MOTOROLA Order this document by: AN1220/D
SEMICONDUCTOR s
APPLICATION NOTE

Optical Character Recognition Using
Fuzzy Logic

by William A. Gowan

OVERVIEW

This application note shows how to envision, describe, and realize a design using fuzzy logic. It is not in-
tended to be an introduction to fuzzy logic, but it is basic enough to be understood by designers with a cur-
sory understanding of the subject. For those who seek an introduction to fuzzy logic, the Motorola Fuzzy
Logic Educational Kit is an excellent primer. Other sources of information are shown in the list of references
at the end of this document.

Fuzzy logic facilitates design of systems that mimic human reasoning. A fuzzy system accepts data input
from sensors, then makes decisions based on that input. In most cases, these decisions are the basis for a
control system. However, a fuzzy rule-driven system can simply be a classification engine that draws dis-
tinctions between and labels differing types of input data.

This note explains the design of an optical character recognition engine called the Optical Character Asso-
ciator (OCA). Optical character recognition systems must classify optical inputs as specific letters, numbers,
or other characters, and are thus ideal candidates for fuzzy logic implementation. OCA is a classification
engine that recognizes the set of fourteen characters used by the US banking industry to encode account
numbers along the lower edge of checks. The engine is implemented using an MC68HC11E9 8-bit micro-
controller, although it could have been implemented using devices from the M68HC05, M68HC16, or
M68300 MCU families.

OCA accepts input from a 64 x 1 pixel charge-coupled device (CCD) sensor. After an input preprocessor
program formats sensor data into an easily "fuzzifiable" structure, the inference engine fuzzifies the data,
applies the fuzzy rule set, and generates an output that corresponds to the character being read.

This application note presents OCA design methodology, and defines all input variables, fuzzy rules and
output variables. Although preprocessor operation is fully described, and internal variables used by the pre-
processor are explicitly defined, a designer must provide the actual preprocessing code in order to imple-
ment the system described. System resources not directly related to the optical portion of the system, such
as motor transport for document movement beneath an optical sensor, must also be provided.

OCA was designed from simulated sensor data input. In order to implement a physical system, the simulat-
ed data should be carefully compared to actual character reads from the sensor to be used. Modification to
fuzzy membership functions and rules may be required. The operation of OCA was verified using simulated
testing as described in TESTING RESULTS. Motorola does not guarantee the operation of the software de-
scribed in this document.

PROBLEM DEFINITION

The industry definition for the character set to be recognized appears in Figure 1. There are fourteen valid
characters — numeric characters zero through nine, and four special characters, SS1 through SS4.

@ MOTOROLANER
© MOTOROLA INC, 1996

[
[

mulll

hC
= T Pl

Figure 1 Character Set To Be Recognized

AN1220
OCR CHAR

Each character is right-justified in a 125 mil wide frame. Other characters cannot intrude into the frame. The
widest characters, 0, 8, SS1, SS2, SS3, and SS4, have a specified width of 91 mils. Characters 4, 6, and 9
are specified at 78 mils wide. Characters 3, 5, and 7 are specified at 65 mils. Characters 1 and 2 are spec-
ified at 52 mils. Because of the differing specified character widths, there is a variable amount of white space
to the left of each character in a string of characters.

The optical sensor chosen for this design is the Texas Instruments TSL214. This device consists of 64 ver-
tically-aligned CCD elements. Each pixel is 4.72 mils wide and 2.756 mils high —a data "slice" is 4.72 mils
wide and 319 mils high. Since maximum character height is 117 mils, there is a pixel area of approximately
100 mils above and below each character.

Spacing between data slices is determined by the relationship between the width of one data slice and the
width of a character, or more specifically, the width of the narrowest line segment of a character.

The width of the narrowest line segment of a character (for instance, the thin vertical line that forms the left
side of the character 0) is 13 mils. To insure detection, a minimum of two slices must be taken in the width
dimension of any segment. If two slices were not taken, a line segment could straddle two data slices and
thus not be detected. Data slices need not touch each other, but the gap between them must be small. Di-
viding a 125 mil frame into 22 vertical slices yields a spacing between data slices of 5.68 mils. This spacing
insures that at least two samples are taken in a 13 mil wide character element.

The TSL214 has a specified integration time, measured in ms, which is a function of light intensity. Satisfy-
ing the integration time specification allows every CCD in the device to respond to the light level striking it.
For light intensities ranging from 15 to 42 pw/cm?, an integration time of 6 ms is adequate.

After integration time has elapsed, data may be read out of the optical sensor serially as analog values.
When the sensor Sl input is enabled, sensor output voltage represents the analog value from CCD#1. Upon
the next clock transition, the output becomes the analog value from CCD#2, and so on until all 64 pixels
have been read out.

Since sensor data is produced in the form of an analog value, an MCU A/D converter channel can be used
to read the value in. In this high-contrast application, it is also possible for sensor output to be read as serial
digital data, provided that saturated CCD output is greater than TTL V,4 and unsaturated output is less than
TTL V,_ . Backlighting the document being scanned with a bright red LED provides high contrast.

At this point the problem can be defined. Hardware must provide a mechanism to light the document and
move it under the sensor in 5.68 mil increments. The microcontroller receives a 64-bit stream of values for
each slice. From this data, the classification engine must correlate contiguous data slices against the labels
of recognizable characters.

L ___|
MOTOROLA AN1220/D
2

THE FUZZY LOGIC DESIGN PROCESS

The three elements required to realize a fuzzy system are fuzzification, rule application, and defuzzification.
Fuzzification is the scaling of input data to the universe of discourse (the range of possible values assigned
to fuzzy sets). Rule application is the evaluation of fuzzified input data against the fuzzy rules written spe-
cifically for the system. Defuzzification is the generation of a specific output value based on the rule
strengths that emerge from the rule application.

