

Order this document by:

A N 1 2 5 4 / D

SEMICONDUCTOR

MOTOROLA

APPLICATION NOTE

Using the MC68HC16Z1 for Audio Tone Generation
By Scott Howard

INTRODUCTION
There are many applications where a microcontroller is required to generate audio-frequency tones as part
of a product's function. Audio tones can be used to communicate data, interact with the user of the product,
or to perform other functions. Table 1 shows typical applications.

Audio tones may be simple, such as a square wave produced by toggling a single output bit, or very com-
plex, such as computer-generated music. Most microcontroller applications involve waveforms of low to
moderate complexity. Typical tones consist of square waves, sine waves, or other arbitrary patterns such
as triangles and ramp waveforms, as well as combinations of these.

It is feasible and in fact quite simple to generate audio tones in software using a microcontroller. But, since
there are a number of analog integrated circuits available that can perform this function, why use a micro-
controller?

There are two important reasons for considering a software approach:

1. The microcontroller is already part of the product, and hardware costs can be reduced elsewhere in
the design by using tone-generating software

2. Software offers flexibility which is unavailable (or expensive) if implemented in hardware; e.g., output
waveforms, frequencies, and output levels can be changed easily in software

This application note examines generating arbitrary waveform using software techniques, and shows how
to generate DTMF tones used on the public switched telephone network.

Source code for software discussed in this note is available from Motorola Freeware Data Systems. For mo-
dem access to the Freeware BBS, dial (512) 891-3733. For Internet access, use freeware@mot.sps.com.
For WWW access, use http://freeware.aus.sps.mot.com/.

Table 1 Tone Generation Applications

Application How Used

Security Systems Communication between system and remote monitoring site

Telephone Products
DTMF (Dual Tone Multi Frequency) transmits digits to central office

MF (Multi Frequency) used between central offices

Instrumentation and Data Acquisition Data transmission and remote control

MODEMs Transmitting data over the telephone network between computers
© MOTOROLA INC, 1996

HOW TONE GENERATION IS DONE
A table of data representing the output waveform is stored in memory. A pointer is used to access the table.
Initial pointer value is the address of the first data point. Hardware and software are set up to generate wave-
form samples at a constant rate. During each sample period, data is read from the address specified by the
pointer and sent to the output hardware. The pointer value is then incremented and compared to the last
address in the table. When the pointer is incremented past the end of the table, the initial value is restored.

In Figure 1, a table of 18 samples in memory represent a sine wave. If one sample is output each millisec-
ond through a digital to analog converter (DAC), then a sine wave of 55.6 Hz (1000 ÷18) is generated.

To generalize, the output frequency is calculated as follows:

Figure 1 Waveform Generation

Fout
Sample Rate in Hz
Samples per Wave
--=

BYTE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

VALUE -120 -98 -64 -22 22 64 98 120 127 120 98 64 22 -22 -64 -98 -120 -128

DIGITAL TO ANALOG
CONVERTER (DAC)

SINE WAVE
OUTPUT

AN1254 TNWV

ADDRESS
POINTER
MOTOROLA AN1254/D
2

Tone Generation Code Example

CPU16 code to implement tone generation could look like this:

PSCT Switch to ROM section
INIT: LDX #TABLE point to start of table

STX POINTER save in memory
JSR SET_TIMER set up GPT hardware to generate

* an interrupt every millisecond

* The following routine is called by the timer interrupt

ISR: PSHM X,D save X and D registers on stack
JSR RESET_TIMER set up timer for next interrupt
LDX POINTER
LDAA 0,X Get next sample
STAA DAC write to D/A Converter
AIX #1 step to next address in table
CPX #TABLE_END stepped past end of table yet?
BNE ISR_1 branch if not
LDX #TABLE else reset pointer to start

ISR_1: STX POINTER save new pointer back to memory
PULM D,X restore CPU registers from stack
RTI done

* Table of sine wave samples in memory

TABLE: FCB -120,-98,-64,-22
FCB 22,64,98,120,127
FCB 120,98,64,22
FCB -22,-64,-98,-120,-128

TABLE_END: EQU *

DSCT Switch to RAM section
POINTER RMB 2 reserve memory to store pointer
AN1254/D MOTOROLA
3

QUESTIONS AND ANSWERS

How Can The Waveform Be Changed?

