Order this document by

MOTOROLA AN1255/D
EE SEMICONDUCTOR - m

APPLICATION NOTE

MC68F333 Flash EEPROM Programming Utilities

By Mark Maiolani and Mark Weidner

INTRODUCTION

The MC68F333 modular microcontroller (MCU) is a member of the M68300 product family. The MCU mod-
ule complement includes a CPU32 processor, a single-chip integration module (SCIM), an 8-channel, 10-
bit analog to digital converter (ADC), a time processor unit (TPU), a queued serial module (QSM), a 512-
byte standby RAM (SRAM), a 3.5 kbyte RAM with TPU emulation capabilities (TPURAM), and two flash EE-
PROM modules (FLASH), one with a 16 kbyte array and the other with a 48 kbyte array.

This application note specifically describes software utilities that program and erase the FLASH modules in
the MC68F333, but also gives general information that applies to other Motorola modular microcontrollers
that incorporate flash EEPROM modules. Since the software utilities are device-specific, code must be
modified for other members of the M68300 family, and re-written for devices in the M68HC16 family. Refer
to he device user’'s manual for complete information, including timing and voltage parameters.

The programming and erasure software utilities are drivers for the CPU32 background debugger program,
BD32. Use of BD32 allows a simple PC interface to be supported without an excessive increase in code
size, and permits the MCU to be programmed with only an external programming voltage source. Because
the MC68F333 has 4 kbytes of on-board RAM, there is no requirement for external memory to run the pro-
gramming utilities.

Source files for routines discussed in this note are available from Motorola Freeware Data Systems. The
Freeware BBS can be accessed by modem at (512) 891-3733. For Internet access via telnet/FTP, use free-
ware.aus.sps.mot.com. For World Wide Web access, use http://freeware.aus.sps.mot.com/.

THE FLASH EEPROM MODULE

Flash EEPROM provides high-density non-volatile memory that can be used for program or data storage.
Each FLASH module consists of a control-register block that occupies a fixed position in MCU address
space and a relocatable EEPROM array.

The control register block is shown in Table 1. It contains all of the registers to control mapping, timing,
programming, and erasing of the array. Many of the control register bits have associated ‘shadow’ flash EE-
PROM bits. Shadow bits allow customization of the reset status of the module. For example, a module can
be programmed to supply reset vectors from flash EEPROM bootstrap words. Several interlocks are includ-
ed in the module to prevent accidental changes of critical parameters.

Unlike the control register block, the flash EEPROM array is not fixed to a particular memory address, but
can be programmed to a particular address defined by the base address registers FEEBAH and FEEBAL.
Array base addresses boundaries are typically determined by array size. For instance, a 16 kbyte array can
be located at any 16 kbyte boundary in the address map. For M68300 family devices, arrays can also be
configured to reside in both program and data space or in program space alone.

@ MOTOROLA R

00 MOTOROLA INC, 1996

A flash EEPROM array can be read as either bytes, words, or long-words. FLASH modules respond to back-
to-back IMB accesses, providing two-bus-cycle (four system clock) access for aligned long words. Each
module can also be programmed to insert up to two wait states per access, to accommodate migration from
slower external development memory without re-timing the system.

Because an array can be mapped to a number of different base addresses, it is possible for addresses in
the array to overlap the addresses of it's own register block or addresses used by other MCU modules, in-
cluding memory that the program/erase utility is executing from. The resulting conflicts can cause program-
ming or erasure to fail. Thus, the user must take special care to verify the array base address before
attempting programming or erasure.

Programming is by byte or aligned word only, and FLASH modules support only bulk erasure. Hardware
interlocks protect stored data from corruption if program/erase voltage is enabled accidentally.

Flash EEPROM Registers

Each control block contains five registers: the flash EEPROM module configuration register (FEEMCR), the
flash EEPROM test register (FEETST), the flash EEPROM array base address registers (FEEBAH and
FEEBAL), and the flash EEPROM control register (FEECTL). Four additional flash EEPROM words in the
control block can contain bootstrap information for use during reset.

Table 1 Flash EEPROM Address Map

Access Address Register
S SYFF##0 Flash EEPROM Module Configuration (FEEMCR)
S SYFF##2 Flash EEPROM Test Register (FEETST)
S SYFF##H4 Flash EEPROM Base Address High (FEEBAH)
S SYFF##6 Flash EEPROM Base Address Low (FEEBAL)
S SYFF##8 Flash EEPROM Control Register (FEECTL)
S SYFF##A RESERVED
S SYFF##C RESERVED
S SYFF#EE RESERVED
S SYFF##0 Flash EEPROM Bootstrap Word 0 (FEEBSO0)
S SYFF##2 Flash EEPROM Bootstrap Word 1 (FEEBS1)
S SYFF##4 Flash EEPROM Bootstrap Word 2 (FEEBS2)
S SYFF##6 Flash EEPROM Bootstrap Word 3 (FEEBS3)
S SYFF##8 RESERVED
S SYFFH#A RESERVED
S $YFF##C RESERVED
S SYFFH#HHE RESERVED

In the address map, Y = M111, where M represents the state of the MODMAP (MM) bit in the system inte-
gration module configuration register. MM defines the MSB (ADDR23) of the IMB address for MCU module.
MM can be written only once after reset. An “S” in the access column indicates registers are located in su-
pervisor data space. In M68300 family devices, access to supervisor space can be restricted, but M68HC16
devices operate only in supervisor space—see the respective CPU reference manuals for more information.

A number of control register bits have associated bits in shadow registers. The values of the shadow bits
determine the reset states of the control register bits. In subsequent register diagrams, bits with reset
states determined by shadow bits are shaded, and the reset state is annotated "SB". Shadow registers are
programmed or erased in the same manner as a location in the array, using the address of the correspond-
ing control registers.When a shadow register is programmed, the data is not written to the corresponding
control register — the new data is not copied into the control register until the next reset. The contents of
shadow registers are erased when the array is erased.

|
MOTOROLA AN1255/D
2

Configuration information is specified and programmed independently of the array. After reset, registers in
the control block that contain writable bits can be modified. Writes to these registers do not affect the asso-
ciated shadow register. Certain registers can be written only when the LOCK bit in the FEEMCR is disabled
or when the STOP bit in the FEEMCR is set.

Module Configuration Register

FLASH module configuration registers (FEEMCRY) control module configuration. This register can be written
only when the control block is not write-locked (when LOCK = 0). All active fields and bits in the MCR take
values from the associated shadow register during reset.

FEEMCR — Flash EEPROM Module Configuration Register $YFF##0
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| STOP | FRZ | 0 | BOOT | LOCK | 0 | ASPC WAIT | 0 | 0 | 0 | 0 | 0 | 0 |
RESET:
SB 0 0 SB SB 0 SB SB 0 0 0 0 0 0

STOP — Stop Mode Control

0 = Normal operation

1 = Low-power stop operation
Setting the STOP bit places the module in low-power stop mode. The EEPROM array is inaccessible
during low-power stop. The array can be re-enabled by clearing STOP. If STOP is set during program-
ming or erasing, program/erase voltage is automatically turned off. However, when this is done, the en-
able programming/erase bit (ENPE) in the FEECTL remains set. Unless ENPE is cleared, program/
erase voltage is automatically reapplied when STOP is cleared.
Since the default state of the STOP bit out of reset is determined by the value stored in the shadow
MCR, it is possible for the module to come out of reset in low-power mode. The reset state of the STOP
bit can also be affected by reset mode selection. Refer to the integration module section of the appro-
priate device user’'s manual for more information.

FRZ — Freeze Mode Control
0 = Disable program/erase voltage while FREEZE is asserted
1 = Allow ENPE bit to turn on the program/erase voltage while FREEZE signal is asserted

FRZ determines the response of the FLASH module to assertion of the FREEZE signal by the CPU.
When FRZ = 0, the program/erase voltage is disabled while FREEZE is asserted. When FRZ = 1, the
ENPE bit in the FEECTL can turn on the program/erase voltage while FREEZE is asserted.

BOOT — Boot Control
0 =Flash EEPROM module responds to the bootstrap addresses after reset
1 =Flash EEPROM module does not respond to the bootstrap addresses after reset
On reset, the BOOT bit takes on the default value stored in the shadow MCR. If BOOT = 0 and STOP
=0, the module responds to program space accesses to IMB addresses $000000 to $000006 following
reset, and the contents of FEEBS[3:0] are used as bootstrap vectors. After address $000006 is read,
the module responds normally to control block or array addresses only.
LOCK — Lock Registers
0 = Write-locking disabled
1 = Write-locked registers protected

When LOCK is set, writes to locked registers in the control block have no effect. Once set, LOCK cannot
be cleared until reset occurs. The default state of the LOCK bit out of reset is determined by the value
stored in the shadow MCR. If the default state is zero, LOCK can be set once to protect the registers
after initialization. Once set, LOCK cannot be cleared again until another reset occurs. When a default
reset state of zero is used, the initialization routine should set LOCK to prevent inadvertent reconfigu-
ration of the FLASH module.

__|
AN1255/D MOTOROLA
3

ASPCJ[1:0] — Flash EEPROM Array Space

ASPC assigns the array to a particular address space. The default state of the ASPC field out of reset
is determined by the value stored in the shadow MCR. The field can be written only when LOCK =0
and STOP = 1. The four possible encodings for ASPC are summarized in Table 2. In CPU-16-based
systems, only encodings for supervisor space are valid.

Table 2 Array Space Encoding

ASPC[1:0] Type of Access
00 Unrestricted program and data space
01 Unrestricted program space
10 Supervisor program and data space
11 Supervisor program space

WAIT[1:0] — Wait States

The default state of the WAIT field out of reset is determined by the value stored in the shadow MCR.
WAIT[1:0] specifies the number of wait states inserted during accesses to the FLASH module. A wait
state has the duration of one system clock cycle. WAIT[1:0] affects both control block and array access-
es, and can be written only if LOCK = 0 and STOP = 1. Table 3 shows wait state encodings and corre-
sponding clock cycles per transfer.

Table 3 Wait State Encoding

WAIT[1:0] Wait States Clocks/Transfer
00 0 3
01 1 4
10 2 5
11 -1 2

The value of WAIT[1:0] is compatible with the lower two bits of the DSACK field in the integration module
chip-select option registers. An encoding of %11 in the WAIT field corresponds to an encoding for fast
termination.

Test Register

FEETST — Flash EEPROM Test Register SYFF##2
This registers is used for factory test only.

Base Address Registers

The base address high register (FEEBAH) contains the 16 high-order bits of the array base address; the
base address low register (FEEBAL) contains the low-order bits of the address. The number of active con-
trol bits in FEEBAL is determined by the size of the array, as shown in Table 4. During reset, both FEEBAH
and FEEBAL take on default values programmed into associated shadow registers. After reset, if LOCK =
0 and STOP =1, software can write to FEEBAH and FEEBAL to relocate the array.

|
MOTOROLA AN1255/D
4

FEEBAH — Flash EEPROM Base Address High Register SYFF##4
15 0

Flash EEPROM Base Address (high-order bits) |

RESET:
SB
FEEBAL — Flash EEPROM Base Address Low Register SYFF##6
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Flash EEPROM Base Address (low-order bits) |
RESET:
SBO 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4 FEEBAL Bit Implementation

Array Size Bits Used
8 Kbyte [15:13]
Up to 16 Kbyte [15:14]
Up to 32 Kbyte [15]
Up to 64 Kbyte None

Flash EEPROM Control Register

FLASH control registers (FEECTL) control programming and erasure of the array. FEECTL is accessible in
supervisor mode only. Refer to EFFECTS of LOCK Bit Operation for more information.

FEECTL — Flash EEPROM Control Register $YFF##8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | VFPE | ERAS | LAT | ENPE |
RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VFPE — Verify Program/Erase
0 = Normal read cycles
1 = Invoke program verify circuit
The VFPE bit invokes a special program-verify circuit. During programming sequences (ERAS = 0),
VFPE is used in conjunction with the LAT bit to determine when programming of a location is complete.
If VFPE and LAT are both set, a bit-wise exclusive-OR of the latched data with the data in the location
being programmed occurs when any valid FLASH location is read. If the location is completely pro-
grammed, a value of zero is read. Any other value indicates that the location is not fully programmed.
When VFPE is cleared, normal reads of valid FLASH locations occur. The value of VFPE cannot be
changed while ENPE = 1.
ERAS — Erase Control
0 = Flash EEPROM configured for programming
1 = Flash EEPROM configured for erasure
The erase control bit (ERAS) in FEECTL configures the array for either programming or erasure. Setting
ERAS causes all locations in the array and all control bits in the control block to be configured for era-
sure at the same time.

