vss does not cause the SCI to receive a break -- To force an immediate jump to the start of EEPROM, the
bootstrap firmware looks for the first received character to be $00 (or break). The data reception logic in the SCI looks for a one-
to-zero transition on the RxD pin to synchronize to the beginning of areceive character. If the RxD pin istied to ground, no one-
to-zero transition occurs. The SCI transmitter sends a break character when the bootloader firmware starts, and this break
character can be fed back to the RxD pin to cause the jump to EEPROM. Since TxD is configured as an open-drain output, a
pullup resistor isrequired.

Tue, Apr 15, 1997 11:45

an1060.htm Page 18

Initial $FF Char acter

An $FF character is required before datais loaded into RAM --The initia character (usually $FF) that sets the down- load baud
rate is often forgotten. Original M68HC11 versions required exactly 256 bytes to be downloaded to RAM -- Even users that
know about the 256 bytes of download data sometimes forget the initial $FF that makes the total number of bytes required for
the entire download operation equal to 256 + 1 or 257 bytes. The end-of-download mechanism goes into effect when theinitia
$FF isreceived to set the baud rate. Any amount of time may pass between reset and when the $FF is sent to start the download
process.

Variable-length download

When on-chip RAM surpassed 256 bytes, the time required to serially load this many characters became more significant. The
variable-length download feature allows shorter programs to be loaded without sacrificing compatibility with earlier fixed-length
download versions of the bootloader. The end of adownload isindicated by anidie RxD linefor at least four character times. If a
personal computer is being used to send the download data to the MCU, there can be problems keeping characters close enough
together to avoid tripping the end-of-download detect mechanism. Using 1200 as the baud rate rather than the faster default rate
may help this problem.

Long S-record conversion time

Assemblers often produce S-record encoded programs which must be converted to binary before bootloading them to the MCU.
The process of reading S-record data from afile and trandating it to binary can be slow, depending on the personal computer and
the programming language used for the trandlation. One strategy that can be used to overcome this problem is to trandlate the file
into binary and storeit into aRAM array before starting the download process. Data can then be read and downloaded without
the trandation or file-read delays.

EPROM emulation mode

EPROM/OTP versions of M68HC11 have an EPROM emulation mode -- The conditions that configure the MCU for EPROM
emulation mode are essentially the same as those for resetting the MCU in bootstrap mode. While RESET islow and mode
select pins are configured for bootstrap mode (low), the MCU is configured for EPROM emulation mode. The port pins that are
used for EPROM data I/O lines may be inputs or outputs, depending on the pin that is emulating the EPROM output enable pin
(OE). To make these data pins appear as high-impedance inputs as they would on anon-EPROM part in reset, connect the
P87/(OE) pin to apull- up resistor.

Bootloading a program to perform a ROM checksum

The bootloader ROM must be turned off before performing the checksum program. To remove the boot ROM from the
memory map, clear the RBOOT bit in the HPRIO register. Thisis normally awrite-protected bit that is zero, but in bootstrap
mode it isreset to one and can be written. If the boot ROM is not disabled, the checksum routine will read the contents of the
boot ROM rather than the user's mask ROM or EPROM at the same addresses.

Delays caused by double buffering of SCI data

This problem is troublesome in cases where one MCU is boot- loading to another MCU. Because of transmitter double
buffering, there may be one character in the seria shifter as a new character is written into the transmit data register. In cases such
as downloading in which this two-character pipelineis kept full, atwo-character time delay occurs between when a character is
written to the transmit data register and when that character finishes transmitting. A little more than one more character time delay
occurs between the target MCU receiving the character and echoing it back. If the master MCU waits for the echo of each
downloaded character before sending the next one, the down- load process takes about twice aslong asit would if transmission
IS treated as a separate process or if verify dataisignored.