In a realized fuzzy system, a microcontroller or other engine runs a linked section of object code that con-
sists of two segments. One segment implements the fuzzy logic algorithm, performing fuzzification, rule
evaluation, and defuzzification, and thus can be thought of as a generic fuzzy logic inference engine. The
other segment ties the expected fuzzy logic inputs and outputs, as well as application-specific fuzzy rules,
to the fuzzy logic inference engine.

A sophisticated development environment is required to generate microcontroller object code from input in
the form of input variables, output variables, and fuzzy rules. Motorola currently provides two fuzzy logic
development environments.

The Knowledge Base Generator, KBG11B.EXE, is a freeware development environment that supports a
fuzzy inference engine called FUZZY11B.ASM. KBG11B.EXE runs under MS-DOS. It provides a graphical
interface for the creation of input and output membership functions.

The Fuzzy Inference Development Environment (FIDE), by Aptronix, also runs on the IBM-PC platform, in
the Microsoft Windows environment. FIDE offers an extensive graphical interface for development and de-
bugging, as well as system-level simulation. OCA was developed with the Aptronix FIDE tool.

THE DATA PREPROCESSOR

As defined, the OCA problem presents certain obstacles that make pattern matching on a bit-by-bit basis
impractical. For instance, the edge of a character segment can show up in two or more data slices, depend-
ing on where the slices overlap. Further, slight variations in printing cause character height and width to
vary. Misfeeding of the document can skew the imaged character. Fuzzy logic, which is inherently superior
for processing imprecise data, is a natural for this application. However, a data preprocessor is necessary
to simplify the problem so that it can be easily described in fuzzy rules.

Figure 2 illustrates the difficulties a programmer encounters when trying to match incoming bit patterns
against an idealized bit pattern, or template. Each of the three sections of Figure 2 shows nineteen data
slices of typical reads of the character 0. Leading white space is not shown because this representation is
left justified with respect to the first data slice that produces valid data.

The leftmost portion of Figure 2 represents the bit pattern associated with an ideal read of a character O.
This portion of the figure can be considered to be a template for the read of a character 0. The center portion
of Figure 2 shows the bit pattern of a misaligned character, and the right portion of Figure 2 shows the bit
pattern of a skewed character.

For this discussion, consider a darkened pixel to be a bit with a logical value of 1.

One approach to recognition would have a program compare scanned characters to templates on a bit-for-
bit basis. Clearly, this procedure could often fail. For instance, the program would expect a 1 in slice 1, bit
31 of a character 0, and neither misaligned nor skewed characters would satisfy the expectation.

Another approach would have the program sum all the bits in each slice and compare the resulting slice
totals to corresponding slice totals from templates. As shown in Table 1, this approach can produce a match
in the misaligned case. Unfortunately, it fails in the skewed case.

- __|
AN1220/D MOTOROLA

3

IDEAL MISALIGNED SKEWED

AN1220
OCR SLICE

Figure 2 19 Data Slices for Ideal, Misaligned, and Skewed Character 0

Table 1 Slice Totals for the Three Readings of Figure 2

Slice 112 |3 |4|5|6|7|8|9|10(11 12|13 | 14|15 |16 | 17 | 18 | 19

Ideal 23 |23 | 5 (4|4 |44 |44 4 4 4 4 4 123|123 | 0 0 0

Misaligned | 23 | 23 | 5 |4 (4|4 |4 |4 |4 4 4 4 4 4 123|123 | 0 0 0

Skewed 6 |21 (21 |8 |5|5|6|5]|5]| 5 5 4 4 4 |12 | 23|16 | 3 0

PREPROCESSOR OUTPUT: THE TRANSITION CONCEPT

The data in Table 1 provides a useful insight. It is apparent in all three cases that the magnitude of the slice
total increases to a high value of approximately 23, decreases to a low value of approximately 4, increases
again to a high value of approximately 23, and then finally decreases to zero. Figure 3 is a plot of the slice
total for the three cases. Even though the bit patterns and slice totals are different, plots of the slice totals
have the same shape.

]
MOTOROLA AN1220/D
4

AN1220
OCR SLICE COMP

Figure 3 Graphical Comparison of Slice Totals from Figure 2

It is not difficult to write a program that locates and quantifies these transitions, or changes of magnitude, in
slice totals. Quantified transitions will form the input to the OCA fuzzy engine. The fuzzy rules will look some-
thing like this: A very large positive transition, followed by a large negative transition, followed by a large
positive transition, followed by a very large negative transition, indicates a character zero.

For this note, a transition is defined as the difference between a current local maximum (or minimum) and
the previous local minimum (or maximum). The data preprocessor takes a data slice, obtains its slice total,
and compares the magnitude of the slice total to previous slice totals to determine whether it constitutes a
new local maximum or minimum.

Figure 4 shows the preprocessor algorithm that takes in slice data and generates transition outputs. Vari-
ables that are updated during preprocessor operation are listed in Figure 4. Preprocessor outputs take the
form of a transition number and an associated transition magnitude. For instance, X1 = 23 means transition
number 1 has a magnitude of 23.

Notice that the algorithm incorporates hysteresis in determining a direction change. In other words, a tran-
sition must be of three bits or greater magnitude to be recognized. For instance, if a current reading produc-
es a slice total of 6 and the previous reading left DIR as —and |_min as 4, the current reading would fail the
test CR > PR+2, but would pass the test CR > PR. Since DIR - +, none of the variables are changed.

The preprocessor algorithm has no effect on system throughput because it can be run during the delay for
integration time.