When the LAT bit is set, ERAS also determines whether a read returns the data in the addressed loca-
tion (ERAS = 1) or the address itself (ERAS = 0). ERAS cannot be changed while ENPE = 1.

__|
AN1255/D MOTOROLA
5

LAT — Latch Control
0 = Programming latches disabled
1 = Programming latches enabled
The latch control bit (LAT) in the FEECTL configures the EEPROM array for normal reads or for pro-
gramming. When LAT is cleared, the FLASH module address and data buses are connected to the IMB
address and data buses and the module is configured for normal reads. When LAT is set, module ad-
dress and data buses are connected to parallel internal latches and the array is configured for program-
ming or erasing.
Once LAT is set, the next write to a valid FLASH module address causes the programming circuitry to
latch both address and data. Unless control register shadow bits are to be programmed, the write must
be to an array address. The value of LAT cannot be changed while ENPE = 1.
ENPE — Enable Programming/Erase
0 = Disable program/erase voltage
1 = Apply program/erase voltage to flash EEPROM
Setting the enable programming/erasure (ENPE) bit in FEECTL applies program/erase voltage to the
array. ENPE can be set only after LAT has been set and a write to the data and address latches has
occurred. ENPE remains cleared if these conditions are not met. While ENPE is set, the LAT, VFPE,
and ERAS bits cannot be changed, and attempts to read an array location are ignored.

Flash EEPROM Bootstrap Words

The bootstrap words (FEEBS[3:0]) can be used as system bootstrap vectors. When the BOOT bit in FEEM-
CR = 1 during reset, the FLASH module responds to program space accesses of IMB addresses $000000
to $000006 after reset. When BOOT = 0, the FLASH module responds only to normal array and register
accesses. FEEBS[3:0] can be read at any time, but the values in the words can only be changed by pro-
gramming the appropriate location. Table 5 shows bootstrap word addresses in program space.

FEEBS[3:0] — Flash EEPROM Bootstrap Words SYFF##0-BYFF##6

Table 5 Bootstrap Words

Word Address
FEEBSO $00000000
FEEBS1 $00000002
FEEBS2 $00000004
FEEBS3 $00000006

APPLYING FLASH PROGRAM ERASE VOLTAGE

A voltage of at least Vpp — 0.5 V must be applied at all times to the Vepe pins or damage to the FLASH
module can occur. FLASH modules can be damaged by power-on and power off V transients. V
must not rise to programming level while V_ _ is below specified minimum value, and must not fall below
minimum specified value while Vob is applied. Figure 1 shows the Vepe and Voo operating envelope.

Use of an external circuit to condition V__ _ is recommended. Figure 2 shows a simple circuit that maintains
required voltages and filters transients. Ve is pulled up to Vpp via Schottky diode D2. Application of pro-
gramming voltage via diode D1 reverse-biases D2, protecting Vpp from excessive reverse current. D2 also
protects the FLASH from damage should programming voltage go to zero. Programming power supply volt-
age must be adjusted to compensate for the forward-bias drop across D1. The charge time constant of R1
and C1 filters transients, while R2 provides a discharge bleed path for C1. Allow for RC charge and dis-
charge time constants when applying and removing power. When using this circuit, keep leakage from ex-
ternal devices connected to the Vepe pin low, to minimize diode voltage drop.

|
MOTOROLA AN1255/D
6

There are a number of interlocks designed to prevent accidental programming or erasure. For increased
protection, raise the VFPE input to programming voltage only immediately prior to issuing a PROG or BULK
command, and remove programming voltage as soon as the operation is complete.

> [30 ns MAXIMUM
135V
|:| Vepg ENVELOPE

126V
Vpp ENVELOPE
ey fa M

- COMBINED Vppy AND Vepe

65V
45V
40V
oV
-030V
POWER NORMAL PROGRAM POWER
ON READ ERASE DOWN
VERIFY
PROG VOLT ENVELOPE
Figure 1 Programming Voltage Envelope
PROGRAMMING VOLTAGE
POWER SUPPLY
D1
R1
10kQ
D2
45V N VFPE
v,
SO
AAAY
R2
2kQ ¢
I 0.1 WF
— Vpe CIRCUIT
Figure 2 VEpg Conditioning Circuit
AN1255/D MOTOROLA

7

EFFECTS OF LOCK BIT OPERATION

FLASH modules can be configured to prohibit access to the base address registers and the module config-
uration register. This capability prevents application failures caused by accidental writes to the registers.
Access is controlled by the LOCK bit in the module configuration register (FEEMCR).

Because it restricts relocating the array to resolve address conflicts, the LOCK bit can also affect program-
ming and erasing. Conflicts arise when the array is mapped to an address range that coincides with the ad-
dresses of other MCU resources. These resources may be:

1. FLASH module control register blocks
2. Control registers of other IMB modules
3. Memory required by the driver software

The third type of conflict is easily resolved by relocating the driver. BD32 macro files provide a convenient
way to do this, and all other required configuration. Two example macro files, SRAMHIGH.DO and SRAMZ-
ERO.DO are listed and used in the example section.

The first two conflict types require the array to be remapped. However, if the LOCK bit is set, it is not possible
to immediately relocate the array by writing to the base address registers — instead, the module shadow
registers must be reprogrammed so that the array will be mapped to the new address after reset.

The following procedure, also shown in Example 1, avoids possible address conflicts. It is recommended
for routine programming of a blank FLASH module.

1. Program the shadow registers for the required configuration and array address
2. Reset and re-initialize the device
3. Program the array

Erasing an array which has been programmed this way should not cause problems, as the module is never
in a programmed state with a conflicting array address range. If the array has been mapped to a conflicting
address, it must be relocated before erasure to avoid an erase fail during the blank-check process. If the
LOCK bit is clear, the array can be remapped by writing FEEBAHI/L, otherwise it is necessary toperform
steps 1 and 2 before erasing.

BD32 BACKGROUND DEBUGGER

BD32 is a debugger program for CPU32-based devices that executes on an IBM PC-compatible host, and
communicates with the background debugging mode (BDM) port of the device via the PC printer port. Use
of BDM makes a ROM-based monitor program unnecessary, and the only requirement for using it is access
to the CPU32 BDM signals. If the design includes the recommended 10 pin Berg-type connector to provide
access to the signals, BDM can even be used with the final application hardware.

BD32 supports a method of extending the available functions through custom driver programs. If a com-
mand that is not part of the standard command set is entered, BD32 searches the PC disk for a file with the
command name and the extension.D32. If a matching file is found, it is executed by the MCU in response
to the command. Parameters can be entered with the command, and are passed to the driver program as
an ASCII text list in memory, pointed to by one of the processor registers.

To ensure that drivers will operate on application hardware systems with differing memory maps, BD32 re-
quires that driver programs be relocatable, and uses a load address specified by the BD32 ‘driver’ com-
mand. This feature is used often when programming and erasing the FLASH modules, as the drivers must
not be placed in an address range which will be overwritten by a flash array.

Table 6 shows available BD32 system calls. A driver program executes these calls by executing a BGND
instruction with register DO containing the appropriate fcode value. Please refer to the BD32 documentation
file BD32.DOC for more information concerning the debugger.

|
MOTOROLA AN1255/D
8

Table 6 BDM32 Command Summary

Name Function fcode Parameters
QUIT stop driver execution 0 None
PUTS display character string on screen 1 AO - address of string
PUTCHAR display single character on screen 2 D1 - character
GETS get string from user (CR ends) 3 AO - address of buffer
GETCHAR get single character from user 4 char returned in DO
GETSTAT returns char ready/not ready status 5 DO non-zero if ready
FOPEN open disk file on host PC g |A0-filename stiing
Al - pointer to mode
FCLOSE close disk file 7 D1 - file handle
D1 - file handle
FREAD read n bytes from disk file 8 D2 - byte count
AO - buffer address
D1 - file handle
FWRITE read n bytes from disk file 9 D2 - byte count
AO - buffer address
FTELL return current file pointer pos. 10 |D1 - file handle
FSEEK seek to position n in disk file 11 D1 - file handle
D2 - offset
. .) D1 - file handle
FGETS read \n-terminated string from file 12 AO - buffer
. . .) D1 - file handle
FPUTS write null terminated string to file 13 AO - buffer
EVAL evaluate expression from string 14 AD - string
D1 - return value
FREADSREC read S-record from disk file 15 D1 - file handle
AO - buffer

PROGRAM/ERASE OPERATION

An erased bit has a logic state of one. A bit must be programmed to change its state from one to zero. Eras-
ing a bit returns it to a logic state of one. Programming and erasing the FLASH module requires a series of
control register writes and a write to an array address. The same procedure is used to program control reg-
isters that contain flash shadow bits. Programming is restricted to a single byte or aligned word at a time.
The entire array and the shadow register bits are erased at the same time.

When multiple FLASH modules share a single Vgpg pin, do not program or erase more than one module at
a time. Normal accesses to modules that are not being programmed are not affected by programming or
erasure of another FLASH module.

Following paragraphs give step-by-step procedures for programming and erasure of flash EEPROM arrays.
Parameters used in the descriptions are defined and characterized in the electrical specifications section of
the appropriate device manual.

AN1255/D

MOTOROLA
9

Programming
The following steps are performed to program the array. Figure 3 is a flowchart of programming operation.

1. Increase voltage applied to the Vpg pin to program/erase/verify level.

2. Clear the ERAS bit and set the LAT bit in FEEXCTL. This enables the programming address and data
latches.

3. Write data to the address to be programmed. This latches the address to be programmed and the
programming data.

4. Set the ENPE bit in FEEXCTL. This starts the program pulse.

. Delay the proper amount of time for one programming pulse to take place. Delay is specified by pa-
rameter pwp,.

. Clear the ENPE bit in FEEXCTL. This stops the program pulse.
. Delay while high voltage to array is turned off. Delay is specified by parameter t,.

6]

. Read the address to verify that it has been programmed.

© 0 N O

. If the location is not programmed, repeat steps 4 through 7 until the location is programmed, or until
the specified maximum number of program pulses has been reached. Maximum number of pulses
is specified by parameter n,.

10. If the location is programmed, repeat the same number of pulses as required to program the loca-
tion. This provides 100% program margin.

11. Read the address to verify that it remains programmed.

12. Clear the LAT bit in FEEXCTL. This disables the programming address and data latches.
13. If more locations are to be programmed, repeat steps 2 through 10.

14. Reduce voltage applied to the Vgpg pin to normal read level.

Erasure
The following steps are performed to erase the array. Figure 4 is a flowchart of erasure operation.

=Y

. Increase voltage applied to the Vgpg pin to program/erase/verify level.

. Set the ERAS bit and the LAT bit in FEEXCTL. This configures the module for erasure.

. Perform a write to any valid address in the control block or array. The data written does not matter.
. Set the ENPE bit in FEEXCTL. This applies the erase voltage to the array.

. Delay the proper amount of time for one erase pulse. Delay is specified by parameter tgp.

. Clear the ENPE bit in FEEXCTL. This turns off erase voltage to the array.

. Delay while high voltage to array is turned off. Delay is specified by parameter t,.

. Read the entire array and control block to ensure all locations are erased.

©O© 00 N O O~ WODN

. If all locations are not erased, calculate a new value for tg (tej X pulse number) and repeat steps 3
through 10 until all locations erase, or the maximum number of pulses has been applied.

10. If all locations are erased, calculate the erase margin (e,) and repeat steps 3 through 10 for the
single margin pulse.

11. Clear the LAT and ERAS bits in FEEXCTL. This allows normal access to the flash.

12. Reduce voltage applied to the Vgpg pin to normal read level.

|
MOTOROLA AN1255/D
10

INCREASE Vgpg TO 1
PROGRAM/ERASENERIFY LEVEL

Y

CLEARn,, COUNTER, 2
CLEAR MJ RGIN FLAG

Y

SET LAT, 3
CLEAR ERAS

WRITE DATA
TO ADDRESS

Y

—> SET ENPE <

START PROGRAM PULSE
TIMER (pwp)

INCREMENT ADDRESS

DELAY FOR py, i

A
CLEAR ENPE,
START t,, TIMER N

Y

DELAY FOR t,,

READ LOCATION
TO VERIFY

DECREMENT
Ny COUNTER

MARGIN FLAG
SET ?

Y 4
CLEAR LAT

DATA CORRECT ?

N

INCREMENT n,, COUNTER,
READ LOCATIC;RI TO VERIFY N

DONE
PROGRAMMING

DATA CORRECT ?