Any arbitrary waveform may be generated by changing the values stored in the memory table. This is one
of the great advantages of this method of digital waveform generation.

Can Multiple Signals Be Generated?

Multiple signals can be generated by performing multiple table lookup operations, adding the samples, and
sending the sum to the DAC. Different tables can be used for each lookup operation, or a single table can
be used, to save space. Waves of different frequencies can be generated from the same memory table us-
ing the techniques discussed below.

Do not allow results of addition to overflow. For example, if the two samples retrieved from the 8-bit table
shown in Figure 1 were both 126, adding them would cause accumulator overflow, and the result stored in
the DAC would be –2. To avoid this, software must scale the samples before adding them. In the example,
both samples must be divided by two, so that the value 126 is changed to 63, and the sum becomes the
true value of 126.

Can A Waveform Be Generated Without Using A Lookup Table?

A subroutine can be used to generate the data points, but there are significant trade-offs to be considered.
A subroutine cannot be changed as easily as a lookup table, and algorithms for some commonly-used
waveforms (such as the sine wave in the example) are difficult to implement. However, algorithms for certain
other waveforms are very simple: a ramp can be implemented by repetitively incrementing or decrementing
a value stored in memory, then sending each new result to the DAC; and white noise can be simulated with
a random number generator.

How Can The Amplitude Be Varied?

Amplitude can be varied digitally, by multiplying each sample by a scaling factor before it is sent to the DAC.
The CPU16 instruction set includes a number of multiplication instructions, including multiply-and-accumu-
late (MAC) and repetitive multiply-and-accumulate (RMAC) instructions, that make this type of operation
fast and simple. Multiplication can be done as a series of adds and shifts on microcontrollers that do not
support multiplication directly.

Amplitude can also be controlled in external hardware, either by the DAC or by analog circuitry further down-
stream. There are associated hardware costs, but this method may be effective in particular applications.

What Are The Side Effects Of Digital Amplitude Control?

Varying the amplitude digitally also varies the signal to noise ratio (SNR) of the outgoing signal because
digital noise remains at a constant level of one LSB, while the amplitude of the outgoing signal varies.

The digital representation is an approximation of the true analog signal, and can have as much as ± 1/2 LSB
of error, or quantization noise. It follows that, the more bits used to represent a signal (i.e., the larger the
word), the smaller quantization error and noise are in relation to the full scale value of the signal. This noise
decreases by six db for each bit added to the word width — in a16-bit M68HC16 device, the digital noise
floor is 96 db down, and the SNR is 96 db at full amplitude. When the signal amplitude is reduced, the noise
floor remains constant at –96 db, so the signal to noise ratio is reduced accordingly.

When digital gain control is used, the effective range of gain control is bounded by the specified minimum
SNR. For example, if the SNR of the tone output must be at least 40 db, approximately 50 db of gain control
can be used without exceeding the specification.If more gain control than can be accommodated by the
available word width is needed, then the designer should consider the hardware approach described earlier.
For example, if the design were implemented in an 8-bit machine, which has a digital noise floor of –48 db,
gain control could not be implemented digitally if a 40 db SNR was needed.
MOTOROLA AN1254/D
4

What About Changing The Frequency Of The Output Signal?

Changing output signal frequency is a complex issue. One approach is to alter the sample rate. This is not
always the best approach, particularly in the telecommunications arena, where many systems require a
fixed sample rate. Even when the system design will accommodate changes in sample rate, the software
may rely on constant timing for other functions, thus making rate changes difficult to implement.

One way to change frequency is to store more samples than needed in the table, then skip a specific num-
ber of samples for each value sent to the DAC. The number of skipped samples is referred to as the pointer
interval. Output frequency can be varied by changing the pointer interval, and sample rate remains constant.

Since output frequency is equal to sample rate divided by the number of samples per wave, skipping a num-
ber of table entries for each sample (i.e., interval > 1) has the effect of multiplying output frequency.