Table 2 shows how variables are updated after each slice. The slice data applied is from the skewed case
shown in Figure 2. Prior to entering the routine Transition Calculation, variables are initialized to the values
shown in the column labeled Init. Data slice #1 is defined as the first slice with a slice total greater than 2.
A final transition number/magnitude calculation is forced after the 22nd slice. Figure 5 provides a graphical
explanation of the preprocessor algorithm as applied during the calculation of Table 2.

- __|
AN1220/D MOTOROLA

5

C TRANSITION CALCULATION) LEGEND:

CR = CURRENT READING (SLICE TOTAL)
PR =PREVIOUS READING

DIR = DIRECTION OF TRANSITION

I_max = LOCAL MAXIMUM
I_min = LOCAL MINIMUM

GO STSCNEEXT Xn = NTH TRANSITION
n :INCREMENTED ON EACH DIR CHANGE
YES
NO
YES Cf
PR
?
CHANGE
NO DIRTO + Y
¢ NO REPLACE
Y |_max
REPLACE NO CAL)((D;JI_-ATE WITH CR
|_max i __
WITH CR |_min - |_max
\ REPLACE
|_max
GO TO NEXT _
SLICE Y WITH CR
I Y >
YES >
Y
GO TO NEXT
SLICE
CR
g YES
Y o CHANGE LLmax
REPLACE DIRTO- : ¥
|_min NO
WITH CR ¢ RElF’mCE
CALCULATE WITH CR
Xn=
Y |_max —I_min
GO TO NEXT
SLICE ¢
REPLACE
|_min
WITH CR Y
I Y _ | GO TONEXT
> sLice

AN1220
OCR FLOW

Figure 4 The Preprocessor for Transition Calculation

L ___|
MOTOROLA AN1220/D

6

Table 2 Translation Calculation for Skewed Character Scan

Slice init|]1]12|3|4(5|6|7|8[9(10(11|12|13(14|15|16|17(18|19|20|21| 22
CR 0|6|21|(21| 8 | 5|(5|6|5|5|5|5|4|4|4|12|23|16|3 | 0|00 0
PR 0|0|6 (21|21 8|5 |5|6|5|5|5|5|4|4]| 4 [12|23|16|/3 |0 |0 0
Dir + |+ + |+ | =-|=-|-=-]=-]=-]=-|=-1=-|-=-1-=1|- + + | - | = =1-=1- —

X X1 X2 X3 X4
|_min 000 |0|8|5|5|5|5|5|5|5|14|4|4]| 4 4116|3000 0
|_max 0 |621(21(21(21(21|21|21(21|21({21(21|21|21| 12 |23|23|23|23|23|23| 23

X magni-
tude 21 =17 19 -23
25
20 X4=-23

15

LOCAL
MINIMUM

— D

15 16 17 18 19

AN1220
OCR TRANS

Figure 5 Visual Representation of Table 2 Transitions

The preprocessor found the following four transitions while reading this character.

X1=21
X2 =-17
X3 =19
X4 =-23
For comparison, the preprocessor would return the following values for both an ideal and a misaligned char-
acter 0:
X1=23
X2=-19
X3=19
X4 =-23

AN1220/D MOTOROLA
7

FUZZIFYING TRANSITION INPUTS

The transitions visualized in Figure 5 make it very easy to write a fuzzy rule that recognizes a character O:
If X1 is Very Large Positive and X2 is Large Negative and X3 is Large_Positive and X4 is
Very Large_Negative, then Char is 0.

Clearly, a similar visualization of all fourteen characters is required to write the remaining rules. Table 3 pre-
sents the range of transition magnitudes for all fourteen characters. This data was obtained by simulating
each character eight times, with skews up to 5% in each direction. Notice that the number of transitions per
character varies from two (characters 1 and 3) to six (characters 6, SS1, SS2, and SS4).

Table 3 Transition Magnitude Ranges For All Fourteen Characters

Character X1(lo,hi) x2(lo,hi) X3(lo,hi) X4(lo,hi) X5(lo,hi) X6(lo,hi)
0 21 | 24 -17 | -19 16 | 20 20 | —24

1 22 | 24 22 | 24

2 15 | 16 -8 | -8 7| 8 ~15 | -16

3 22 | 24 22 | 24

4 18 | 19 -15 | -17 7| 9 ~10 | -11

5 14 | 16 7 | -9 8 | 9 ~15 | -16

6 23 | 24 -15 | -18 3|6 5 | -11 5 | 6 ~10 | 11
7 7| 8 5 | -6 11 | 13 -8 | -10 4| s -9 | -10
8 20 | 23 -13 | -17 15 | 17 22 | -23

9 13 | 13 8 | -9 18 | 20 23 | 24

ss1 10 | 11 -10 | -10 10 | 11 ~10 | -11 10 | 11 ~10 | -11
ss2 16 | 17 -16 | -17 15 | 17 13 | -17 9 | 11 -10 | -11
Ss3 15 | 16 -15 | -16 16 | 16 15 | -16

Ss4 8 | 8 8 | -8 8 | 8 -8 | -8 8 | 8 -8 | -8

The first step in fuzzifying this data is to establish a universe of discourse that defines the range of possible
values for fuzzy inputs. Once the universe of discourse is defined, fuzzy sets can be created within it.

In this case, X1, X2, X3, X4, X5, and X6 are the fuzzy inputs. From Table 3, transition magnitudes, mea-
sured in pixels, vary from —24 to +24. Since a slightly oversized character or stray marks on the document
can cause more pixels to be counted, the universe of discourse is represented by the range of values from
—30 to +30 pixels.

Figure 6 shows the distribution of transition values across the universe of discourse. The labels denote
each character and the transition number, followed by a graphical representation of that transition's range,
from Table 3.