SET MARGIN FLAG

A

COUNTER =507

Mop

Y
REDUCE VFpg TO 1

< LOCATION FAILED
NORMAL READ LEVEL,

TOPROGRAM J®
EXIT PROGRAM ROUTINE

NOTES:
1. SEE ELECTRICAL CHARACTERISTICS FOR Vgpg PIN VOLTAGE SEQUENCING.

2. THE MARGIN FLAG IS A SOFTWARE-DEFINED FLAG THAT INDICATES WHETHER THE PROGRAM SEQUENCE 1S

GENERATING PROGRAM PULSES OR MARGIN PULSES.
3. TO SIMPLIFY THE PROGRAM OPERATION, THE Vepg BIT IN FEEXCTL CAN BE SET.

4. CLEAR VEpg BIT ALSO IF ROUTINE USES THIS FUNCTION.
FEEPROM PGM FLOW1 TD

Figure 3 Programming Flow

__|
MOTOROLA

AN1255/D
11

REDUCE Vgpg TO 1
PROGRAM/ERASE/VERIFY LEVEL
\

CLEAR ng, COUNTER, 2
CLEAR MKRGIN FLAG

Y

SET LAT,
SET ERAS

- WRITE TO ARRAY
= OR CONTROL BLOCK

Y

SET ENPE -

START ERASE PULSE
TIMER (tgp)

DELAY FOR toy

CLEAR ENPE,
START t,, TIMER

Y

DELAY FOR ty,

MARGIN FLAG
SET ?

» CLEARLAT

CALCULATE NEW READ ARRAY AND SHADOW
tenk REGISTERS TO VERIFY ERASE
ALL LOCATIONS CALCULATE EM, =
ERASED 2 SETMARGIN FLAG [] SET ek =EM
INCREMENT n, COUNTER
N
N, COUNTER =5 2
ARRAY FAILED
TO ERASE
Y
REDUCE VFPETO 1
NORMAL READ LEVEL,
NOTES: EXIT ERASE ROUTINE
1. SEE ELECTRICAL CHARACTERISTICS FOR Vgpg PIN VOLTAGE SEQUENCING.
2. THE MARGIN FLAG IS A SOFTWARE-DEFINED FLAG THAT INDICATES WHETHER
THE PROGRAM SEQUENCE IS GENERATING ERASE PULSES OR MARGIN PULSES. FEEPROM PGM FLOW2 TD

Figure 4 Erasure Flow

|
MOTOROLA AN1255/D
12

DRIVER SOFTWARE

Driver Relocatability

Because a user can define a driver execution address to be anywhere in the MCU memory map, the BD32
driver system requires that driver code be fully relocatable. Accesses to variables that are relative to the
driver location (e.g. variables within the driver area) therefore cannot use absolute addressing. Instead, use
either PC-relative addressing or offset addressing using register A6. The latter is possible because BD32
writes A6 with the base address of the driver before the driver code is executed, and has the advantage of
allowing writes in a single instruction. Because the CPU32 regards PC-relative addresses as non-alterable
locations, an extra LEA instruction is required when writing a location using this addressing mode.

Special care is also required when accessing driver parameters as these cannot be guaranteed to be on
word boundaries. Byte accesses are always used in this case to guarantee correct operation regardless of
driver load address and size/number of driver parameters.

Exception Handling

Basic exception handling routines are built into the PROG and BULK drivers. In normal use no exceptions
are generated, so the handlers simply indicate that an error has caused an exception. Such errors are typ-
ically caused by array address conflicts described in EFFECTS OF LOCK BIT OPERATION.

PROG — Flash Programming Driver

User Details

The PROG driver is designed to enable programming of flash EPROM from an S-record file on the PC run-
ning BD32. The syntax used is:

PROG <filename.ext> [<start address>]

where <filename.ext> is the filename of the S-record file, and <start address> is an optional parameter that,
if specified, defines the start address of programming, overriding the start address specified in the S-record.
The relative addresses of bytes in the S-record are preserved, with a fixed offset added to each S-record
address. The offset is calculated as:

offset = (start address parameter) — (first S-record address)
If <start address> is not specified, the addresses defined in the S-record file are used unchanged.

Each byte or word is verified after programming. Any verify errors are indicated by an error message, and
the user is given the option to abort or continue programming. This facility is useful if an array is already
partially programmed or damaged, or if the S-record contains programming data for a location not within
any FLASH address range.

For each byte or word to be programmed, the PROG utility searches through all of the possible FLASH mod-
ule addresses to find a match. PROG does not initialize the array base addresses before programming, so
the user must ensure that these are correctly configured.

When specifying programming data for the shadow registers, unimplemented shadow bits must be set to
zero, to avoid verify errors. Registers that may have unimplemented shadow bits are FEEMCR, FEEBAH
and FEEBAL.Make certain that the array address does not overlap registers of the flash EEPROM module
or another module. See FINDING ERRORS for more detail.

Software Details

The PROG routine applies programming pulses to the flash array until the location verifies as correctly pro-
grammed. A final series of pulses is applied for programming margin. The following sequence of steps is
used to program the flash EEPROM array.

__|
AN1255/D MOTOROLA
13

The source files for the PROG driver software are:
PROG.S62 Program code source file
PROG.MSG Message text file used by BD32
IPD.INC Definitions required for the BD32 system calls

M68F333.INC MC68F333 constants definition file, including register addresses, other flash module
information, and programming/erasure timing data. Timing information is compatible with the definitions
used in the MC68F333 device specification to simplify updates.

Common include files used by both drivers are shown after the erasure driver code.

PROG Driver Listing

EEE R R R I R O

* ' PROG Resident Command Driver for MC68F333 device

*

Uility to programan MC68F333 flash EPROM nodul e froman S record file

Source file I prog.s62

Obj ect file : prog.d32

Include files : MB8F333.inc (MBBF333 addresses and programr ng constants)
ipd.inc (BD32 system call constants)

Message file : prog.nsg
hject file format: Mdtorola S-records

Execute as: prog <fil ename> [<start_address>]
Useage : Start_address specifies start of nenory to be programmed, if not
specified the S-record start address is used

Addr essing nodes : This code is designed as a driver for the BD32 background
debugger for CPU32 devices. A requirenent is that the code nust be
fully relocateable. Al addresses (apart fromfixed nmodul e addresses)
are relative, and where word alignnent is not guaranteed, byte
accesses nust be used.

Word alignment : The enbedded text strings have been adjusted in size so
that the follow ng code remains word aligned - any nodifications
to these strings should be adjusted accordingly. An assenbl er
"even' type directive to force word-alignnent could be used if
avai |l abl e.

32/ 23 bit addressing : Al flash addresses are forced to 24 bits, with
upper MsSB ignored, so that $xxfff800 will always access FEELMCR etc.

R R R O kO Rk S b R Rk kR R Rk kO R R O O

I nclude files

¥ 3% Ok 3 O 3k F 3 F 3k F 3k X X X X X X X X X X X X X X X X X X

lib ipd.inc BD32 call code definitions

lib M68F333. i nc MB8F333 devi ce constants
* BD32 return error codes : see file PROG MSG for associated text
UsageErr or equ 1 Usage: ...
Fi | eError equ 2 Error opening file...
Eval Error1 equ 3 Error evaluating start address
Eval Error2 equ 4 Error eval uating end address
SRecError equ 4 Starting value for SRec errors
SRecEOFEr r or equ 5 Reached EOF on input file
SRecS9Er r or equ 6 S9 read (not an error)
SRecChecksum equ 7 Checksumerror in record
SRecFor mat equ 8 Format error in S-record file
Pr ogErr or equ 9 Error progranm ng data
ExcepError equ 10 Unhandl ed exception error
ProgdOK equ 11 Good return val ue, programed OK

|
MOTOROLA AN1255/D
14

* BD32 call return codes : see bd32 file BD32. DOCC

SRecS9 equ 2 ReadSRecord call - S9 Record read, end of file
* Fl ash control register constants
* FEEMCR
flashdi s equ $90c0 Modul e DI SABLED, disable VFPE i n BDM
* no boot, unrestricted space, 2 cycle access
fl ashen equ $10c0 Modul e ENABLED, di sable VFPE in BDM
* no boot, unrestricted space, 2 cycle access
* FEECTL
| atch equ $a Enabl e prog | atch
prgen equ $b Enabl e prog volts
shadow equ $2 Read shadow reg
norm equ $0 Nor mal operation
* Vari abl e area
section .data
dc. | Pr og start address (add | oad offset)
buf f er ds. b 40 space for S-record from host
ds. | 40 stack area
* initial stack pointer
st ack
St art Addr ds. | 1 start address paraneter
ModeAddr dc. w $0 addr ess node
O f set Addr dc. | $0 cal cul ated S-record offset
FilePtr ds. | 1 file pointer
Fi | eNane ds. b 64 file name
Error ds.w 1 error code

R S O O S R O

* CUSTOM VECTOR TABLE (reserved space)

Rk S O O S

vect abl e ds. | 13 Alternate vector table
EE R R R R R R I R R I R R R S R S R R S
* EXCEPTI ON HANDLER ROUTI NE
* Use - Quits to BD32 with unhandl ed exception error code
* Exception handling is included because nany user errors
* (mappi ng of flash/drivers etc) could cause bus errors,
* f-l11ne exceptions etc. Flash programing voltage is disabled
* in case exception ocurred during a programing cycle
R R O S S I o O S S O I S Rk kS O
excep_h nove. w #norm FEECTL(al) normal flash reads/wites
* di sabl e progranm ng vol t age
nove #ExcepError, Error (A5) unhandl ed excep error
bra Prog_end
Fi | eMbde dc. b r',0 read node for file open syscall
EE R R R R R R R R R R S R S R R O
* Execution start of driver 'PROG
* Entry (from BD32) :
* d0 - nunber of driver paraneters
* a0 - address of paraneter array
* ab - driver offset address
* Useage :
* a7 - stack pointer
EE R R R R R R R I R R S R S R I S
Prog
* ***** Exception handler initialisation
lea.l vect abl e(PQ), al get start of vector table
novea.l al, a2 wor ki ng (1 oop) copy
lea.l excep_h(PC), a3 get address of handl er
nmove. w #$0c, d1 initialise copy |oop
vecl oop nove.l a3, (a2)+ buil d new vector table
dbf di, vecl oop
novec.| al, vbr set up vbr for new table
* ****x SP and general register initialisation
lea.l stack(A5), a7 set up stack
* lea.l stack(PQC), a7 set up stack (equival ent)
nove.l a0, a2 get argv into a2
nove.l dO, d2 get argc into d2

___|
AN1255/D MOTOROLA
15

* ****%* Print signon and warni ng nmessage

bsr Print print signon nessage
dc. b ' M68F333 Fl ash EEPROM Progranmer Version 2.0',13,10,0
* ***%x Main initialisation
bsr Initialize init hardware and address |i st
t st do
bne Prog_end
* **x*x* Check command |ine
cnpi #2,d2 argc < 2?
bcs Prog 0
cnpi #3, d2 argc > 3?
bl s Prog 1
Prog 0 nove #UsageError, Error (A5) arg count is wong
bra Prog_end
* **x*%x Get filenane, open file, check if K
Prog_1
addq.| #4, a2 ski p over program name
nove.l (a2)+, a0 get file name of S records
lea.l Fi | eMbde(A5), al read node - "r"
bsr f open
nove.w dO, Fil ePtr(A5) save file pointer
bne Prog_11 continue if OK
nove #Fi | eError, Error (A5) can't open input file
bra Prog_end
* ***** Fyval uate remmini ng paraneters
Prog_11
clr.w MbdeAddr (A5) Assune no offset first..
cnpi #3, d2 argv = 3 ?
bne Prog_2
nove.l (a2)+, a0 eval uate start address paraneter
bsr Eval
beq Prog_12
nove #Eval Error 1, Error (A5)
bra Prog 3 close file and exit
Prog_12 nove.l di, Start Addr (A5) got first param
nove. w #$1, ModeAddr (A5) signal to calcul ate offset
* ***** Read an S-Record, check for errors
Prog_2
bsr ReadSRecord get next S Record
t st do
beq Prog_25 continue if no error
cnpi #SRecS9, dO S9 record ?
beq Prog 3 yes - close nornally
addi #SRecError, dO ot herwi se flag error
nove dO, Error (A5)
bra Prog_3
* ****%* Program data from S-Record i nto EEPROM
Prog_25
bsr ProgRecor d program data from S Record
t st do
beq Prog_2 loop till done
bsr not _prog print fault address
nove #Pr ogError, Error (A5) error - report it
* ***x%x Close input file
Prog_3
bsr Cl oselnputFile close file
* ***** Report any errors, exit back to BD32
Prog_end nove Error (A5), dl get error code
noveq.| #BD QUI T, dO exit program
bgnd

|
MOTOROLA AN1255/D
16

Rk S b O S R R S o Sk S b O S R R S R R R S R R S S R S S R R O o O

* ReadSRecord - reads one S record fromFilePtr

* Exit - d0 contains returned status
* dl corrupted
* a0 points to s-record (buffer)
EE R R R R R R R R R I R R S R S R R R O
ReadSRecord nove.w FilePtr(A5), dl file pointer
lea.l buf f er (A5), a0 point to S Record buffer
noved. | #BD_FREADSREC, dO
bgnd
rts