If the number of samples in the example in Figure 1 is increased by four (to 72), but four table entries are
skipped for each sample output, then the output frequency remains the same. if the pointer interval is
changed to 3, then the frequency becomes:

The output frequency has changed, but the sample rate remains constant. Frequency resolution is found by
substituting an interval of 1:

In this example, the frequency can be controlled in units of 13.9 Hz:

Since frequency is a ratio of sample frequency and table size, increased frequency resolution can be
achieved by leaving sample rate constant and increasing sample table size, as shown in Figure 2.

Fout
Interval Sample Rate×

Samples per Wave
--=

Fout
3 1000 Hz×

72
--------------------------------= 41.7 Hz=

Finterval
Sample Rate
Table Size

----------------------------------=

Finterval
1000 Hz

72
---------------------- 13.9 Hz==
AN1254/D MOTOROLA
5

Figure 2 Increasing Table Size increases Frequency Resolution

BYTE 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

VALUE -120 -98 -64 -22 22 64 98 120 127 120 98 64 22 -22 -64 -98 -120 -128

DIGITAL TO ANALOG
CONVERTER (DAC)

SINE WAVE
OUTPUT

AN1254 TNTS

ADDRESS
POINTER
MOTOROLA AN1254/D
6

Frequency Change Code Example

The following code could be used to implement the pointer interval.

PSCT Switch to ROM section
INIT: CLRW POINTER initialize pointer

LDD #4 set up initial interval
STD INTERVAL
JSR SET_TIMER set up GPT hardware to generate

* an interrupt every millisecond
* The following routine is called by the timer interrupt
ISR: PSHM X,D,E save registers on stack

JSR RESET_TIMER set up timer for next interrupt
LDX #TABLE point to table in memory
LDE POINTER
LDAA E,X Get next sample
STAA DAC write to D/A Converter
ADDE INTERVAL Add interval to pointer
CPE #TABLE_SIZE stepped past end of table yet?
BLO ISR_1 branch if not
SUBE #TABLE_SIZE Reset pointer modulo table size

ISR_1: STE POINTER save new pointer back to memory
PULM E,D,X restore CPU registers from stack
RTI done

* Table of sine wave samples in memory
TABLE: FCB -120,-100,-64,-20

FCB 20,64,100,120,127
FCB 120,100,64,20
FCB -20,-64,-100,-120,-128

TABLE_SIZE: EQU *-TABLE

DSCT Switch to RAM section
INTERVAL RMB 2 storage for pointer interval

What Else Can Be Done With This Technique?

Possibilities include:

• Multiple tones — Performing multiple table lookups, summing the samples, and sthen ending the sum
to the DAC.

• Amplitude modulation — Performing two table lookups, multiplying the two values, and then sending
the product to the DAC.

• Frequency modulation — Performing two table lookups, then using one lookup value to modulate the
interval of the other.
AN1254/D MOTOROLA
7

GENERATING DTMF TONES
 DTMF (Dual Tone Multi-Frequency) signalling is used to transmit phone numbers on the public telephone
network. Generation of DTMF illustrates all of the concepts discussed.

In this encoding scheme, 16 binary digit codes are represented by means of sine wave tone pairs, organized
into a high group (1200-1700 Hz) and a low group (600-1000 Hz). There are four tones in each group.

As shown Table 2, the tones are associated with a particular row or column on the telephone keypad. Col-
umn four is defined but is not usually implemented on a telephone. Signalling is accomplished by trans-
mitting one tone from each group for a minimum of 50 ms, followed by a silent period of at least 50 msec.

Industry specifications for DTMF generally require frequency errors to be less than 1%, and total harmonic
distortion (THD) to be less than 10%. Additionally, the frequency response of the telephone line generally
rolls off at high frequencies, requiring the high group of tones to be transmitted at a higher amplitude than
the low group. The telephony buzzword for this characteristic is twist.

Software Approach

This example uses a single sine table with two pointers, one for the column tone and one for the row tone.
Each pointer has its own interval value, so that different frequencies can be generated.

In order to reduce harmonic content to a minimum, the output must be sampled at a high enough rate to
filter out the noise introduced at the sampling frequency. A sample period of 125 µsec was chosen for this
example; this is a standard sample rate in the telecommunications industry.