There are actually two universes of discourse: a positive one associated with X1, X3, and X5, and a negative
one associated with X2, X4, and X6. Since transitions of 2 pixels or less are to be ignored, the positive uni-
verse of discourse is defined as the range of values from 2 to 30 pixels, and the negative universe of dis-
course is defined as the range of values from —30 to -2 pixels.

L ___|
MOTOROLA AN1220/D
8

LEGEND:

SS4:5
SS4:6 /_ _\
SS4:4 SS4:5 CHARACTER TF’{\IITJNN%II'EISN
SS4:2
SS52:6
SS1:6
SSt1:4
SS1:2
9:4
8:4
32 93F| ’L
1:2 0:1
0:4 11|_
L ——— —t
30 26 -22 18 14 2 0 26 30

AN1220
OCR TRANS DIST

Figure 6 Distributions of Transitions Across the Universe of Discourse

It is obvious from Figure 6 that there is some clumping of transition data, especially on the negative side.
Figure 6 could be used to create fuzzy sets that apply to all six transition inputs. However, the fuzzy sets
can contribute to more precise character recognition if they are made specific to each transition number.

Figure 7a, Figure 7b, and Figure 7c separate transition data by transition number. Based on the natural
grouping of data, fuzzy sets are assigned and labeled.

Notice from Figure 7c that transitions 5 and 6 do not group well and thus do not contribute substantially to
character discrimination. Therefore, fuzzy sets are not assigned to transition numbers X5 and X6, and these
transitions do not appear as part of the fuzzy rules.

Another observation: negative transitions X2 and X4 fall into clearly delineated sets, but positive transitions
X1 and X3 do not. The fuzzy set boundaries for transitions X1 and X3 are therefore chosen more arbitrarily.
Several positive transitions have a degree of membership in more than one fuzzy set.

It is important to understand that a fuzzy input variable must generate at least some association with its
fuzzy set across the entire range of possible values for that fuzzy input. For example, the range of values
produced by character 4 in transition 1 is 18 —19. Despite this small range, all possible values of X1 returned
by reads of character 4 satisfy neither fuzzy sets Med nor Max (the value 19 has an association of 0 with
Med, and the value 18 has an association of 0 with Max). Thus, the fuzzy set X1 Large is added to properly
classify character 4. Likewise, fuzzy set X3 Large is added for character 7.

At this point, transition inputs and fuzzy sets are defined. Unfortunately, transition inputs alone are not ad-
equate to classify characters. Consider the characters 1 and 3. Each has only two transitions, X1 and X2.
The rule for character 1 is: If X1 is Max and X2 is Large then Character is 1. The rule for character 3 is: If
X1 is Max and X2 is Large then Character is 3. Thus, from transition data, 1 and 3 are indistinguishable.

Table 4 shows the fuzzy magnitude of each transition presented by character. The Conflicts column shows
which other characters present the same fuzzy magnitude. Several conflicts occur, so it is hecessary to in-
troduce input variables in addition to transition magnitude.

- __|
AN1220/D MOTOROLA
9

LARGE

SMALL

SMALL

MED

LARGE

MAX

30 -26 22 0 2 30
AN1220
OCR FUZ1
Figure 7a X2 (Left) and X1 (Right) Fuzzy Set Definitions
LARGE MED SMALL SMALL MED LARGE MAX
1 -
[]ss44
SS3:4 4:4 5:3 §S3:3
8:4 54 74 SS4:3 SS82:3
94 24 SS14 23 [151331 [Jos
0:4 ssz:4\| |6:4 6:3 43 7:3\ 03
| | | | | | | 1L ! | | | |
1 I 1 T 1T T 1 1 1T T I T T 1
30 26 22 -18 14 -10 6 0 2 6 10 14 18 22 26 30
Figure 7b X4 (Left) and X3 (Right) Fuzzy Set Definitions
5545
7:6 SS82:5
SS2:6 SS1:5
SS1:6 5545
| | | | | | | | | 6I6 | | | | | 6I:5|:| 7I:Sl:l | | | | | | | | |
T r—Tr1r-11T"1T"1T"1T"T 1] T T T 17T T 1T T 1T 1T 1T 1"
30 26 -22 18 14 -10 6 0 2 6 10 14 18 22 26 30
Figure 7c X6 (Left) and X5 (Right) Transition Distributions
MOTOROLA AN1220/D

10

Table 4 Transition Magnitudes Presented By Each Characte

Character X1 X2 X3 X4 Conflicts
0 Max Med Max Large 8
1 Max Large 3
2 Med Small Med Med 5
3 Max Large 1
4 Large Med Med Small
5 Med Small Med Med 2
6 Max Med Small Small
7 Small Small Large Small
8 Max Med Max Large
9 Small Small Max Large

SS1 Small Small Med Small Ss4
SS2 Med Med Max Med SS3
SS3 Med Med Max Med SS2
SS4 Small Small Med Small Ss1

PREPROCESSOR OUTPUT: SUM-OF-PIXELS (SOP)

Some of the conflicts shown in Table 4 can be resolved by considering the total dark area in each character
image. Total dark area is measured as a sum of pixels, or SOP, and can easily be summed during the op-
eration of the transition calculation preprocessor. Table 5 shows the range of SOP values for each charac-
ter. Figure 8 shows the universe of discourse and fuzzy sets for SOP.