Rk I b O I R R S o S S b S b R R R b S R R R S kR R S kR b S R R R S b o O

* CloselnputFile - closes FilePtr

* EXit - dO corrupted
* dl corrupted
* does not affect Error

Rk S O O S O R O

CloselnputFile nove.l FilePtr(A5),dl
noveq.| #BD_FCLOSE, dO

bgnd

rts
R R O S S I O S O S O O S O R kS o O Rk O Sk O o
* Eval - evaluates nuneric string
* Entry - string address in a0
* EXit - result in D1, error flag in DO
R R O S S I O S S O O S S R Ok S o O Rk O kO
Eval noveq.| #BD_EVAL, dO

bgnd

t st do

rts
R R I S S o O S o O S S O O S S Rk kS o O Rk O Sk O o
* fopen - performs file open routine
* Entry - filename pointer in AO
* file nmode pointer in Al
* EXit - file pointer in DO
EE R R R R R R R R R I R I R R S R S R R O
f open noveq. | #BD_FOPEN, dO

bgnd

rts

Rk I b S I R R S o Sk S b S b S R R b S R R R S R R R S S R R S S o R

* FindStrEnd - searches an ASCI| string for end of string

* marker ('null'/ 0 char)
* Entry - string pointed to by A0
* EXit - returns a0 pointing to end of string marker
EE R R R R R R R R R I R R S R S R R S R S
Fi ndStr End nove.w doO, -(a7) push tenp register

noveq #-1,d0 max | oop count 1st tine thru
FSE 1 tst.b (a0) + byte == 0?

dbeq do, FSE_1 uses | oop node

bne FSE 1 loop till test true

subg. | #1, a0 decrenent address reg

nove.w (a7)+,do restore register

rts
EE R R R R R R R I R R R S R S R S
* ntoh - prints hex value of register DO | east sig nibble to screen
* Entry - DO contains nibble val ue
R R O S S I o O S O S O S O Rk kS S O S O I O
nt oh novem | dO/d1, - (a7)

nove. b doO,dl
andi .w #$f, d1

addi.b #' 0',d1

crmpi . b #10+' 0',dl

bcs nt_1

addi.b # A -'9'-1,d1
nt_1 noveq #BD_PUTCHAR, dO

bgnd

novem | (a7)+, d0/dl

rts

___|
AN1255/D MOTOROLA
17

kkkkkkhkkkhkkhkkhkkkk*k

bt oh -
Entry -

Rk S S R R

bt oh

*
*

kkkkkkhkkkhkkhkkhkkkk*

* wt oh -
* Entry -

Rk S S R R

wt oh

kkkkkkhkkkhkkhkkhkkkk*

I'toh -
Entry -

Rk S S I R R R

|t oh

*
*

kkkkkkhkkkhkhkkhkkkk*

Print -

*

Entry -
Exi t -

E L I

EE I I I
Pri nt
*

*

Print_1

EE I I I T
* crlf -
* Exit -

Rk S S I R R

crlf

kkkkkkhkkkhkkhkkhkkkk*

* getchar -
* Exit -

Rk S S I R R

get char

MOTOROLA
18

Rk S O kR O S S O R

prints hex value of byte register DO to screen
DO contains byte val ue

EE IR R R S I R R I I I R I R I I R R I R R R R R S R R S I R S I R R S R S I R R S I Sk I I S I
ror.b #4, d0O

bsr nt oh

ror.b #4, d0O

bsr nt oh

rts

Rk S kR O S

prints hex value of word register DO to screen
DO contains word val ue

ER IR R R R I R R I R S I R R S I I R R I R R R R R S R R R I I S I R R I R S I R S R Sk I I I
ror.w #8,d0

bsr bt oh

ror.w #8,d0

bsr bt oh

rts

Rk I S O kR O S S O R

prints hex value of long word register DO to screen
DO contains |ong word val ue

ER IR R R S I R R R R R I R R R I I R R I R R R R R S R R R I R R I R R I R S S R R S R Sk I S
swap do

bsr wt oh

swap do

bsr wt oh

rts

Rk S S O kR S R

prints constant string in code and returns to
program at first even location after string
paraneters i ndexed from stacked return PC
stacked return PC nodified to give correct
no registers corrupted
kkhkkhkhkhkkhkkhkhhkhkhkkhkhhkhhkkhhhhkhhdhhhhhhhhhkdhhrdddhhkhhdhrrxdddhrhkhkhkdhrxrddxxkx
novem | a0/ do, - (a7) save registers
WARNI NG : Any change to novem|list will require change

to stack of fset used bel ow

return

nove.l 8(a7),al get address of string

(= stacked return address)
noveq.| #BD_PUTS, dO function cal
bgnd
bsr Fi ndSt r End get end of ASCII| string
nove.| a0, do test for odd address
addqg.| #1,dO ski p past end of string
bt st #0, dO
beq Print_1
addqg.| #1,d0 it's odd - return to next addr
nove.l dO, 8(a7) updat e stacked return address
novem | (a7)+, d0/a0 get back registers
rts done

Rk S S O S O R

prints carriage return, line feed conbo
no registers corrupted

EE IR R R S I R R I R S I R R I I R R I R R R R R S R R R I I I R R I R Sk S R R S S I I
bsr Print carriage return, line feed
dc. b 13,10,0,0

rts

R S R S O

returns character typed by user
dO0 contains character typed

R I O O O O S R O S O
noveq.| #BD_GETCHAR, dO

bgnd

rts

AN1255/D

Rk S O O O O

* usedel ay - programuabl e software del ay | oop

* Entry - delay in us (approximate) stored in di,

* | egal values are 2 ... 65535

* Exit - dl corrupted

* Environnent- timngs assune 2 cl ock program nenory access and 16. 778Miz
*

cl ckout frequency

Rk S b O S R R S o S S b S b S R R b S o R R S S R R S S R T b S R R S b o O R

* jsr usdel ay 13
usdel ay subq #2,d1 2 - adjust for overhead

asl #1, d1 6 - multiply count by 2 for us
| oop tst di 2

dbf di, | oop 6

rts 12

Rk I b O S R R S S S S b S b S R R b S R R R S kR R S R T S S R R R S o O

* check_address - searches through valid flash address ranges
* to find which array is being accessed, and therefore

* whi ch set of control registers to use

*

* Note - flash register ranges are tested first, as they
* have priority over an array that is nmapped to the sane
* addr ess.

*

* Entry - A0 contains address to be programed

* EXit - Al contains start address of register bank, or O if

*

no valid flash nodul e found for adress

Rk I b O S R R S o S b e b S R R R b S b S R R S kR R b R R R S R R o O

check_address nmovem | doO, - (a7) push working reg for now
nove.|l a0, dO restrict address to 24 bits
and. | #$00f fffff, dO
nove.|l dO, a0
* Is a0 within 16K regi ster bl ock?
ca_regs
cnpa. | #FER 1&$ffffff, a0 range 1 start test.
bcs ca_2 is a0 > range start?
cmpa. | #(FER_1+FER REGSZ- 1) &$ffffff, a0
* yes, now test against end..
bhi ca_2 is a0 < range end?
nove.|l #FER 1,al yes, w thin range
bra ca_good
* Is a0 within 48K regi ster bl ock?
ca_2
cnpa. | #FER 2&$ffffff, a0 range 2 start test.
bcs ca_3 is a0 > range start?
cnpa.| #(FER 2+FER REGSZ-1) &$ffffff, a0
* yes, now test against end..
bhi ca_3 is a0 < range end?
nove.|l #FER 2,al yes, w thin range
bra ca_good
* Is a0 within 16K flash array?
ca_3
nove.| FEEBAH+FER 1, dO read arrayl start address
and. | #$00f fffff, dO cl ear dO[31: 24]
nove.| dO, al
crmpa. |l al, a0
bcs ca_4 is a0 > range start?
add. | #FEE_SI ZE 1-1, dO cal cul ate end addresses
nove.| dO, al
crmpa. |l al, a0
bhi ca_4 is a0 < range end?
nove.l #FER 1,al yes, w thin range
bra ca_good
* Is a0 within 48K flash array?
ca_4
nove.| FEEBAH+FER 2, dO read array2 start address
and. | #$00f fffff, dO cl ear dO[31: 24]
nove.| dO, al
crmpa. |l al, a0
bcs ca_bad is a0 > range start?
add. | #FEE_SI ZE 2-1, dO cal cul ate end addresses

___|
AN1255/D MOTOROLA
19

nmove.|l dO, al
cmpa.l al, a0

bhi ca_bad is a0 < range end?
nove.l #FER 2,al yes, wi thin range
bra ca_good
* No valid nmodul e being addressed - return 0 in Al
ca_bad
novea. | #0, al
ca_good
nmovem | (a7)+, dO
rts
IR S kS o kS O O S O
* do_prog - Programs one byte/word of data to menory
* Entry - Target address in A0
* byte or word data in DO
* byte flag in d5 (non-zero => program byte data)
* Exit - dO contains difference between data to be programred and read
* back data ($00 if progranm ng successful)
* or $ff if address to be programmed is not recognised as flash
* d3 is corrupted
* a0 and d5 are unchanged
IR S kS o S S O O S O O I
do_prog
bsr dis_both di sabl e both nodul es (STOP)
clr.w d3 initialise pulse counter =0
bsr check_address get register address
tst.l al address OK?
beq dp_addrfail no - bonb out
nove. w #fl ashen, FEEMCR(al) only enabl e nodul e to be progranmed
nove #| at ch, FEECTL(al) enabl e verify + latch
t st d5 byte or word?
beq dp_word
* ** Byte data to programming |atch
nove. b dO, (a0) wite byte data to EEPROM
bra dp_prgl oop
* ** Word data to programming | atch
dp_word nove. w doO, (a0) wite word data to EEPROM
* ** |nitialise prog pulse tine
dp_pr gl oop nove. w #pwpp, d1 pul se tinme ready for usdel ay
* ** Progranm ng stage
nove. w #prgen, FEECTL(al) enabl e prog voltage : set ENPE
bsr.w usdel ay wait pwpp m croseconds
* OO time
nove. w #l at ch, FEECTL(al) di sabl e voltage : clear ENPE
nmove.w #tpr,dl del ay tpr microseconds after turning off vprog
bsr usdel ay
addg.w #1,d3 i ncrenent pul se count
* ** Verify stage - store diff in dO
noveq.| #0, dO dO ready to hold byte/word diff.
tst d5 byte or word?
beq dp_verw
nove. b (a0), do byte verify
bra dp_vert st
dp_verw nove.w (a0), do word verify
dp_vert st beq dp_margi n verify O K?
* ** Failed to verify
cnpi . w #npp, d3 over max nunber of program pul ses?
bcs dp_pr gl oop no - continue
* ** Failed to verify and max programtime used
nove. w #norm FEECTL(al) normal flash reads/wites
bra dp_end return progranming data error to caller
* ** programed OK - nowre-programfor the same nunber of pul ses (100% nar gi n)

|
MOTOROLA AN1255/D
20

dp_margin subg.w #1, d3 conpensate for extra dbcc | oop
dp_nr gl oop nove. w #pwpp, d1 set program pul se tinme
nove. w #prgen, FEECTL(al) enabl e prog voltage : set ENPE
bsr usdel ay and del ay
nove. w #l atch, FEECTL(al) di sabl e voltage : clear ENPE
nove.w #tpr,dl set programrecovery tine
bsr usdel ay and del ay
dbf d3, dp_nt gl oop count down pul ses
* ** Check still programmed - store diff in dO
noveq. | #0, dO dO ready to hold byte/word diff.
t st d5 byte or word?
beq dp_verw2
nove. b (a0), do byte verify
bra dp_vertst2
dp_verw2 nove.w (a0), do word verify
dp_vertst2 nove. w #norm FEECTL(al) normal flash reads/wites
bra dp_end return progranmed data to caller
* (don't need to test)
* ** check_address address fail
dp_addrfail nmove. w #$ff, dO force fail because of bad address
* ** Fail + pass termnation
dp_end bsr dis_both di sabl e both nodul es
rts and quit
EE R R R R R R R I R S R S R R S
* Initialize - initialize routine is called by BD32 before any progranm ng
* initialize and check main registers
* initialize global variables
* returns non-zero in DO if can't continue with progranmi ng
*
*