BOOT ROM VARIATIONS

Tue, Apr 15, 1997 11:45

an1060.htm Page 19

Different versions of the M68HC11 have different versions of the bootstrap ROM program. Table 2 summarizes the features of
the boot ROMs in 16 members of the M68HC11 Family.

Tue, Apr 15, 1997 11:45

an1060.htm Page 20

| Table 2 Summary of Boot-ROM-Related Features |
EPRO-
BOOT || Mask || MCU JMP on M
weu | RoM [set (I Type Downlo|[BRK or [|?MP [€ [|Defaull || proc. | Pi0ad
part s |[Revison|l 1.D. || I'D. |ISecurity|| ad $00 Locatioll RAM Y|l Notes
(@$BF-|| (@$BF-|| (@$BF- L ength Note2)|| n utility |l (Note 4)
D1) D2,3) D4,5) (Note 1)
(Note 3)
M C68H- Mask $0000 -
C11A0 N/A N/A Set # N/A 256 $B600 || $0000 EF N/A N/A 5
M C68H- Mask $0000 -
CLIAL N/A N/A Set N/A 256 $B600 || $0000 FE N/A N/A 5
MC68H- Mask $0000 -
C11A8 N/A N/A St # N/A 256 $B600 || $0000 FE N/A N/A 5
MC68S- Mask $0000 -
EC11A8 N/A N/A Set # Yes 256 $B600, || $0000 EF N/A N/A 5
M C68H- Mask $FO00- $0040 -
C11D3 $00 Set # $11D3 N/A 0-192 ROM N/A FE N/A N/A 6
MC68H- $FO00- $0040 -
C711D3 $42 (B) || $0000 || $71D3 N/A 0-192 EPROM N/A FE Yes Yes 6
M C68H- $0000 -
CS11E2 N/A $0000 (| $E2E2 N/A 256 $B600 || $0000 EF N/A N/A 5
MC68S- $0000 -
EC811-|| N/A N/A $E25C Yes 256 $B600 || $0000 EF N/A N/A 5
E2
MC68H- Mask $0000 -
C11E0 N/A Set # $E9E9 N/A 0-512 || $B600 N/A 1FF N/A N/A 5
M C68H- Mask $0000 -
C11E1 N/A Set # $E9E9 N/A 0-512 || $B600 N/A 1FF N/A N/A 5
MC68H- Mask $0000 -
C11E9 N/A Set # $E9E9 N/A 0-512 || $B600 N/A 1FF N/A N/A 5
MC68S- Mask $0000 -
EC11E9 N/A Set # $E9SC Yes 0-512 || $B600 N/A 1FF N/A N/A 5
M C68H- $0000 -
C711E9 $41 (A) || $0000 || $71E9 N/A 0-512 || $B600 N/A 1FE Yes Yes 6
MC68H- $0000 -
C11F1 $42 (B) || $0000 || $F1F1 N/A |[0-1024 (] $FEQO N/A 3FF N/A N/A 6, 8
MC68H- Mask $0080 -
C11K4 $30 (0) Set # $044B N/A 0-768 || $0D80 N/A 37F N/A N/A 6, 8
M C68H- $0080 -
C711K4 $42 (B) || $0000 (| $744B N/A 0- 768 || $0D80 N/A 37E Yes Yes 6, 8
NOTES:
1. By sending $00 or abreak asthefirst SCI character after reset in bootstrap mode, ajump (JMP) is executed to the
addressin this table rather than doing a download. Unless otherwise noted, this addressis the start of EEPROM.
Tying RxD to TxD and using a pullup resistor from TxD to VDD will cause the SCI to see abreak asthefirst
received character.
2 If §RKicrecaived acthe fird chararter after racat in hnntatran mndea ainmn (IMP) ic averi ited tn the otart nf an-rhin

Tue, Apr 15, 1997 11:45

an1060.htm

Page 21

—

11 NN U UL VLU LAY LTI T AL U I LAULUE L LU AL T [EC RN CVIV IRV R SV

RAM rather than doing a download. This $55 character must be sent at the default baud rate (7812 baud @ E =
2MHZz). For devices with variable-length download, the same effect can be achieved by sending $FF and no other
SCI characters. After four SCI character times, the download terminates, and a jump (JMP) to the start of RAM is
executed. The jump to RAM feature isonly useful if the RAM was previously loaded with a meaningful program.
A callable utility subroutine isincluded in the bootstrap ROM of the indicated versions to program bytes of on-chip
EPROM with data received viathe SCI.