Table 5 SOP Range for Each Character

Character: 0 1 2 3 4 5 6 7 8 9 SS1 | SS2 | SS3 | SS4

SOP (lo) 139 | 112 | 99 | 132 | 124 | 110 | 138 | 79 | 194 | 149 | 102 | 140 | 177 84

SOP (hi) | 167 | 130 | 113 | 146 | 142 | 125 | 174 | 91 | 201 | 159 | 123 | 158 | 190 | 88

SOP (avg) | 153 | 121 | 107 | 137 | 135 | 119 | 150 | 84 | 197 | 154 | 111 | 148 | 182 86

A
L SP MED
SMALL LARGE MAX
4
1 JHNE
s [\ [s
sTﬂ ssi] [[\o] | 583
e R A 1P,
7/ I 1T 1T 17T 17T T T"1 I
0 60 80 100 120 140 160 180 200 220
Figure 8 SOP Fuzzy Set Distributions
AN1220/D MOTOROLA

11

Figure 8 shows how conflicts shown in Table 4 are resolved by the addition of the SOP input variable. Con-
sider the conflict between characters 0 and 8. As long as the possible range of SOP values for 0 always
produces a higher degree of membership in the fuzzy set Large than in the fuzzy set Max, a 0 is recognized
as a 0 rather than as an 8. SOP for character 0 ranges from 139 to 167 (Table 5). Figure 8 shows that any
value of SOP from 133 to 160 produces a degree of membership of 1 in the fuzzy set SOP Large. Values
from 161 to 176 produce declining degrees of membership. Since the maximum value of SOP from charac-
ter O is 167, the character 0 always produces some degree of membership in the fuzzy set SOP Large and
none in the fuzzy set SOP Max. Therefore, a 0 is never recognized as an 8. Conversely, the range of SOP
values for the character 8 always produces a degree of membership of 1 in the fuzzy set SOP Max and a
degree of membership of 0 in the fuzzy set SOP Large, so that an 8 is never recognized as a 0. The conflict
is completely resolved. Each character appears exclusively within a fuzzy set with no overlap. The conflict
between SS2 and SS3 is resolved in the same way.

Although there is some overlap, the conflict between SS1 and SS4 is also completely resolved. No value
for SS4, which is a member of the fuzzy set SOP Small, will ever generate membership in the fuzzy set SOP
Med associated with SS1. While very low values for SS1 can cause low degrees of membership in SOP
Small, there will be a higher degree of membership in SOP Med and the correct selection will be made.

The conflict between 1 and 3 is resolved in a similar way. Low values for 3 generate some membership in
SOP Med, but cause a higher degree of membership in SOP Large, so 3 is correctly recognized. Likewise,
high values for 1 generate some degree of membership in SOP Large, but cause a greater degree of mem-
bership in SOP Med. Thus, a correct result is returned.

A special fuzzy set labeled Sp helps to resolve conflict between 2 and 5. Here, the SOP range for character
5 is assigned to the fuzzy set SOP Med, whereas for 2 it is assigned to SOP Sp. However, all values of SOP
for 2 generate some degree of membership in SOP Med and only high values of SOP for 5 fail to generate
membership in SOP Sp. Therefore, while SOP in most cases helps resolve the conflict between 2 and 5,
an additional input variable is required.

Notice that the range of SOP values for character 4 is not adequately represented by either SOP Med or
SOP Large. In this case, it is best to leave the SOP input variable out of the fuzzy equation for character 4.

PREPROCESSOR OUTPUTS: TERMINATION WIDTH (TERM)

An additional characteristic that may resolve the remaining conflict is character width, measured in data slic-
es. Character width is called TERM, a designator for the terminating data slice. TERM is easy to determine
during the preprocessor phase —it is simply the data slice number of the last non-zero slice.Table 6 shows
the range of values for TERM for each character. Figure 9 shows the universe of discourse and fuzzy sets
for TERM. Figure 9 also shows that the conflict between 2 and 5 has been resolved. All TERM values re-
turned by a read of character 2 fall in the Small set, while all values for 5 fall in the Med set.

TERM is required only to resolve the conflict between characters 2 and 5. However, it makes sense to as-
sign the remaining characters to fuzzy sets in the TERM universe of discourse. The minimal additional code
required for these rule additions produces better qualified results and a more robust classification system.

Because of the interaction of their TERM ranges with multiple fuzzy sets, TERM should not be used as a
qualifier for characters 7 and 9. As Figure 9 shows, the largest value of TERM for 9 produces a higher de-
gree of association with Max than with Large, which prevents OCA from generating the output 9. Likewise,
the lowest value of TERM for 7 produces a higher degree of association with Small than with Med, prevent-
ing a resultant 7 for low values of TERM.

Table 6 TERM Range for Each Character

Character: 0 1 2 3 4 5 6 7 8 9 SS1 SS2 SS3 SS4

TERM (lo) 17 | 10 | 10 | 13 | 15 | 13 | 15 | 12 | 17 | 15 17 17 18 17

TERM (hi) 19 | 12 | 12 | 14 | 16 | 14 | 16 | 13 | 18 | 17 19 18 19 18

L ___|
MOTOROLA AN1220/D

12

([

1)

Table 7 shows the relationship between fuzzy input variables and fuzzy output variables.

SMALL MED LARGE MAX
8
584
4 \ ss2| ss3
1 5 6 NS
2 A7 3 9 \ 0
|

16

—

Figure 9 TERM Fuzzy Set Definitions

CREATING FUZZY RULES

Fuzzy rules create associations between specific inputs and desired outputs. Here, the six input variables
are X1, X2, X3, X4, SOP and TERM. Fourteen valid output variables, one for each of the fourteen characters
to be recognized, are defined.

Table 7 OCA Fuzzy Set Associations

20

AN1220
OCR FUZ TERM

Character X1 X2 X3 X4 SOP TERM
0 Max Med Max Large Large Max
1 Max Large Med Small
2 Med Small Med Med Sp Small
3 Max Large Large Med
4 Large Med Med Small Large
5 Med Small Med Med Med Med
6 Max Med Small Small Large Large
7 Small Small Large Small Small
8 Max Med Max Large Max Max
9 Small Small Max Large Large

SS1 Small Small Med Small Med Max
SS2 Med Med Max Med Large Max
SS3 Med Med Max Med Max Max
SS4 Small Small Med Small Small Max

With the relationship information summarized in Table 7, writing the fuzzy rules becomes simple. The fuzzy
rules appear at the end of the listing which follows.

