

MOTOROLA

SEMICONDUCTOR

APPLICATION NOTE

Order this document by
AN1255/D

MC68F333 Flash EEPROM Programming Utilities
 By Mark Maiolani and Mark Weidner

INTRODUCTION
The MC68F333 modular microcontroller (MCU) is a member of the M68300 product family. The MCU mod-
ule complement includes a CPU32 processor, a single-chip integration module (SCIM), an 8-channel, 10-
bit analog to digital converter (ADC), a time processor unit (TPU), a queued serial module (QSM), a 512-
byte standby RAM (SRAM), a 3.5 kbyte RAM with TPU emulation capabilities (TPURAM), and two flash EE-
PROM modules (FLASH), one with a 16 kbyte array and the other with a 48 kbyte array.

This application note specifically describes software utilities that program and erase the FLASH modules in
the MC68F333, but also gives general information that applies to other Motorola modular microcontrollers
that incorporate flash EEPROM modules. Since the software utilities are device-specific, code must be
modified for other members of the M68300 family, and re-written for devices in the M68HC16 family. Refer
to he device user’s manual for complete information, including timing and voltage parameters.

The programming and erasure software utilities are drivers for the CPU32 background debugger program,
BD32. Use of BD32 allows a simple PC interface to be supported without an excessive increase in code
size, and permits the MCU to be programmed with only an external programming voltage source. Because
the MC68F333 has 4 kbytes of on-board RAM, there is no requirement for external memory to run the pro-
gramming utilities.

Source files for routines discussed in this note are available from Motorola Freeware Data Systems. The
Freeware BBS can be accessed by modem at (512) 891-3733. For Internet access via telnet/FTP, use free-
ware.aus.sps.mot.com. For World Wide Web access, use http://freeware.aus.sps.mot.com/.

THE FLASH EEPROM MODULE
Flash EEPROM provides high-density non-volatile memory that can be used for program or data storage.
Each FLASH module consists of a control-register block that occupies a fixed position in MCU address
space and a relocatable EEPROM array.

The control register block is shown in Table 1. It contains all of the registers to control mapping, timing,
programming, and erasing of the array. Many of the control register bits have associated ‘shadow’ flash EE-
PROM bits. Shadow bits allow customization of the reset status of the module. For example, a module can
be programmed to supply reset vectors from flash EEPROM bootstrap words. Several interlocks are includ-
ed in the module to prevent accidental changes of critical parameters.

Unlike the control register block, the flash EEPROM array is not fixed to a particular memory address, but
can be programmed to a particular address defined by the base address registers FEEBAH and FEEBAL.
Array base addresses boundaries are typically determined by array size. For instance, a 16 kbyte array can
be located at any 16 kbyte boundary in the address map. For M68300 family devices, arrays can also be
configured to reside in both program and data space or in program space alone.
 MOTOROLA INC, 1996

A flash EEPROM array can be read as either bytes, words, or long-words. FLASH modules respond to back-
to-back IMB accesses, providing two-bus-cycle (four system clock) access for aligned long words. Each
module can also be programmed to insert up to two wait states per access, to accommodate migration from
slower external development memory without re-timing the system.

Because an array can be mapped to a number of different base addresses, it is possible for addresses in
the array to overlap the addresses of it’s own register block or addresses used by other MCU modules, in-
cluding memory that the program/erase utility is executing from. The resulting conflicts can cause program-
ming or erasure to fail. Thus, the user must take special care to verify the array base address before
attempting programming or erasure.

Programming is by byte or aligned word only, and FLASH modules support only bulk erasure. Hardware
interlocks protect stored data from corruption if program/erase voltage is enabled accidentally.

Flash EEPROM Registers

Each control block contains five registers: the flash EEPROM module configuration register (FEEMCR), the
flash EEPROM test register (FEETST), the flash EEPROM array base address registers (FEEBAH and
FEEBAL), and the flash EEPROM control register (FEECTL). Four additional flash EEPROM words in the
control block can contain bootstrap information for use during reset.

.

 In the address map, Y = M111, where M represents the state of the MODMAP (MM) bit in the system inte-
gration module configuration register. MM defines the MSB (ADDR23) of the IMB address for MCU module.
MM can be written only once after reset. An “S” in the access column indicates registers are located in su-
pervisor data space. In M68300 family devices, access to supervisor space can be restricted, but M68HC16
devices operate only in supervisor space—see the respective CPU reference manuals for more information.

A number of control register bits have associated bits in shadow registers. The values of the shadow bits
determine the reset states of the control register bits. In subsequent register diagrams, bits with reset
states determined by shadow bits are shaded, and the reset state is annotated "SB". Shadow registers are
programmed or erased in the same manner as a location in the array, using the address of the correspond-
ing control registers.When a shadow register is programmed, the data is not written to the corresponding
control register — the new data is not copied into the control register until the next reset. The contents of
shadow registers are erased when the array is erased.