Calculating the Pointer Intervals

The general form of the equation is:

Rearrange the equation to calculate the interval:

The frequency for row 1 on the DTMF keypad is 697 Hz. If a sine wave table of 512 entries is used,

Table 2 DTMF Row And Column Frequencies

Keypad Rows
Keypad Columns

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz ∗ 0 # D

Fout
Interval Sample Rate×

Samples per Wave
--=

Interval
Fout Samples per Wave×

Sample Rate
--=

Interval
697 Hz 512×

8000 Hz
------------------------------------ 44.6==
MOTOROLA AN1254/D
8

Fractional intervals can't be used to step through the table, so round the interval to 45. Plug that number
back into the frequency equation, and the actual Fout is:

This gives a frequency error of 0.88%, which is acceptable.

When multiple tones based on a single sine wave table are used, performing the calculations can be te-
dious. A spreadsheet which calculates intervals based on the sine wave table size, sample period, and de-
sired frequency, as well as showing actual frequencies and error, is available through the Freeware system.
The file name is DTMF.WKS. DTMF frequencies shown in Table 3 were calculated using the spreadsheet.

Implementing High Tone Pre-Emphasis

In order to compensate for the high-frequency rolloff characteristic of most telephone lines, the high group
of tones must be approximately 1 to 3 db higher power than the low group. This equates to an amplitude
multiplication of 1.12 to 1.41. Since 0.25 is a binary fraction which can be obtained by shifting instead of
using a full multiply, 1.25 is a convenient value to use.

The sine table contains values for the low frequency row tones. When the high group sample is read from
the sine table, it is shifted right 2 bits (divide by 4), then the same sine value is added again into the accu-
mulator, producing the 1.25 multiplication. The pre-emphasis is:

A CPU16 code sequence to implement pre-emphasis is shown below.

ldd e,y ;get the sample
asrd ;divide by four (column * 0.25)
asrd
addd e,y ;add sample again (column * 1.25)

Calculating Sine Values to Avoid Overflow

The values in the sine wave table must calculated to avoid overflow errors when the two samples are
summed. In this example, 16 bits are used to store the samples, so the maximum data values are +32767
and –32768. To avoid overflow, the values in the table must be between +16383 and –16384. Since the
column tones are pre-emphasized, the actual values must be somewhat less than the maximum.

Table 3 DTMF Tone Calculations

Sample Period 125 µΣ
Sample Table Size 512

Frequency 697 770 852 941
Sample Interval 45 49 55 60

Actual Frequency 703.13 765.63 859.38 937.50
% Error 0.88 – 0.57 0.87 – 0.37

Frequency 1209 1336 1477 1633

Sample Interval 77 86 95 105
Actual Frequency 1203.13 1343.75 1484.38 1640.63

% Error – 0.49 0.58 0.50 0.47

Fout
lnterval Sample Rate×

Samples per Wave
--

45 8000× Hz
512

---------------------------------- 703Hz===

db 20 log V1
V2
------- 20 log (1.25) 1.94 db= = =
AN1254/D MOTOROLA
9

The DAC output value is calculated by

To solve for the MaxSineValue, rearrange the equation:

Sine values in the table must vary between ±14563.

A C program called MAKESINE.C which generates a sine table based on user-defined table size and max-
imum output values is available from Freeware data systems. The output format is compatible with most
cross assemblers for Motorola microcontrollers.

Hardware Design

The M68HC16Z1EVB is used to implement the tone generation hardware. As shown in Figure 3, GPT
PWM channel A is used as an 8-bit DAC, outputting DTMF tones through a low-pass RC filter to an external
audio amplifier and speaker. A 3 x 4 keypad is connected to the GPT I/O pins.

A software driver scans the keypad and enables the appropriate DTMF tones when a key press is detected.
The driver which performs the sine wave lookup and pointer increment is configured as an interrupt routine,
using the GPT Output Compare channel 2 to generate a regular 125 µsec interrupt.