AN1220/D

MOTOROLA
13

OCA FUZZY INFERENCE UNIT LISTING

$fiu for an optical character associator

$This application accepts optical data which has been processed
$into five input data classifications:

$ X1 (Transition 1)

$ X2 (Transition 2)

$ X3 (Transition 3)

$ X4 (Transition 4)

$ SOP (Sum O Pi xel s)

$ TERM (Data Slice Nunmber corresponding to TERM nati on Length)

$Where applicable, this programclassifies incomng data as one of
$f ourteen possible characters, as defined by an industry standard
$specification for the printing of account nunbers on bank checks.

$Creat ed August 6, 1992
$Last nodified: Novenber 24, 1992

$Fi | enane: OCA. FI L
fiu tvfi *8;

$Variable Definitions: X1, X2, X3, and X4 are defined as
$transitions; the magnitude of change between | ocal mnim and maxi ma.

nvar X1 "delta pixels" :2 () 30 [
Small (@,1, @1,1, @3,0),

Med (@1,0, @3,1, @v7,1, @o,no0),
Large (@e6,0, @s,1, @91, @1,0),
Max (@8,0, @0,1, @o0,1)];

nvar X2 "delta pixels" :-30 () -2 [
Large (@30,1, @22,1, @18,0),

Med (@21,0, @19,1, @13,1, @11,0),
Small (@13,0, @11,1, @2,1)];

nvar X3 "delta pixels" :2 () 30 [
Small (@,1, @,1, @B,0),

Med (@,0, @,1, @1l,1, @3,0),
Large (@0,0, @1,1, @3,1, @bs,0),
Max (@3,0, @5,1, @0,1)];

nvar X4 "delta pixels" :-30 () -2 [
Large (@30,1, @20,1, @17,0),

Med (@20,0, @18,1, @13,1, @11,0),
Small (@13,0, @10,1, @2,1)];

nvar SOP "total pixels" :60 () 220 [
Smal | (@0,1, @®8,1, @04,0),

Sp (@®0,0, @9,1, @13,1, @-z20,0),

Med (@®7,0, @O09,1, @Z28,1, @34,0),
Large (@26,0, @33,1, @60,1, @y76,0),
Max (@67,0, @78,1, @20,1)];

nvar TERM "data slices" :8 () 20 |
Small (@,1, @1,1, @2.3,0),

Med (@2.1,0, @s3,1, @4,1, @s,o0),
Large (@4,0, @5,1, @6,1, @s,0),
Max (@e,0, @7,1, @0,1)];

L ___|
MOTOROLA AN1220/D
14

outvar Char "Character" :0 () 14 * (
one =1,
two =2,
three =3,
four =4,
five =5,
Si X =6,
seven =7,
ei ght =8,
ni ne =9,
zero =10,
SS1 =11,
SS2 =12,
SS3 =13,
SS4 =14);

$!'!1! Fuzzy Rules !'!!
$Def i nes rel ati onshi ps between i nput variabl es and out put vari abl es.

if X1 is Max and X2 is Med and X3 is Max and X4 is Large
and SOP is Large and TERMis Max
then Char is zero;

f X1 is Max and X2 is Large
and SOP is Med and TERM i s Snal |
then Char is one;

f X1 is Med and X2 is Small and X3 is Med and X4 is Med
and SOP is Sp and TERMis Snal |
then Char is two;

f X1 is Max and X2 is Large
and SOP is Large and TERMis Md
then Char is three;

f X1 is Large and X2 is Med and X3 is Med and X4 is Snall
and TERM i s Large
then Char is four;

f X1 is Med and X2 is Small and X3 is Med and X4 is Med
and SOP is Med and TERMis Md
then Char is five;

if X1 is Max and X2 is Med and X3 is Small and X4 is Small
and TERM i s Large
then Char is six;

if X1 is Small and X2 is Small and X3 is Large and X4 is Small
and SOP is Smal |
then Char is seven;

if X1 is Max and X2 is Med and X3 is Max and X4 is Large
and SOP is Max and TERMis Max
then Char is eight;

if X1 is Med and X2 is Snall and X3 is Max and X4 is Large
and SOP is Large
then Char is nine;

if X1 is Small and X2 is Small and X3 is Med and X4 is Small
and SOP is Med and TERM i s Max
then Char is SSi;

if XL is Med and X2 is Med and X3 is Max and X4 is Med
and SOP is Large and TERMis Max
then Char is SS2;

- ___|
AN1220/D MOTOROLA
15

if X1 is Med and X2 is Med and X3 is Max and X4 is Med
and SOP is Max and TERM i s Max
then Char is SS3;

if X1 is Small and X2 is Small and X3 is Med and X4 is Smal |
and SOP is Small and TERMis Mx
then Char is S$4

end

LISTING COMMENTS

The listing is a single text source file composed in the FIDE Inference Language, using the FIDE text editor.
Source files must have a DOS extension of .FIL. The FIDE compiler generates a fuzzy inference unit, or
FIU, from the source file. Source files specify the fuzzy inference method, define the range of each input
variable and all the input membership functions associated with each variable, define the range of each out-
put variable and all output membership functions associated with each variable, and define the fuzzy rules
that relate input and output membership functions.

FIDE Inference Language (FIL) is defined in the FIDE Reference Manual. The use of FIL is described in the
FIDE User's Manual. As the listing shows, dollar signs ($) precede comments.