Table 1 Flash EEPROM Address Map

Access Address Register

S $YFF##0 Flash EEPROM Module Configuration (FEEMCR)

S $YFF##2 Flash EEPROM Test Register (FEETST)

S $YFF##4 Flash EEPROM Base Address High (FEEBAH)

S $YFF##6 Flash EEPROM Base Address Low (FEEBAL)

S $YFF##8 Flash EEPROM Control Register (FEECTL)

S $YFF##A RESERVED

S $YFF##C RESERVED

S $YFF##E RESERVED

S $YFF##0 Flash EEPROM Bootstrap Word 0 (FEEBS0)

S $YFF##2 Flash EEPROM Bootstrap Word 1 (FEEBS1)

S $YFF##4 Flash EEPROM Bootstrap Word 2 (FEEBS2)

S $YFF##6 Flash EEPROM Bootstrap Word 3 (FEEBS3)

S $YFF##8 RESERVED

S $YFF##A RESERVED

S $YFF##C RESERVED

S $YFF##E RESERVED
 MOTOROLA AN1255/D
2

Configuration information is specified and programmed independently of the array. After reset, registers in
the control block that contain writable bits can be modified. Writes to these registers do not affect the asso-
ciated shadow register. Certain registers can be written only when the LOCK bit in the FEEMCR is disabled
or when the STOP bit in the FEEMCR is set.

Module Configuration Register

FLASH module configuration registers (FEEMCR) control module configuration. This register can be written
only when the control block is not write-locked (when LOCK = 0). All active fields and bits in the MCR take
values from the associated shadow register during reset.

STOP — Stop Mode Control
0 = Normal operation
1 = Low-power stop operation

Setting the STOP bit places the module in low-power stop mode. The EEPROM array is inaccessible
during low-power stop. The array can be re-enabled by clearing STOP. If STOP is set during program-
ming or erasing, program/erase voltage is automatically turned off. However, when this is done, the en-
able programming/erase bit (ENPE) in the FEECTL remains set. Unless ENPE is cleared, program/
erase voltage is automatically reapplied when STOP is cleared.
Since the default state of the STOP bit out of reset is determined by the value stored in the shadow
MCR, it is possible for the module to come out of reset in low-power mode. The reset state of the STOP
bit can also be affected by reset mode selection. Refer to the integration module section of the appro-
priate device user’s manual for more information.

FRZ — Freeze Mode Control
0 = Disable program/erase voltage while FREEZE is asserted
1 = Allow ENPE bit to turn on the program/erase voltage while FREEZE signal is asserted

FRZ determines the response of the FLASH module to assertion of the FREEZE signal by the CPU.
When FRZ = 0, the program/erase voltage is disabled while FREEZE is asserted. When FRZ = 1, the
ENPE bit in the FEECTL can turn on the program/erase voltage while FREEZE is asserted.

BOOT — Boot Control
0 =Flash EEPROM module responds to the bootstrap addresses after reset
1 =Flash EEPROM module does not respond to the bootstrap addresses after reset

On reset, the BOOT bit takes on the default value stored in the shadow MCR. If BOOT = 0 and STOP
= 0, the module responds to program space accesses to IMB addresses $000000 to $000006 following
reset, and the contents of FEEBS[3:0] are used as bootstrap vectors. After address $000006 is read,
the module responds normally to control block or array addresses only.

LOCK — Lock Registers
0 = Write-locking disabled
1 = Write-locked registers protected

When LOCK is set, writes to locked registers in the control block have no effect. Once set, LOCK cannot
be cleared until reset occurs. The default state of the LOCK bit out of reset is determined by the value
stored in the shadow MCR. If the default state is zero, LOCK can be set once to protect the registers
after initialization. Once set, LOCK cannot be cleared again until another reset occurs. When a default
reset state of zero is used, the initialization routine should set LOCK to prevent inadvertent reconfigu-
ration of the FLASH module.

FEEMCR — Flash EEPROM Module Configuration Register $YFF##0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STOP FRZ 0 BOOT LOCK 0 ASPC WAIT 0 0 0 0 0 0

RESET:

SB 0 0 SB SB 0 SB SB 0 0 0 0 0 0
AN1255/D MOTOROLA
3

ASPC[1:0] — Flash EEPROM Array Space
ASPC assigns the array to a particular address space. The default state of the ASPC field out of reset
is determined by the value stored in the shadow MCR. The field can be written only when LOCK = 0
and STOP = 1. The four possible encodings for ASPC are summarized in Table 2. In CPU-16-based
systems, only encodings for supervisor space are valid.