Exi t - dO cleared

R R O S S I O S O S O O S Rk S o O R O kS o O
Initialize
* (I'nitialise nodul es but | eave STOPped)

* ***%* |nitialisation nodule 1 nmain registers
nove.w #flashdi s, FEEMCR+FER_1 STOP nodule 1
nove. w #$4, FEECTL+FER 1 make sure verify node off
* ***** |nitialisation nmodule 2 main registers
nove.w #flashdi s, FEEMCR+FER 2 STOP nodule 2
nove. w #$4, FEECTL+FER 2 make sure verify node off
* ***** Now initialize globals
clr.l do no error function return val ue
nove #Pr ogdCK, Error (A5) initialise successful return val ue
rts done - return no error

Rk I b S S R R S o Sk S S O b S R R S R R R S kR R S Ik R S S R R S o R

* ProgRecord - prograns data from S-record buffer into EEPROM
* | oops through the record, retrieving each byte/word and
* progranming it at the specified S-record address + O f set Addr
*
* | F ModeAddr == $1, O fsetAddr is cal cul ated so that
* (Offset Addr + S-record address) = StartAddress
* (where StartAddress is user specified) and ModeAddr is then
* cl eared
*
* Entry - no paraneters: assunmes S Record is in 'buffer’
* Exit - dO0 is difference between data and EEPROM | ocati on
* (this will be 0 if progranmed successfully)
* a0 will contain address at which programfailed
* d5 will be non-zero if byte program 0 if word program
EE R R R R R R R R R R I R R S R S R R I O
Pr ogRecor d novem | al/a2/d6, - (a7) save working registers
lea.l buf f er (A5), a2 point to S-record buffer
clr.l dé
nove.b (a2)+, d6 get record type
beq pr og_good record type 0 (header)

___|
AN1255/D MOTOROLA
21

* - exit as no data to program
cnpi . b #7,d6

bcs prog_start record type 1,2 or 3 (code/data)
* - start progranm ng

bra prog_good record type >3, (not code/data)
* - exit as no data to program
prog_start nove. b (a2)+, d6 get byte count from s-record

subi. b #4, d6 renove byte count due to address

nove.l (a2)+, a0 get address (note : BD32 al ways
* stores 4 byte address field)
prog_offs cnpi . w #$1, MbdeAddr (A5) Shoul d we cal cul ate offset?

bne pr og_addof f

nove.l a0, db5 put address in d5

nove.|l StartAddr(a5), al Yes, get desired start

suba.l d5,al ..use to calcul ate of fset

nove.l al, O f set Addr (a5) ..Store

clr.w ModeAddr (A5) ..clear node to signal done
pr og_addof f adda.l O fset Addr(a5), a0 add of fset to address
prog_1 nove.l a0, d5 store address in d5

andi .| #1,d5 mask all but bit O

bne prog_2 program byte if odd address

cnpi #1, d6 count == 17?

bne prog_3 word programif not

* program byte data if address is odd or byte count is 1

prog_2 noveq #1, d5 flag byte wite
nove.b (a2),do byte - get data
bsr do_prog program byt e/ wor d
tst.w dO progranmed O K?
beq prog_25
quitl bsr not _progd no - does user want to quit?
bne prog_done
* Ei t her programmed O K. (byte), or user wi shes to continue
*
prog_25 addqg.| #1, a0 increment target address
addqg.| #1, a2 increnent buffer address
subq #1, d6 dec byte count
bne prog_1 loop till byte count =0
bra prog_good ot herwi se done

* programword data if address is even and byte count not equal to 1

prog_3 nove. b (a2)+,do get word - we don't know if
asl.w #8,d0 ..data in buffer is word aligned
nove. b (a2)+,do ..so0 read two bytes
bsr do_prog program byt e/ wor d
tst.w dO progranmed O K?
beq prog_35
quit?2 bsr not _pr ogd no - does user want to quit?
bne prog_done
* Ei ther programmed O K. (word), or user wi shes to continue
*
prog_35 addqg.| #2, a0 increnent target address
subq #2, d6 dec byte count
bne prog_1 loop till byte count =0
prog_good noveq. | #0, dO no error
prog_done nmovem | (a7)+,al/a2/dé restore registers
rts done

|
MOTOROLA AN1255/D
22

Rk S S O S R S S O O

* not _progd - infornms user of progranming error

* not _bl ank - informs user of blank check error

* user enters escape to stop, any other key to continue progranm ng
* oexit - d0 is $0 and Z flag is set if user wants to continue

*

dO is non-zero, and Z flag is clear if user wants to abort

Rk I O O S R O

not _progd: bsr Print
dc. b "prog: programfail at address $',0
bra n_bl
not _bl ank: bsr Print
dc. b " prog: EEPROM not bl ank, address $',0
n_bl nove.l a0, dO print address
bsr I toh
bsr Print
dc. b 13,10, 'prog: Press <esc> to stop, any other to continue: ',7,0
bsr get char
nove do, - (a7) save char
bsr crlf
nove (a7) +, do get char
andi #$ff, dO
cnpi #3$1b, dO escape?
seq do make dO nonzero if so
tst do set SR for subsequent test
rts

Rk O O R S O R O

* not _prog - infornms user of programming error
* Entry - a0 contains fault address
R R O S S I o O S O S O O S S Rk kS o O O
not _pr og: bsr Print
dc. b "prog: programfailed before $',0
nove.| a0, dO print address
bsr I toh
bsr crlf
rts
R O S O O S S I O
* dis_both - di sables both flash EEPROM nodul es
* exit - no registers nodified
EE R R R R R R R R R I R I S R S R R O
di s_both nove. w #fl ashdi s, FEEMCR+FER_1 di sable nmodule 1 (set STOP)
nove. w #flashdi s, FEEMCR+FER 2 di sable nodule 2 (set STOP)
rts
end

Rk I S O S R S S R

* Prog nsg - nessage file for programm ng driver

R S S O O I S O

prog <filenane> [<start>] program M68F333 flash EEPROM fromfile
prog: Usage error: prog <filename> [<start address>]

prog: Error opening input file

prog: Error evaluating <start> address paraneter

prog:

prog: End of file reached before S7/S8/ S9 record was read

prog: S9 record read - file closed normally

prog: Checksumerror in S-Record input file

prog: Format error in S-Record input file; file is probably not S-Records
prog: Programming error - check Vfpe / EEPROM i s bl ank

prog: Unhandl ed exception encountered

prog: Programm ng conpleted O K

___|
AN1255/D MOTOROLA
23

BULK — Erasure Driver

User Details
The BULK driver performs bulk erasure of a single flash EPROM module. The syntax used is:

BULK <nodul e id>

The argument <module id> is used to specify the module to be erased. The value can be either ‘16’ or ‘48’
to specify the 16 kbyte or 48 kbyte Flash EEPROM modules respectively. A series of erasure passes are
used. Each successive pulse is of progressively longer duration, until erasure is verified. Each erasure pass
is indicated by the printing of a period, and if erasure is not verified after the maximum erasure time has
been used, a bulk fail message is printed, along with the address of the first failed location.

As with the PROG driver, the BULK driver does not map the flash array to a particular address. The user
must make certain that the array address does not conflict with addresses of other MCU modules, causing
erasure to fail. The array can be relocated either by programming the shadow registers and then resetting
the device, or by directly reconfiguring the base address registers. The base address registers can only be
changed when the FLASH module LOCK bit is cleared.

Software Details

The BULK software applies erase pulses of increasing duration until the array and shadow registers verify
as erased, then a final erase pulse is applied as an erase margin.

The source files for the BULK driver software are:
BULK.S62 Erase code source file
BULK.MSG Message text file used by BD32
IPD.INC Definitions required for the BD32 system calls

M68F333.INC MC68F333 constants definition file, including register addresses, other flash module
information, and programming/erasure timing data. Timing information is compatible with the definitions
used in the MC68F333 device specification to simplify updates.

Common include files used by both drivers are shown after the erasure driver code.

|
MOTOROLA AN1255/D
24

BULK Driver Listing
R R R S S I O S R S S R S O

* ' BULK' Resident Command Driver for MC68F333 device

*

Uility to bulk erase an MC68F333 fl ash EPROM nodul e

Il e : bul k. s62
Il e : bul k. d32
iles : MB8F333.inc (MBBF333 addresses and programr ng constants)

Source fi
oj ect fi
I nclude f

i pd.inc (BD32 systemcall constants)
Message file : bulk.nsg

oject file format: Mdtorola S-records

Execute from BD32 as: bul k <nodul e | D>
Modul e I D can be '16' or '48' and specifies which MS68F333 fl ash
nodul e is to be bul k erased.

debugger for CPU32 devices. A requirenment is that the code nust be
fully relocateable. Al addresses (apart fromfixed nmodul e addresses)
are relative, and where word alignnent is not guaranteed, byte
accesses nust be used.

Supervi sor program space accesses are used when reading the flash
array to allow operation regardl ess of the configuration of the
flash nodul es's ASPC bits (FEEMCR).

Word alignment : The enbedded text strings have been adjusted in size so
that the followi ng code renmains word aligned - any nodifications
to these strings should be adjusted accordingly. An assenbl er
'evgelrw' bItype directive to force word-alignment could be used if
avai | abl e.

EIEE R O R O O O

*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Addressing nmodes : This code is designed as a driver for the BD32 background
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Include files

lib i pd.inc BD32 call code definitions
lib M68F333. i nc M68F333 devi ce constants
* BD32 return error codes : see file BULK MSG for associ ated text
UsageErr or equ 1 Usage: ...
Bul kEr r or equ 2 error progranm ng data
ExcepError equ 3 unhandl ed exception
PassErr or equ 4 erase successful
* BD32 call return codes : see bd32 file BD32. DCC
SRecS9 equ 2 S9 Record - end of file
* General constants
Er asedVal ue equ SEfff erased state of EEPROM
sup_prog equ $6 supervi sor/ program space code
* Fl ash control register constants
* FEEMCR
flashdi s equ $90c0 Modul e DI SABLED, di sable VFPE in BDM
* no boot, unrestricted space, 2 cycle access
fl ashen equ $10cO Modul e ENABLED, di sable VFPE i n BDM
* no boot, unrestricted space, 2 cycle access
* FEECTL
erase_on equ $7 Erase, VFPE enabl ed (VFPE, ERAS, LAT, ENPE set)
erase_off equ $6 Erase, VFPE di sabl ed (VFPE, ERAS, LAT set)
norm equ $0 No programmi ng/ erase (Al cleared)
* Vari abl e area
section .data
dc. | Bul k start address (add | oad offset)
ds. | 30 Stack area
* initial stack pointer
stack
ModSi ze dc. | $0 Mbdul e si ze
MbdAddr ess dc. | $0 Modul e address
St ar t Addr ess dc. | $0 Start array address
Error ds. w 1 error code

___|
AN1255/D MOTOROLA
25

Er a_shadow dc. w $9B00, $0000, $FFFF, $E000 er ased shadow regi ster nask
dc. w $0000, $0000, $0000, $0000 used for verification of erase

.W $FFFF, $FFFF, $FFFF, SFFFF

dc.w $0000, $0000, $0000, $0000

Rk S O O O

* CUSTOM VECTOR TABLE
R R R RS SRR RS EEE SRS SRR EEEEEEEREEEEREEEEREEEERESEREEEEEEEEEEE RS EEE SRR EEE RS SRR TSR
vect abl e ds. | 13 Al ternate vector table

Rk S b S R R S o S S b O b R R S o R R R S kR R S S R S S R R O R

* EXCEPTI ON HANDLER ROUTI NE
* Use - Quits to BD32 with unhandl ed exception error code
* Exception handling is included because nany user errors
* (mappi ng of flash/drivers etc) could cause bus errors,
* f-11ne exceptions etc. Flash programm ng voltage is disabled
* in case exception ocurred during a programming cycle
LR R R R R R R R R R R R R I S R S R R I R O
excep_h nove. w #norm FEECTL(al) normal flash reads/wites
* di sabl e programm ng vol t age
nove #ExcepError, Error (A5) unhandl ed excep error
bra Bul k_end
Fi | eMbde dc. b 'r',0 read node for file open