Figure 3 DTMF Hardware Interface

MaxOutput MaxSineValue (1 + PreEmphasis)×=

MaxSineValue
MaxOutput

(1 + PreEmphasis)
--- 32767

(1+1.25)
---------------------- 14563.11= = =

130

131

132

4

5

6

7

128

MC68HC16Z1

IC4/OC5/PGP7

OC4/PGP6

OC3/PGP5

OC1/PGP3

IC3/PGP2

IC2/PGP1

IC1/PGP0

PWMA

P4

12

13

14

16

17

18

19

20

1

4

7

*

2

5

8

0

3

6

9

#
10 kΩ

620 Ω

150 nF

DTMF OUT

AN1254 TNHI
MOTOROLA AN1254/D
10

BENCHMARKING THE ASSEMBLY LANGUAGE CODE
Programs that implement the algorithm for M68HC05 and M68HC11 processors, DTMF05.ASM and
DTMF11.ASM, are available through Freeware Data Systems. Both use an on-board timer to generate an
interrupt at 128 µsec intervals, rather than 125 µsec, which allows them to meet the 1.0% frequency error
specification while using a 256-byte sine table.

System performance is shown in Table 1. The M68HC05 takes 116 clocks and 464 bytes of code to gen-
erate DTMF; the M68HC11 takes 119 clocks and 457 bytes of code. The HC11 requires extra clock cycles
to manipulate 16-bit addresses, whereas the HC05 can use byte-sized address calculations applied to a 16-
bit offset. The HC05, operating at the standard 2 MHz bus speed, uses 116/256 clock cycles (45%) to ser-
vice the DTMF interrupt. The HC11 is slightly higher at 46%.

The CPU16 can process the tone interrupt routine in 9.12 µsec, representing an overhead of 7.3%. This is
mainly due to increased data transfer capacity provided by the16-bit data bus. Overall, The M68HC16 is
approximately 6.5 times faster than the M68HC11 in this application. Increased performance allows the
M68HC16 to generate tones at a higher sampling rate than the 8-bit microcontrollers, and the device has
enough additional bandwidth to perform amplitude and frequency modulation.

Table 4 Performance results for M68HC05, M68HC11, and M68HC16

Device
Code
Size

Table
Size

Sample
Period

CPU
Clock Speed

Interrupt
Execution Speed

Execution
Time

CPU
Bandwidth

M68HC05 208 Bytes 256 Bytes 128 µsec 2.0 MHz 116 Cycles 58.0 µsec 45%

M68HC11 201 Bytes 256 Bytes 128 µsec 2.0 MHz 116 Cycles 59.9 µsec 46%

M68HC16 388 Bytes 512 Bytes 125 µsec 16.78 MHz 152 Cycles 9.12 µsec 7.3%
AN1254/D MOTOROLA
11

Moto
the s
spec
appl
conv
inten
prod
unau
cost
unin

regis

T

O

OB

US

JA

HO

MF

INT
rola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
uitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
ifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
ications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
ded for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
uct could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
thorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,

s, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
tended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. M is a
tered trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

TAIN ADDITIONAL PRODUCT INFORMATION:
A/EUROPE: Motorola Literature Distribution;

P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447
PAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
NG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
AX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609
ERNET: http://www.mot.com

	Using the MC68HC16Z1 for Audio Tone Generation
	Introduction
	Table 1 Tone Generation Applications

	How Tone Generation Is Done
	Figure 1 Waveform Generation
	Tone Generation Code Example

	Questions and Answers
	How Can The Waveform Be Changed?
	Can Multiple Signals Be Generated?
	Can A Waveform Be Generated Without Using A Lookup...
	How Can The Amplitude Be Varied?
	What Are The Side Effects Of Digital Amplitude Con...
	What About Changing The Frequency Of The Output Si...
	Frequency Change Code Example
	Figure 2 Increasing Table Size increases Frequency...

	What Else Can Be Done With This Technique?

	Generating DTMF Tones
	Table 2 DTMF Row And Column Frequencies
	Software Approach
	Calculating the Pointer Intervals
	Table 3 DTMF Tone Calculations

	Implementing High Tone Pre-Emphasis
	Calculating Sine Values to Avoid Overflow

	Hardware Design
	Figure 3 DTMF Hardware Interface

	Benchmarking the Assembly Language Code
	Table 4 Performance results for M68HC05, M68HC11, ...