WAIT[1:0] — Wait States
The default state of the WAIT field out of reset is determined by the value stored in the shadow MCR.
WAIT[1:0] specifies the number of wait states inserted during accesses to the FLASH module. A wait
state has the duration of one system clock cycle. WAIT[1:0] affects both control block and array access-
es, and can be written only if LOCK = 0 and STOP = 1. Table 3 shows wait state encodings and corre-
sponding clock cycles per transfer.

.

The value of WAIT[1:0] is compatible with the lower two bits of the DSACK field in the integration module
chip-select option registers. An encoding of %11 in the WAIT field corresponds to an encoding for fast
termination.

Test Register

FEETST — Flash EEPROM Test Register $YFF##2

This registers is used for factory test only.

Base Address Registers

The base address high register (FEEBAH) contains the 16 high-order bits of the array base address; the
base address low register (FEEBAL) contains the low-order bits of the address. The number of active con-
trol bits in FEEBAL is determined by the size of the array, as shown in Table 4. During reset, both FEEBAH
and FEEBAL take on default values programmed into associated shadow registers. After reset, if LOCK =
0 and STOP = 1, software can write to FEEBAH and FEEBAL to relocate the array.

Table 2 Array Space Encoding

ASPC[1:0] Type of Access

00 Unrestricted program and data space

01 Unrestricted program space

10 Supervisor program and data space

11 Supervisor program space

Table 3 Wait State Encoding

WAIT[1:0] Wait States Clocks/Transfer

00 0 3

01 1 4

10 2 5

11 –1 2
 MOTOROLA AN1255/D
4

Flash EEPROM Control Register

FLASH control registers (FEECTL) control programming and erasure of the array. FEECTL is accessible in
supervisor mode only. Refer to EFFECTS of LOCK Bit Operation for more information.

VFPE — Verify Program/Erase
0 = Normal read cycles
1 = Invoke program verify circuit

The VFPE bit invokes a special program-verify circuit. During programming sequences (ERAS = 0),
VFPE is used in conjunction with the LAT bit to determine when programming of a location is complete.
If VFPE and LAT are both set, a bit-wise exclusive-OR of the latched data with the data in the location
being programmed occurs when any valid FLASH location is read. If the location is completely pro-
grammed, a value of zero is read. Any other value indicates that the location is not fully programmed.
When VFPE is cleared, normal reads of valid FLASH locations occur. The value of VFPE cannot be
changed while ENPE = 1.

ERAS — Erase Control
0 = Flash EEPROM configured for programming
1 = Flash EEPROM configured for erasure

The erase control bit (ERAS) in FEECTL configures the array for either programming or erasure. Setting
ERAS causes all locations in the array and all control bits in the control block to be configured for era-
sure at the same time.
When the LAT bit is set, ERAS also determines whether a read returns the data in the addressed loca-
tion (ERAS = 1) or the address itself (ERAS = 0). ERAS cannot be changed while ENPE = 1.

FEEBAH — Flash EEPROM Base Address High Register $YFF##4

15 0

Flash EEPROM Base Address (high-order bits)

RESET:

SB

FEEBAL — Flash EEPROM Base Address Low Register $YFF##6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Flash EEPROM Base Address (low-order bits)

RESET:

SB0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4 FEEBAL Bit Implementation

Array Size Bits Used

8 Kbyte [15:13]

Up to 16 Kbyte [15:14]

Up to 32 Kbyte [15]

Up to 64 Kbyte None

FEECTL — Flash EEPROM Control Register $YFF##8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 VFPE ERAS LAT ENPE

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AN1255/D MOTOROLA
5

LAT — Latch Control
0 = Programming latches disabled
1 = Programming latches enabled

The latch control bit (LAT) in the FEECTL configures the EEPROM array for normal reads or for pro-
gramming. When LAT is cleared, the FLASH module address and data buses are connected to the IMB
address and data buses and the module is configured for normal reads. When LAT is set, module ad-
dress and data buses are connected to parallel internal latches and the array is configured for program-
ming or erasing.
Once LAT is set, the next write to a valid FLASH module address causes the programming circuitry to
latch both address and data. Unless control register shadow bits are to be programmed, the write must
be to an array address. The value of LAT cannot be changed while ENPE = 1.

ENPE — Enable Programming/Erase
0 = Disable program/erase voltage
1 = Apply program/erase voltage to flash EEPROM

Setting the enable programming/erasure (ENPE) bit in FEECTL applies program/erase voltage to the
array. ENPE can be set only after LAT has been set and a write to the data and address latches has
occurred. ENPE remains cleared if these conditions are not met. While ENPE is set, the LAT, VFPE,
and ERAS bits cannot be changed, and attempts to read an array location are ignored.