Rk I O O S R O

* Execution start of driver 'BULK
* Entry (from BD32) :
* dO - nunber of driver paraneters
* a0 - address of paraneter array
* ab - driver offset address
EE R R R R R R R R R R R I R S R S R R O
Bul k
* ****x Exception handler initialisation
lea.l vect abl e(PQ), al get start of vector table
novea.l al, a2 wor ki ng (1 oop) copy
lea.l excep_h(PC), a3 get address of handl er
nmove. w #$0c, d1 initialise copy |oop
vecl oop nove.l a3, (a2)+ buil d new vector table
dbf di, vecl oop
novec.| al, vbr set up vbr for new table
* ***** SP and general register initialisation
lea.l stack(A5), a7 set up stack
lea.l stack(PC), a7 set up stack
nove.l a0, a2 get argv into a2
nove.l dO, d2 get argc into d2
* ****%* Print signon and warni ng nmessage
bsr Print print signon nessage
dc. b ' M68F333 Fl ash EEPROM Bul k Eraser Version 2.0 ',13,10,0
* ****%* Check command |ine
cnpi #2,d2 argc = 27
beq Bul k_1
nove #UsageError, Error (A5) arg count is wong
bra Bul k_end
* ***** Get nodul e paranmeter, and use to set up MddAddress
Bul k_1
nove. #FER 1, MbdAddr ess(ab) assurme 16K nodule initially

|

move.| #FEE_SI ZE_1, MbdSi ze(a5)
|
[

addq. #4, a2 ski p over program name

nove. (a2) +, a0 get address of paraneter
nove. b (a0)+, dO get two bytes of paraneter
asl.w #8,d0 (data in buffer may not be
nove. b (a0)+, dO word aligned so read 2 bytes)

|
MOTOROLA AN1255/D
26

crmpi.w # 16',dO 16k array specified?

beq Bul k11 yes, so OK to continue..
nove.| #FER 2, ModAddr ess(a5) no, so first assune 48k
nove.| #FEE_SI ZE 2, ModSi ze(a5)

crpi . w # 48',d0 ..and then verify
beq Bul k11 yes, so OK to continue.
nove #UsageError, Error (A5) no, so flag useage error
bra Bul k_end ..and quit
* ***** |nitialise nodule, and cal cul ate array addresses
Bul k11 bsr Initialize init hardware
* ***** Frase nodul e now
bsr Er ase
tst.b do was erase succesful ?
beq Bul k_end
nove #Bul KError, Error (A5) no, so flag erase error
bra Bul k_end
* ***** Report any errors, exit back to BD32
Bul k_end nove Error (A5), dl get error code
noveq.| #BD QUI T, dO exit program

bgnd
R R O S S I O S S O O S Rk kS O I Sk O o

* FindStrEnd - searches an ASCI| string for end of string

* marker ('null'/ 0 char)

* Entry - string pointed to by A0

* EXit - returns a0 pointing to end of string marker
*

all other registers preserved
R R O S S I o O S O S O O S S Rk kS o O O

Fi ndSt r End nove.w doO, - (a7) push tenp register
noveq #-1,d0 nmax | oop count 1st tine thru
FSE_ 1 tst.b (a0)+ byte == 0?
dbeq do, FSE_1 uses | oop node
bne FSE_1 loop till test true
subg. | #1, a0 decrenent address reg
nove.w (a7)+,do restore register
rts
R R O S S I O S o O O S O S R kS o O I O
* ntoh - prints hex value of register DO | east sig nibble to screen
* Entry - DO contains nibble val ue
* Exit - all registers preserved

Rk I b S I R R S o S b S b S R R b S R R R S kR R S I R S S R R O o O R

nt oh novem | dO/d1, - (a7)
nove. b dO, dl
andi .w #$f, d1
addi.b #'0',d1
crmpi . b #10+' 0',d1

bcs nt_1

addi.b # A -'9'-1,d1
nt_1 noveq #BD_PUTCHAR, dO

bgnd

novem | (a7)+,d0/dl

rts

Rk S O O S R O

* btoh - prints hex value of byte register DO to screen
* Entry - DO contains byte val ue
* EXit - all registers preserved
EE R R R R R R R I R R R S R S R R O
bt oh ror.b #4, d0
bsr nt oh
ror.b #4, d0
bsr nt oh
rts

___|
AN1255/D MOTOROLA
27

Rk S O O O O

* wtoh - prints hex value of word register DO to screen
* Entry - DO contains word val ue
* EXit - all registers preserved
EE R R R R R R R R R I I R S R T
wt oh ror.w #8,d0
bsr bt oh
ror.w #8,d0
bsr bt oh
rts
R R O S S S I o O S O S O S S Rk S o O Rk O
* |toh - prints hex value of long word register DO to screen
* Entry - DO contains |Iong word val ue
* Exit - all registers preserved
R R O S kS I O S O S O S Rk S o O Rk Sk S o
I toh swap do
bsr wt oh
swap do
bsr wt oh
rts

Rk I O O S O O

* Print - prints constant string in code and returns to

* program at first even location after string

* Entry - paraneters indexed from stacked return PC

* Exit - stacked return PC nodified to give correct return
*

all registers preserved

Rk I O O R O

Print novem | a0/ do, - (a7) save registers
nove.l 8(a7),al get address of string
* (= stacked return address)
noveq.| #BD_PUTS, dO function cal
bgnd
bsr Fi ndSt r End get end of ASCII| string
nove.|l a0, do test for odd address
addqg.| #1,dO ski p past end of string
bt st #0, dO
beq Print_1
addqg.| #1,d0 it's odd - return to next addr
Print_1 nove.l dO, 8(a7) updat e stacked return address
novem | (a7)+, d0/a0 get back registers
rts done
EE R R R R R R R R R R R R R R S I R S R R R S
* crl|f - prints carriage return, line feed conbo
* Entry - no paraneters
* EXit - all registers preserved
EE R R R R R R I R I R R S R S R R S
crlf bsr Print carriage return, line feed
dc. b 13,10,0,0
* even
rts

Rk I O O O R S O O R O

* getchar - returns character typed by user
* Entry - no paraneters
* EXit - dO0 contains character typed
EE R R R R R R R R R R R R S R S R R I R
get char noveq. | #BD_GETCHAR, dO
bgnd
rts
R R O S S I o O S O S O S O Rk kS S O S O I O
* medel ay - programmabl e milliseconds del ay
* Entry - delay time in ns in dl
* l egal values are 1 ... 65535
* EXit - dl corrupted

Note - routine calibrated for 16. 78MHz clock / 2 clock menory

Rk I b S I R R S o S S b O b R R b S R R S R R S R b S S R R O o O

nsdel ay nove.l d2,-(a7) preserve d2
subg.w #1,dl conpensate for dbcc offset of 1
nove.w #$826, d2 initialise inner |oop count to
* conpensate for entry overhead

|
MOTOROLA AN1255/D
28

| oop t st di

| oop2 tst d2
dbf d2, | oop2
nove. w #$82d, d2 i nner | oop count
dbf di, | oop
nove.l (a7)+,d2 restore d2
rts

Rk S O O R O

* Erase - bulk erase routine
* perforns erase algorithmuntil nmaxi mum all owed erase pul ses
* used, or array has verified as correctly erased
* Entry - nodul e defined by MbdAddress
* MbdSi ze
* Exit - DO is non zero if erase unsuccessful
* A0 contains first error address if erase unsuccessful,
* ot herwi se A0 corrupted
* Al'l other registers unchanged
EE R R R R R R R R R R R R S R S R R O
Er ase
nmovem | di1-d3/al, - (a7) preserve registers
* ***** |nitialise timng and address paraneters
clr.w d2 initialise pulse counter k = 0
clr.w d3 initialise cunulative erase tine =0
* (used as erase nargin)
nove.l ModAddress(a5), al get nodul e address into al
nove. w #erase_off, FEECTL(al) set VFPE/ ERAS/ LAT
nove.w doO, (al) wite data to EEPROM
* *x**** Frase cycle
db_1 bsr Print print 'progress dots'
dc. b ', %0
addg.w #1,d2 increment pul se counter, k
* ***** Cal cul ate erase tinme
nove.w #tei,dl erase pulse time = tei
mulu.w d2,d1 * k (ms) = dl
add.w di,d3 add to cunul ative tine, d3
* ***x%x Apply erase pul se
nove. w #erase_on, FEECTL(al) enabl e prog voltage : set ENPE
bsr nsdel ay wait tel*k mlliseconds
nove. w #erase_off, FEECTL(al) di sabl e voltage : clear ENPE
* ***%*x Recovery 'Of' tine
nove.w #ter,dl del ay erase recovery tine, ter
bsr nsdel ay
* ****%x Blank test array
bsr check_array array now bl ank?
tst.b do
bne db_q nmss register test if array non-bl ank
* **x**x Bl ank test shadow registers
bsr check_regs regi sters now bl ank?
tst.b do
beq db_2
* ***** Array and/or registers not blank
db_q cnpi . w #nep, d2 used nmax pul ses, k>=nep?
bcs db_1 no - continue
* ***** Fajil, so print error nessage and quit
nove. w #norm FEECTL(al) yes - flag and quit
bsr Print
dc. b 13,10, ' bul k: erase failed address $',0
nmnove.| a0, dO print address
bsr I toh
bsr crlf
nove. w #$1, dO flag error in doO
bra db_end

___|
AN1255/D MOTOROLA
29

* ***** Frase verifies OK - now add erase nargin

db_2 nove.w d3,d1 erase nmargin tinme (em
* = sum of erase pul ses = d3
nove. w #erase_on, FEECTL(al) enabl e prog voltage : set ENPE
bsr nsdel ay del ay em
nove. w #erase_off, FEECTL(al) di sabl e voltage : clear ENPE
nove.w #ter,dl del ay erase recovery tine, ter
bsr nsdel ay
nove. w #norm FEECTL(al) normal accesses
clr.l do clear dO to signal success
db_end novem | (a7)+,d1l-d3/al restore registers
rts

Rk S b O S R R S b o S R R b S R R S R R S Sk R b S R R R S b o O

* Initialize - initialize routine is called by BD32 before bul k erasing
* initialize main flash registers
* initialize global variables
* returns non-zero in DO if can't continue with programi ng
*
* Entry - flash nodul e address (register block) in MdAddress(ab5)
*
* Exit - dO cleared
* all other CPU registers preserved
* flash array address witten to StartAddress(ab)
EE R R R R R R R R R R R S R S R R R I R S
Initialize
novem | a3-a4,-(a7) preserve registers
* (I'nitialise nmodul es but | eave STOPped)
* ***** |nitialisation and STOP nodule 1
nove.w #flashdi s, FEEMCR+FER_1 STOP nodule 1
nove. w #norm FEECTL+FER 1 make sure verify node off
* ***** |nitialisation and STOP nodul e 2
nove.w #flashdi s, FEEMCR+FER 2 STCOP nodule 1
nove. w #nor m FEECTL+FER_2 make sure verify node off
* ****%x Start-up nodule to be erased, and get array addresses
nove.l ModAddress(a5), a3 get nodul e address into a3
nove. w #f | ashen, FEEMCR(a3) cl ear STOP
novea.| FEEBAH(a3), a4 get array start address
nove.l a4, Start Address(ab) and store
nove #PassError, Error (A5) initialise to successfull erase code
novem | (a7)+, a3-a4 restore registers
rts done - return no error

Rk I b S S R R S o Sk S S O b S R R S R R R S kR R S Ik R S S R R S o R

check_array - checks EEPROM array contents all are ErasedVal ue
Entry - Start Address, MdSize paraneters initialised

*

*

*

*

* Exit - if array checks as ErasedVal ue
* do =0

* a0 corrupted

* D1 corrupted

* el se

* do 1

* a0 error address
* dl = error data

Rk S b O O S O

check_array

nmovem | d2, -(a7) preserve registers

nove.|l #sup_prog, dO configure array accesses as
novec do, sfc ..supervi sor/ program space
nove.|l StartAddress(a5), a0 array start in a0

nove.l ModSi ze(ab), d1 array size in dl

|
MOTOROLA AN1255/D
30

asr. | #1,d1 cal cul ate array size in words

subg. | #1,d1 set up for dbcc | oop
nove. w #ErasedVal ue, dO get erased val ue of EEPROM
bc_1 nmoves. w (a0) +, d2 get array word fromsupervisor/programspace
cmp.w d2,d0 test (== ErasedVal ue?)
dbne di, bc_1 | oop while equal, and not end of array
beq bc_2 | oop exit because of error?
nove.w d2,d1l yes, put error data in di,
nove. b #$01, dO and flag error, array not bl ank
bra bc_3
bc_2 clr.l do no, flag no error, array tests K
bc_3 nmovem | (a7)+, d2 restore registers
rts