The first uncommented line in the listing is:

fiu tvfi *8

This line specifies that the fuzzy inference unit uses the truth value flow inference (TVFI) method and em-
ploys a calculation precision of 8 bits, or 256 divisions. TVFI is the least-complicated of the available calcu-
lation methods, and produces the smallest object code image. TVFI produces “singleton”output values that
shap crisply from one output state to the next.

The next uncommented line is:

invar X1 "delta pixels" :2 () 30 [

This line specifies the name of an input variable as X1, measured in units of delta pixels. The valid range of
values for X1 is defined as 2 to 30. The set of parentheses specifies that X1 values are represented over
the range of 2 to 30 with the full precision of 256 values. An open left-handed square bracket begins the list
of input membership function definitions.

The first input membership function definition is:

Small (@2,1, @11,1, @13,0),

The name of the input membership function is Small. The function is defined by the contents of the paren-
thetical set. Small starts with the value 1 at the smallest valid value (2). Small remains 1 until 11 delta pixels,
when it begins to ramp down, eventually reaching 0 at 13 delta pixels. The comma following the parenthet-
ical set indicates that more input membership functions follow.

The end of the input membership function list is denoted by a closing right-handed square bracket. The end
of the input variable definition is denoted by a semicolon. Input variable definitions for X2, X3, X4, SOP, and
TERM follow.

Output variable definition begins with the line:

outvar Char "Character" :0 () 14 * (

The name of the output variable is Char. The variable is assigned the meaningless unit of Character. The
range of Char is specified as 0 to 14. The asterisk specifies centroid defuzzification. The open left-handed
parenthesis that ends the line starts the list of output membership functions.

L ___|
MOTOROLA AN1220/D

16

The end of the membership function list is denoted by a closing right-handed parenthesis. The end of the
output variable definition is denoted by a semicolon. Notice that Char is defined from 0 to 14, while the val-
ues assigned to each character recognized ranges from 1 to 14. Thus, if no character is recognized, OCA
returns the value 0.

The fuzzy rules that follow the variable definitions are taken directly from Table 7. Each rule is separated
from the next by a semicolon. The final rule has no semicolon. It is followed by the FIL statement "end".

The FIDE debugger provides several functions to test for proper operation of the FIU. The analyzer portion
of the debugger provides surface and contour maps and cross-sections of input-output relationships, mak-
ing it easy to visualize how changes in inputs affect outputs. Surface map display mode shows the three-
dimensional surface created by the interaction of two input variables with an output. Thus, a surface display
cannot be used to show all six input variables simultaneously, but is nonetheless useful in showing system
behavior around known areas of concern, such as the overlap area between characters 2 and 5.

The debugger simulator function was also very helpful in testing OCA. The simulator reads a user-defined
input data file with a DOS extension of .FDL, generates an output for every combination of inputs specified,
and then displays the state of each graphically.

FIDE also provides a system-level simulation capability, called Composer. A system can be composed, or
made to incorporate multiple FIU, FOU, and FEU. FIDE operation units (FOU) reformat data passing be-
tween multiple FIU, allowing each FIU to represent data independently. FIDE execution units (FEU) simu-
late the interface to the external world. FEU are written in the C language and typically provide feedback
from system outputs or intermediate points to system inputs or intermediate points. Since OCA is not a
closed loop system, the composer was not used in testing.

TESTING RESULTS

OCA is a complex fuzzy system with six input variables, one output variable, twenty-three input membership
functions, fifteen output membership functions and fourteen fuzzy rules. This complexity makes it difficult to
estimate the output for a given set of inputs intuitively.

The most productive testing technique for fuzzy systems is empirical. To test OCA, a text file of test data
was supplied to the OCA simulator and generated outputs were compared to the expected outputs.

A group of fourteen data sets was created as a starting point. This group is shown in the listing below. The
input data sets correspond, in order, to the fourteen fuzzy rules in the fuzzy inference unit listing. Therefore,
proper selection of input values X1 through X4, SOP and TERM should generate the outputs O through 9,
SS1, SS2, SS3, and SS4, in that order. The values shown are center points for the fuzzy set specified by a
given rule, and thus represent a set of input data that OCA should find easy to classify.

This group of fourteen data sets was then duplicated and modified to check for proper operation across the
range of character data specified in Tables 3, 5, and 6. The listing shows only the initial fourteen data sets.
In each group of data sets, one input variable (say, X1) was taken to the lower limit, with all others held at
the upper limit.

Over the entire suite of 112 worst-case simulated data sets, OCA generated two outputs that would have
required a second read. These two cases generated outputs that were outside the imposed definition of ex-
pected output +0.13. Importantly, no data sets were incorrectly labelled as being a different character.
These worst-case data sets would probably never be encountered in the real world, since transitions, SOP,
and TERM would all tend to deviate from mean values in the same direction. Nonetheless, further manipu-
lation of membership functions and rule definitions might make OCA even more robust.

- ___|
AN1220/D MOTOROLA
17

$Fi | ename: OCA. FDL
$
$Si nul ator file for OCA. FIL

X1: 2() 30, X2: - 30() - 2, X3: 2() 30, X4: - 30() - 2, SOP: 60() 220, TERM 8() 20;

23,-18, 18, - 23, 153, 18;
23,-23,00,-00, 121, 11;
15, - 08, 08, - 15, 107, 11;
23,-23,00,-00, 137, 13;
18, -16, 08, - 11, 135, 15;
15, -08, 08, - 16, 119, 13;
23,-16, 05, - 08, 150, 16;
08, - 06, 12, - 09, 084, 13;
23, -16, 16, - 23, 197, 17,
13, -08, 19, - 23, 154, 16;
10, -10, 10, -10, 111, 18;
16, - 16, 16, - 16, 148, 17;
15, - 15, 16, - 16, 182, 18;
08, - 08, 08, -08, 086, 17;

GENERATING REAL TIME CODE

FIDE provides a real-time code generator that converts FIDE source code into assembler source code. The
code generator prompts for MCU type, then creates an appropriate output file of the same name as the .FIL
file, but with an .ASM extension. For OCA, M68HC11 real-time code was generated. The resulting
OCA.ASM file was assembled with the IASM11 assembler.