A callable utility subroutineisincluded in the bootstrap ROM of the indicated versions to upload contents of on-chip
memory to a host computer viathe SCI.

The complete listing for this bootstrap ROM may be found in the M68HC11RM/AD, M68HC11 Reference Manual .
The complete listing for this bootstrap ROM isincluded in this application note.

Due to the extra program space needed for EEPROM security on this device, there are no pseudo-vectors for SCI,
SPI, PAIF, PAOVF, TOF, OC5F, or OCA4F interrupts.

This bootloader extends the automatic software detection of baud rates to include 9600 baud at 2-MHz E-clock rate.

aad i SRR LA L I AL 5 e I IR R IR S R o

The boot ROMs for the MC68HC11F1, the MC68HC711K4, and the MC68HC11K 4 allow additional choices of baud rates for
bootloader communications. For the three new baud rates, the first character used to determine the baud rate is not $FF asit was
in earlier M68HC11s. The intercharacter delay that terminates the variable-length download is a so different for these new baud
rates. Table 3 shows the synchronization characters, delay times, and baud rates as they relate to E-clock frequency.

| Table 3 Bootloader Baud Rates |
sync Timeout || Baud Rates at ECLK |
Characters Delay | 2MHz || 2iMHz || 3MHz | 315MHz || 4MHz | 42MHz |
S$FF		4Characters	7812		8192		11,718		12288		15624	16838	
$FF		4Characters	1200		1260		1800		1890		2400		2520
$F0	[49Characters	9600		10,080		14400	15120		19200	20,160			
17.3
$FD Charecters 5208 5461 7812 8192 10,416 10,922
17.3
$FD Charecters 3906 4096 5859 6144 7812 8192

COMMENTED BOOT ROM LISTINGS

Listings 3 through 8 are complete commented listings of the boot ROM programs in six specific versions of the M68HC11.
Other versions can be found in appendix B of the M68HC11 RM/AD, M68HC11 Reference Manual.

Listing 3. MC68HC711E9 Bootloader ROM
Listing 4. MC68HC11D3 Bootloader ROM

Listing 5. MC68HC711D3 Bootloader ROM

Listing 6. MC68HC11F1 Bootloader ROM

Listing 7. MC68HC11K4 Bootloader ROM

Listing 8. MC68HC711K4 Bootloader ROM

Tue, Apr 15, 1997

11:45

	Introduction
	Basic Bootstrap Mode
	Bootstrap Mode Logic
	Boot ROM Firmware
	EEPROM Security
	Automatic Selection of Baud Rate
	Main Bootloader Program
	Upload Utility
	EPROM Programming Utility

	Allowing for Bootstrap Mode
	Mode Select Pins
	Reset
	RxD Pin
	TxD Pin
	Other

	Driving Boot Mode from Another M68HC11
	Driving Boot Mode from Personal Computer
	Hardware
	Software
	Modifications
	Operation

	Common Bootstrap Mode Problems
	Reset Conditions vs. conditions as Bootloaded Program Starts
	Special Mode Conditions
	Inital $FF Character
	Variable-Length Download
	Long S-Record Conversion TIme
	EPROM Emulation Mode
	Bootloading a Program to Perform a ROM Checksum
	Delays Caused by Double Buffering of SCI Data

	Boot ROM Variations
	Summary of Boot-ROM-Related Features
	Bootloader Baud Rates
	Commented Boot ROM Listings