Rk I b I I R R S S b O b S R R R b S R R S kS R R S S R R R R S S o R

* check_regs - routine to blank check flash shadow regi sters for a nodul e

* with register start address specified in a0

*

* Entry - a0 should contain register start address

* Exit - if verified blank dO = 0

* else do =1

* di= fault data

* and a0 = fault address

EE R R R R R R R I R S R S R R S

check_regs
novem | d2-d3/al-a2,-(a7) preserve registers
nove.l ModAddress(a5), a0 get nodul e address into a0
nove.l a0, a2 use a2 as general pointer

* ***** Check shadow regi sters agai nst erased val ues table
nove. w #15,d1 nurmber of word checks (Il oop cnt.)
lea.l (Era_shadow, a5), al table address in al

cr_loop
nove.w (a2)+,d2 get a shadow register val ue,
nove.w d2,d3 store,
and.w (al),d2 ignore un-inplemented bits,
cmp.w (al)+,d2 and check erased..
bne cr_bad O K?
dbf d1, cr_loop yes, loop if not finished
clr.l do finished - signal blank check OK
bra cr_end and return

* ***** Un-erased shadow register found - notify and abort

cr_bad
suba.l #2, a2 get correct fault address
nove.w d3,dl and fault data
nove. w #1, dO flag fault

cr_end
nove.l a2, a0 return fault address (if any)
nmovem | (a7)+, d2-d3/al-a2 restore registers
rts
end

Rk I S O R R Sk kS S R R I S S S R R S b Sk R R S S S R R R S O O A R

* Bul k msg - message file for bulk erase driver

Rk Ik b b O S R IRk kb O bk O R R Rk Sk b S R R R S b kb b R SRR R O b o O

BULK <16/ 48> Bul k erase Orion 16k/ 48k EEPROM nodul es
bul k: usage error: BULK <16/48>

bul k: bulk erase failed

bul k: unhandl ed excepti on encountered

bul k: nodul e erased O K

___|
AN1255/D MOTOROLA
31

Initialization Files Used By Program and Erase Drivers
R R R S S I O S R S S R S O

* ' M68F333. I NC Define Mb8F333 addresses and programr ng constants

Rk S b O O S O

FER_ 1 equ $FFFFF800 regi ster block address for array #1 - 16k bytes
FEE SIZE 1 equ $4000 size of array #1 - 16k bytes
FER 2 equ $FFFFF820 regi sters block address for array #2 - 48k bytes
FEE_SI ZE 2 equ $c000 size of array #2 - 48k bytes
FER REGSZ equ $20 size of register block (both arrays)
* register offsets

FEEMCR equ 0 nod config register

FEETST equ 2 test register

FEEBAH equ 4 base address reg - high word
FEEBAL equ 6 base address reg - | ow word
FEECTL equ 8 program control reg

FEEBSO equ $10 bootstrap info O

FEEBS1 equ $12 bootstrap info 1

FEEBS2 equ $14 bootstrap info 2

FEEBS3 equ $16 bootstrap info 3

* bit assignnents

STOP equ $8000

FRZ equ $4000

BOOT equ $1000

LOCK equ $800

ASPC1 equ $200

ASPCO equ $100

WAI T1 equ $80

WAl TO equ $40

FSTE equ $80

GADR equ $40

HVT equ $20

BTST equ $10

STRE equ 2

MAPF equ 1

VFPE equ 8

ERAS equ 4

LAT equ 2

ENPE equ 1

* Flash EEPROM tining constants

* Progranmi ng constants

pwpp equ &20 program pul se wi dth (us)

t pr equ &10 programrecovery time (us)

npp equ &50 nurmber of program pul ses

* Erase constants

tei equ 100 erase pulse increnent time (ns)
ter equ 1 erase recovery tine (ns)

nep equ 5 maxi mum nunber of erase pul ses

* end of M68F333.inc

|
MOTOROLA AN1255/D
32

Rk S O O O O

* ipd.inc - equates for BD32 systens calls

EEE R I I I R I R

BD QU T equ 0 quit - return to BD32

BD_PUTS equ 1 puts - put string to console

BD_PUTCHAR equ 2 putchar - print character on console

BD GETS equ 3 gets - get string from user

BD_GETCHAR equ 4 getchar - get single character from user
BD_GETSTAT equ 5 getstat - return 1 if character waiting from user
BD_FOPEN equ 6 fopen - open disk file with specified node
BD_FCLOSE equ 7 fclose - close disk file

BD_FREAD equ 8 fread - read fromdisk file

BD _FWRI TE equ 9 fwite - wite to disk file

BD FTELL equ 10 ftell - report current pointer position
BD_FSEEK equ 11 fseek - seek disk file to given position
BD_FGETS equ 12 fgets - read string fromfile

BD_FPUTS equ 13 fputs - wite string to file

BD_EVAL equ 14 eval - evaluate arithnmetic expression
BD_FREADSREC equ 15 read s-record

* end of ipd.inc

PROGRAMMING/ERASURE EXAMPLES

The following examples show various program and erase operations. In all of the examples, keyboard input
from the user is shown as bold text.

Example 1 - Programming The FLASH Modules

This example shows operations required to program the both 16 kbyte and 48 kbyte flash modules from
their erased state. Programming data for the shadow registers is in the file TEST1R.0, while programming
data for the arrays is in the file ARRAY64.0.

First, initialize MCU memory resources to allow the driver software to execute. In this case, the file SRAM-
HIGH.DO is used to configure the on-chip TPURAM and SRAM.

BD32- >do sranhi gh. do

The file SRAMHIGH.DO initializes the device, and terminates by checking that the required memory re-
sources are responding correctly. This is done by writing the first few bytes of TPURAM and SRAM, and
then reading them back. The flash register blocks are also displayed.

The macro file prints the following results.

BD32->* Fi ni shed, shoul d have TPURAM $100000 - $100e00,

BD32- >* SRAM $100e00 - $100fff
BD32- >* SSP $100ffe
BD32- >* Drivers load @ $100000
BD32- >*
BD32- >*

BD32->* Test read of TPURAM

BD32- >nd $100000 $10

00100000 5450 5520 5241 4D20 6D65 6D6F 7279 2020 TPU RAM nenory
BD32- >*

BD32->* Test read of SRAM

BD32->nd $100e00 $10

00100E00 5352 414D 206D 656D 6F72 7920 2020 2020 SRAM menory
BD32- >*

BD32->* Fl ash regi ster area:

BD32->nd $fff 800 $40

___|
AN1255/D MOTOROLA
33

OOFFF800 9BCO 0000 OOFF COOO 0000 0000 0000 0000 L@..@........
OOFFF810 FFFF FFFF FFFF FFFF 0000 0000 0000 0000
OOFFF820 9BCO 0000 OOFF 0000 0000 0000 0000 0000 L@
OOFFF830 FFFF FFFF FFFF FFFF 0000 0000 0000 0000

NOTE
Ensure that the VEpE supply is enabled before the programming command is entered.

The base address registers are programmed to ensure that the array is correctly mapped:

BD32->prog test1lr.0

(BL100086) . . o oo ettt

Downl oad conpl eted OK - 53 records read

M68F333 Fl ash EEPROM Programer Version 2.0

prog: Programm ng conpleted O K

At this point, the shadow registers are programmed with appropriate values, but the MCU must be reset for
these to take effect. The initialization file SRAMHIGH.DO resets the MCU as one of its operations. If either
of the flash modules have been programmed with the boot option enabled, it is best to disable them by hold-
ing DATA[15:14] low during rest.

BD32- >do sramhi gh. do
The macro file terminates with the following information:

BD32->* Fi ni shed, should have TPURAM $100000 - $100e00,

BD32- >* SRAM $100e00 - $100fff
BD32- >* SSP $100ffe
BD32- >* Drivers load @ $100000
BD32- >*
BD32- >*

BD32->* Test read of TPURAM

BD32- >nd $100000 $10

00100000 5450 5520 5241 4D20 6D65 6D6F 7279 2020 TPU RAM nenory
BD32- >*

BD32- >* Test read of SRAM

BD32->nd $100e00 $10

00100E00 5352 414D 206D 656D 6F72 7920 2020 2020 SRAM nenory
BD32- >*

BD32->* Fl ash regi ster area:

BD32->nd $fff800 $40

OOFFF800 8200 0000 0000 0000 0000 0000 0000 0000

OOFFF810 0010 FFFE 0000 1000 0000 0000 0000 0000 T e

OOFFF820 8200 0000 0001 0000 0000 0000 0000 0000

OOFFF830 0010 FFFE 0001 1000 0000 0000 0000 0000 T

The dump of the flash control register blocks shows that the arrays are now mapped to $00000 (16 kbyte)
and $10000 (48 kbyte). These addresses are correct for the array data file ARRAY64.0, which contains a
full 64 kbytes of test data covering both arrays. Remember, the VEpE supply must remain enabled for pro-
gramming to take place. ARRAY64.0 takes around 35 seconds to program.

BD32- >prog array64.0

(B1000388) . . o vttt e e
Downl oad conpl eted OK - 53 records read

M68F333 Fl ash EEPROM Programmer Version 2.0

prog: Programm ng conpleted O K

Programming is successful. Disable the VEpE supply if no more operations are required.

|
MOTOROLA AN1255/D
34

Example 2: Erasing The FLASH Modules

As with the programming example, the MCU is initialized to allow execution of the driver software, in this
case by using the macro file SRAMHIGH.DO.

BD32- >do sranhi gh. do
The macro file terminates with the following information.

BD32->* Fi ni shed, should have TPURAM $100000 - $100e00,

BD32- >* SRAM $100e00 - $100fff
BD32- >* SSP $100ffe
BD32- >* Drivers load @ $100000
BD32- >*
BD32- >*

BD32->* Test read of TPURAM

BD32->nd $100000 $10

00100000 5450 5520 5241 4D20 6D65 6D6F 7279 2020 TPU RAM nenory
BD32- >*

BD32->* Test read of SRAM

BD32->nd $100e00 $10

00100E00 5352 414D 206D 656D 6F72 7920 2020 2020 SRAM nenory
BD32- >*

BD32->* Fl ash regi ster area:

BD32->nd $f f f 800 $40

OOFFF800 8200 0000 0000 0000 0000 0000 0000 0000
OOFFF810 0010 FFFE 0000 1000 0000 0000 0000 0000 T
OOFFF820 8200 0000 0001 0000 0000 0000 0000 0000
OOFFF830 0010 FFFE 0001 1000 0000 0000 0000 0000 B

NOTE
Ensure that the MCU VEpE supply is enabled before the erase command is entered.

The erase driver is then executed.

BD32- >bul k 16

(B100030) . ..ot
Downl oad conpleted OK - 35 records read
M68F333 Fl ash EEPROM Bul k Eraser Version 2.0
.bul k: npdul e erased O K

The message indicates that the erase is successful. The number of periods on the last message line indi-
cates the number of erase passes used. In this instance, there is only one.

An erase failure results in the following message, which indicates the first address to fail erase verification.
As before, the number of periods on the last message line indicates the number of erase passes used. In
this case, five passes (the maximum number) are made before a failure is reported.

BD32- >bul k 16

(B100030) . . oottt
Downl oad conpl eted OK - 35 records read
M68F333 Fl ash EEPROM Bul k Eraser Version 2.0
..... bul k: erase failed address $00000002
bul k: bul k erase fail ed

To erase the 48 kbyte array, the following command is used.

BD32- >bul k 48

($100030) . . ottt
Downl oad conpl eted OK - 35 records read
M68F333 Fl ash EEPROM Bul k Eraser Version 2.0
.bul k: nodul e erased O K

The erase is successful, with one erase pulse required. Disable VEpE if no more operations are required.

___|
AN1255/D MOTOROLA
35

Example 3 - Attempting To Erase A Conflicting Array

When the 16 kbyte array is mapped to its default erased address of $FFFFCO000, portions of the array co-
incide with other MCU register blocks, such as the ADC control registers, which start at $SFFFF700. Since
control registers generally take precedence in the memory map, erasure will fail as the erase driver attempts
to verify that the array is blank.

BD32- >bul k 16

($100030) . . o oo oo

Downl oad conpl eted OK - 35 records read

M68F333 Fl ash EEPROM Bul k Eraser Version 2.0

. bul k: unhandl ed excepti on encount ered

The failure indicated is an unhandled exception, but the results of any attempt to erase a conflicting array
are unpredictable, and the operation should be prevented by remapping the array. This can be done either
by modifying the base address in the FEEBAH and FEEBAL registers (if the LOCK bit is cleared), or by pro-
gramming the module shadow registers and resetting the device.