The assembled object code size of OCA is $562 (1123 decimal) bytes. This includes both the fuzzy infer-
ence engine and application-specific code. The data preprocessor is not included in this total, but the com-
bined size of preprocessor and fuzzy code should be less than 6 Kbytes.

The code was assembled with an ORG address of $D000, with RAM starting at $0000. X1, X2, X3, and X4
are updated by the preprocessor at locations $0000 to $0003. SOP is updated at $0004 and TERM at
$0005. The fuzzy engine output, Char, is updated at location $0006.

This FIU expects fuzzy inputs to be normalized (expressed as a function of input range and step length).
The preprocessor must perform this function. Likewise, the FIU generates a normalized output which must
be de-normalized by the main program. The normalized input value (n) is defined by:

n=
The real value of the normalized output is defined by:

real value =

L ___|
MOTOROLA AN1220/D
18

SUMMARY

OCA demonstrates the power of fuzzy logic when applied to problems like pattern recognition. The fuzzy
logic implementation uses very little memory, making it possible to provide full functionality within the limited
confines of MCU ROM space. Since fewer lines of code are executed, microprocessor performance require-
ments are reduced. In addition, developing a smaller amount of code takes much less time. The graphical
user interface, debug facilities and ROM-able inference engine further simplify development.

OCA was developed to provide data as a "black box" function for a host program that would also handle
document movement, communication to external computers, and other tasks. In a realized system, OCA
would be invoked during optical sensor integration time, after 22 data slices had been obtained. The pre-
processor would update the six input variables at location $0000. Very shortly thereafter, the fuzzy engine
would update the output at location $0006 with the code corresponding to the character recognized. The
host program would take the output character value and copy it into a string of values representing the ac-
count number or other data on the document being read.

OCA should operate properly, even with moderate amounts of document skew and misalignment, since
these cases were included with the data sets OCA defines. To provide additional guardbanding, the fuzzy
sets generally have considerably more latitude than the data sets they incorporate. Therefore, OCA should
also be somewhat tolerant of lighting conditions, document background, and printing variations.

REFERENCES

The following publications provide a thorough background in fuzzy logic, from fundamentals to advanced
applications.

1. Anderson, Ken, "Control Systems Sample Life In The Fuzzy Lane," Personal Engineering and
Instrumentation News, October 1992, pg 78.

2. Brubaker, David I., "Fuzzy Logic Basics: Intuitive Rules Replace Complex Math," EDN, June
18, 1992, pg 111.

3. Brubaker, David I. and Cedric Sheerer, "Fuzzy Logic System Solves Control Problem," EDN,
June 18, 1992, pg 121.

4. Kosko, Bart, Neural Networks and Fuzzy Systems, Prentice Hall, Englewood Cliffs, NJ, 1992.

5. Schwartz, Daniel G. and George J. Klir, "Fuzzy Logic Flowers In Japan," IEEE Spectrum, July
1992, pg 32.

6. Sibigtroth, James M., "Creating Fuzzy Micros," Embedded Systems Programming, December
1991.

7. Williams, Tom, "Fuzzy Logic Is Anything But Fuzzy," Computer Design, April 1992, pg 113.

- ___|
AN1220/D MOTOROLA

19

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. (M) mororoLa s g
registered trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

TO OBTAIN ADDITIONAL PRODUCT INFORMATION:

USA/EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
MFAX: RMFAXO0@email.sps.mot.com - TOUCHTONE (602) 244-6609
INTERNET: http://www.mot.com

I @ MOTOROLA

	OPTICAL CHARACTER RECOGNITION USING FUZZY LOGIC
	OVERVIEW
	Figure 1 Character Set To Be Recognized

	THE FUZZY LOGIC DESIGN PROCESS
	THE DATA PREPROCESSOR
	Figure 2 19 Data Slices for Ideal, Misaligned, and...
	Table 1 Slice Totals for the Three Readings of Fig...

	PREPROCESSOR OUTPUT: THE TRANSITION CONCEPT
	Figure 3 Graphical Comparison of Slice Totals from...
	Figure 4 The Preprocessor for Transition Calculati...
	Table 2 Translation Calculation for Skewed Charact...
	Figure 5 Visual Representation of Table 2 Transiti...

	FUZZIFYING TRANSITION INPUTS
	Table 3 Transition Magnitude Ranges For All Fourte...
	Figure 6 Distributions of Transitions Across the U...
	Figure 7a X2 (Left) and X1 (Right) Fuzzy Set Defin...
	Figure 7b X4 (Left) and X3 (Right) Fuzzy Set Defin...
	Figure 7c X6 (Left) and X5 (Right) Transition Dist...
	Table 4 Transition Magnitudes Presented By Each Ch...

	PREPROCESSOR OUTPUT: SUM-OF-PIXELS (SOP)
	Table 5 SOP Range for Each Character
	Figure 8 SOP Fuzzy Set Distributions

	PREPROCESSOR OUTPUTS: TERMINATION WIDTH (TERM)
	Table 6 TERM Range for Each Character
	Figure 9 TERM Fuzzy Set Definitions

	CREATING FUZZY RULES
	Table 7 OCA Fuzzy Set Associations

	OCA FUZZY INFERENCE UNIT LISTING
	LISTING COMMENTS

	TESTING RESULTS
	GENERATING REAL TIME CODE
	SUMMARY
	REFERENCES