Erasing the 48 kbyte array at the default address will not normally cause these problems, as it is mapped
from $FFFF0000 to $FFFFBFFF, avoiding other MCU register areas.

BD32- >bul k 48

(B100030) . . ottt
Downl oad conpl eted OK - 35 records read
M68F333 Fl ash EEPROM Bul k Eraser Version 2.0
.bul k: nodul e erased O K

FINDING ERRORS

Following are descriptions of errors that commonly occur during programming or erasure of FLASH mod-
ules using the BD32 drivers. Typical error messages and fixes are given in each case.

1. Flash array mapped over the BD32 driver area.
Error symptoms — The driver may hang, or terminate with a line $F or non documented error.

To verify, use the BD32 DRIVER command to determine the BD32 driver execution address, and examine
the FEEBAH and FEEBAL registers of the module being programmed/erased. If the driver is within the array
area, either relocate the array (Example 1) or the BD32 driver execution address (Examples 1 and 3)

2. Flash array mapped over the flash module register area, or other registers.

Error symptoms — BULK fails to verify blank after the maximum erase time has been used, and prints the
fail address. This address corresponds to the first register within the array area. The array may be fully
erased in this case, only the verify mechanism fails. PROG will print a program fail error for the first array
address being programmed that corresponds with a module register. It will be impossible to program this
location as the register takes priority.

To verify, examine the FEEBAH and FEEBAL registers of the module being programmed/erased and en-
sure that the module array does not conflict with any other registers.

To fix, remap array, either manually (Example 1) or by programming shadow base registers (Example 3).
3. Attempting to program unimplemented shadow bits.

Error symptoms — PROG prints a program fail error for the shadow register address. The register may have
been programmed correctly, but verify always fails.

To fix, make sure that programming data for unimplemented shadow bits is set to zero.

|
MOTOROLA AN1255/D
36

4. No VEpE supplied

Error symptoms — A PROG program fail occurs at the first location to be programmed. BULK fails to verify
blank after the maximum erasure time.

Tofix, apply the correct VEpE supply
5. FLASH module not erased

Error symptoms — A PROG program fail occurs at the first location which has bits to remain erased at one,
that are already programmed to zero.

To fix, program to all zeroes, bulk erase, and reprogram.

THE DEMO PROGRAM

DEMO executes from the MC68F333 16 kbyte flash EEPROM array from reset. It displays information on
an RS232 terminal connected to the MCU SCI port via a level shifter. Apart from the level shifter only internal
resources are used, with the FLASH, TPURAM, and SRAM supplying all of the required memory. ANSI con-
trol codes are used to allow cursor movement and screen clearing.

The software is split into the files, DEMOA and DEMOR. DEMOA contains the code to be programmed into
the flash array. DEMOR contains programming data for flash shadow registers (flash array mapped to
$00000000, flash enabled at reset, if reset logic state of DATA15 pin allows) and supplies the CPU32 boot
information (SP = $10fffe, PC = $001000). Example 3 shows how these files are used

DEMO Program Code Listing

Rk S S Rk Ik O S S S R R S Sk kS R S S R R O Sk S S S R Ok S b S S

* ' DEMOA' denp boot programfor the 16K flash array, to be used with the
* register file ' DEMOR

* Source file: ' DEMOA S62'

* Object file: ' DEMOA O

* hject file format: Mdtorola S-records

R S R R R S S e S R R S S S S S R R S S O b o S R R S S R R O Rk e b S O

* Character equates for termi nal output

ESC equ $1b Escape

CR equ $0d Carr. return

LF equ $0a Li ne feed

CRGT equ $lc Cursor right

CLFT equ $1d ' left

cupP equ $le . up

CDN equ $1f . down

R R S S I R S I R S O o R S O S O

* Main code - initializes system and displays start up

* nmessage

* Menory map:

* $000000 - $004000 : 16K flash array (internal)

* $010000 - $010dff : 3.5K TPURAM s

* $010e00 - $010fff : 0.5K SRAM '

R R O S O O S S I O S I O O o S I O S I O

section .text

org $1000

start
nove. w #$0100, $f f f b04 TRAMBAR Set TPURAM base address
nove. w #3$0000, $f ff b0O TRAMMCR Unrestricted space
nove. w #$0e00, $f f f b46 SRAMBAL Set SRAM base address
nove. w #$0001, $ff f b44 SRAMBAH
nove. w #$0000, $f f f b40 SRAMMCR Unrestricted, not |ocked
nove. | #$010ffe, a7 Initialize stack pointer

___|
AN1255/D MOTOROLA
37

nove. w #$42cf, $f f f a00 ., SMCR

nove. w #$7f 08, $f f f a04 y SYPCR
nove. w #$0006, $f f f a20 y SYPCR
nove. w #$0000, $fffale y PFPAR
nove. w #$0000, $f f f a4A), CSORBT
nove. w #$0000, $f f f a4E s CSORO
nove. w #$0000, $fff a76), CSOR10
bsr sciinit

* MAI N ROUTI NE
bsr clrscrn clear screen

| oop bsr hone hone cursor
bsr printstring Print 1st frane
dc b ' * * * * * * * * * ' , CR, LF
dc. b ' flash EEPROM boot deno ', CR LF
dC.b "ok * * * * * * * * ',CR,LF,O
bsr hone hone cursor
bsr printstring Print 2nd frane
dC b % * * * * * * * * ' , CR’ LF
dc. b ' flash EEPROM boot denp ', CR LF
dC. b ' * * * * * * * * * ' , CR' LF, O
bsr honme hone cursor
bsr printstring Print 3rd frane
dC b ' * * * * * * * * ' , CR’ LF
dc. b '* fl ash EEPROM boot demp * ', CR LF
dc. b Toox Rk kxR % ',CR LF, 0
bra | oop and | oop. .

R S S O O O S S S S

* PRI NTCHAR - CQutput a single character to SCl serial port
* Entry - Character in DO
* Regi sters - B15 of DO cleared only
EE S O S O O O O S S O O O
printchar btst #$0, $fff cOc Ready for transmt (TDRE of SCSR)?
beq print char loop if not..
nove. w dO, $f f f cOe Send data (to SCDR)
rts

LR R R O R R I R S I I R S R S O

* PRI NTSTRING CQutput a string of characters to serial port
* defined by routine 'printchar’
* Entry - Character string resides at return PC address
* ie. after 'bsr printstring' comand
* charcter string is termnated by null ($00)
* Exi t - Programreturns to word | ocation after string
* end, no registers nodified
* Regi sters - Stack (return address) nodified
kkhkkhkhkhkkhkkhhhhkhkhdhhhhkkhdhhhhdhhhhdhhdddhhhdddhhddddhxhkdddhxdddhx*k**d**x*x*%% *%
printstring
nmovem | a0/ do, - (a7) Preserve a0, d0
nove.|l ($8,a7), a0 get return PC (address of string)
nmoveq. | #$0, dO clear all of do
psl oop nove. b (a0)+, dO get a char to print
beq psnul | finish if null
bsr printchar
bra psl oop and | oop
psnul |
* ensure return PCis word aligned
nmove. | a0, dO
bt st #0, dO
beq psok Al ready word aligned, so continue
addq. | #$1, d0 not aligned, so adjust

|
MOTOROLA AN1255/D
38

psok
nmove. | doO, ($8, a7)
novem | (a7)+, a0/ do0
rts

Update return PC
Recover a0, dO

LR S O O O S

* CLRSCRN - Clear screen by sending clear screen escapet
* sequence
* Regi sters - A0, DO nodified

R O S o O S kS o O
clrscrn bsr printstring
dc.b ESC '[','2","'J", $0, $0
rts

'Cl ear Screen' escape sequence
ESC[2 J

Rk S kO S R R R S o S S R R ok S b S S R R R S o R R S S Rk

* HOVE - Move cursor to hone position
* "honme' escape sequence
* Regi sters - A0, DO nodified
EE R R S S I R R I I R S R R R I R S
home bsr printstring ' Hone' escape sequence
dc. b ESC,'[','0","'H, $0, $0 ESC[O H
rts

Rk I S S S O R O O R

* SCIINIT - SCl initialisation

Rk S b S b R R R R b o R R R S kR R S R R S O R R R R R R O ok

sciinit

nove. w #$0001, $fffc00 Initialize QVCR
nove.w #$000f, $f f f c04 QLR
nove. w #$00f 0, $fffcil4s QPDR
nove. w #3$0000, $fffcl6 QPAR
nove.w #$0037, $fffc08 SCCRO
nove. w #$000c, $f ffcOa SCCR1
rts

end

Rk bk I b R R R Ok S kO O I R Sk O R Ik kO b S kR R AR b Sk b O R R Rk O b

* 'DEMOR boot programfor the 16K flash array, to be used with the
* array file ' DEMOA
* Source file: 'DEMOR S62'
* Object file: ' DEMOR O
* Object file format: Mtorola S-records
EIE R R R O S I kO S
* 16K flash nodul e regi ster bank
org $FFF800

dc. w $0200 FEEIMCR : STCOP = 0
* BOOT = 0
* LOCK = 0
* ASPC = %0

org $FFF804

dc.w $0000 FEE1BAH
dc. w $0000 FEE1IBAL (Base addr = $0000)
* (range $0000- $4000)
org $FFF810
dc. | $0010fffe FEE1BSO/ 1 (Reset SP and PC)
dc. | $00001000 FEE1BS2/ 3
end

___|
AN1255/D MOTOROLA
39

R O O O S O S R I O R R O O R O

* 'DEMOR boot program for the 16K Flash array, to be used with the
* array file ' DEMOA
* Source file: ' DEMOR S62'
* bject file: 'DEMOR O
* bject file format: Mdtorola S-records*
khkkhkkhkhkhkhkkhkhhhkhkhkdhhhhkhkhhhhhdhhhhhdhhhhdhhhhddhdrrddhhhhdhdrdddhhhkhdhrxdddhrhhrdhrxrddxx
* 16K Fl ash nodul e regi ster bank
org $FFF800

dc. w $0200 FEEIMCR : STOP =0
BOOT = 0
LOCK = 0
ASPC = %0
org $FFF804
dc. w $0000 FEE1BAH
dc.w $0000 FEE1IBAL (Base addr = $0000)
* (range $0000- $4000)
org $FFF810
dc. | $0010fffe FEE1BSO/ 1 (Reset SP and PC)
dc. | $00001000 FEE1BS2/ 3
end

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability
of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including
"Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others.
Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, af-
filiates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
@ MOTOROLA g g registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution;

P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609

INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

-@ MOTOROLA

AN1255/D

	MC68F333 Flash EEPROM Programming Utilities
	Introduction
	The Flash EEPROM Module
	Flash EEPROM Registers
	Table 1 Flash EEPROM Address Map

	Module Configuration Register
	FEEMCR — Flash EEPROM Module Configuration Registe...
	Table 2 Array Space Encoding
	Table 3 Wait State Encoding

	Test Register
	FEETST — Flash EEPROM Test Register $YFF##2

	Base Address Registers
	FEEBAH — Flash EEPROM Base Address High Register $...
	FEEBAL — Flash EEPROM Base Address Low Register $Y...
	Table 4 FEEBAL Bit Implementation

	Flash EEPROM Control Register
	FEECTL — Flash EEPROM Control Register $YFF##8

	Flash EEPROM Bootstrap Words
	FEEBS[3:0] — Flash EEPROM Bootstrap Words; $YFF##0...
	Table 5 Bootstrap Words

	Applying Flash Program Erase voltage
	Figure 1 Programming Voltage Envelope
	Figure 2 VFPE Conditioning Circuit

	EFFECTS of LOCK Bit Operation
	BD32 Background Debugger
	Table 6 BDM32 Command Summary

	Program/Erase Operation
	Programming
	Erasure
	Figure 3 Programming Flow
	Figure 4 Erasure Flow

	Driver Software
	Driver Relocatability
	Exception Handling
	PROG — Flash Programming Driver
	User Details
	Software Details
	Common include files used by both drivers are show...

	PROG Driver Listing
	BULK — Erasure Driver
	User Details
	Software Details
	Common include files used by both drivers are show...

	BULK Driver Listing
	Initialization Files Used By Program and Erase Dri...

	Programming/erasure Examples
	Example 1 - Programming The FLASH Modules
	Example 2: Erasing The FLASH Modules
	Example 3 - Attempting To Erase A Conflicting Arra...

	Finding Errors
	The DEMO Program
	DEMO Program Code Listing