Flash EEPROM Bootstrap Words

The bootstrap words (FEEBS[3:0]) can be used as system bootstrap vectors. When the BOOT bit in FEEM-
CR = 1 during reset, the FLASH module responds to program space accesses of IMB addresses $000000
to $000006 after reset. When BOOT = 0, the FLASH module responds only to normal array and register
accesses. FEEBS[3:0] can be read at any time, but the values in the words can only be changed by pro-
gramming the appropriate location. Table 5 shows bootstrap word addresses in program space.

FEEBS[3:0] — Flash EEPROM Bootstrap Words; $YFF##0–$YFF##6

APPLYING FLASH PROGRAM ERASE VOLTAGE
A voltage of at least VDD – 0.5 V must be applied at all times to the VFPE pins or damage to the FLASH
module can occur. FLASH modules can be damaged by power-on and power off VFPE transients. VFPE
must not rise to programming level while VDD is below specified minimum value, and must not fall below
minimum specified value while VDD is applied. Figure 1 shows the VFPE and VDD operating envelope.

Use of an external circuit to condition VFPE is recommended. Figure 2 shows a simple circuit that maintains
required voltages and filters transients. VFPE is pulled up to VDD via Schottky diode D2. Application of pro-
gramming voltage via diode D1 reverse-biases D2, protecting VDD from excessive reverse current. D2 also
protects the FLASH from damage should programming voltage go to zero. Programming power supply volt-
age must be adjusted to compensate for the forward-bias drop across D1. The charge time constant of R1
and C1 filters transients, while R2 provides a discharge bleed path for C1. Allow for RC charge and dis-
charge time constants when applying and removing power. When using this circuit, keep leakage from ex-
ternal devices connected to the VFPE pin low, to minimize diode voltage drop.

Table 5 Bootstrap Words

Word Address

FEEBS0 $00000000

FEEBS1 $00000002

FEEBS2 $00000004

FEEBS3 $00000006
 MOTOROLA AN1255/D
6

There are a number of interlocks designed to prevent accidental programming or erasure. For increased
protection, raise the VFPE input to programming voltage only immediately prior to issuing a PROG or BULK
command, and remove programming voltage as soon as the operation is complete.

Figure 1 Programming Voltage Envelope

Figure 2 VFPE Conditioning Circuit

POWER
ON

NORMAL
READ

PROGRAM
ERASE
VERIFY

POWER
DOWN

13.5 V

12.6 V

11.4 V

− 0.30 V

0 V

6.5 V

4.5 V
4.0 V

30 ns MAXIMUM

VFPE ENVELOPE

VDD ENVELOPE

COMBINED VDD AND VFPE

PROG VOLT ENVELOPE

D1

VDD

C1
0.1 µF

R2
22 kΩ

R1
10 kΩ

D2

PROGRAMMING VOLTAGE
POWER SUPPLY

4.5 V VFPE
PIN

VFPE CIRCUIT
AN1255/D MOTOROLA
7

 EFFECTS OF LOCK BIT OPERATION
FLASH modules can be configured to prohibit access to the base address registers and the module config-
uration register. This capability prevents application failures caused by accidental writes to the registers.
Access is controlled by the LOCK bit in the module configuration register (FEEMCR).

Because it restricts relocating the array to resolve address conflicts, the LOCK bit can also affect program-
ming and erasing. Conflicts arise when the array is mapped to an address range that coincides with the ad-
dresses of other MCU resources. These resources may be:

1. FLASH module control register blocks

2. Control registers of other IMB modules

3. Memory required by the driver software

The third type of conflict is easily resolved by relocating the driver. BD32 macro files provide a convenient
way to do this, and all other required configuration. Two example macro files, SRAMHIGH.DO and SRAMZ-
ERO.DO are listed and used in the example section.

The first two conflict types require the array to be remapped. However, if the LOCK bit is set, it is not possible
to immediately relocate the array by writing to the base address registers — instead, the module shadow
registers must be reprogrammed so that the array will be mapped to the new address after reset.

The following procedure, also shown in Example 1, avoids possible address conflicts. It is recommended
for routine programming of a blank FLASH module.

1. Program the shadow registers for the required configuration and array address

2. Reset and re-initialize the device

3. Program the array

Erasing an array which has been programmed this way should not cause problems, as the module is never
in a programmed state with a conflicting array address range. If the array has been mapped to a conflicting
address, it must be relocated before erasure to avoid an erase fail during the blank-check process. If the
LOCK bit is clear, the array can be remapped by writing FEEBAH/L, otherwise it is necessary toperform
steps 1 and 2 before erasing.

BD32 BACKGROUND DEBUGGER
BD32 is a debugger program for CPU32-based devices that executes on an IBM PC-compatible host, and
communicates with the background debugging mode (BDM) port of the device via the PC printer port. Use
of BDM makes a ROM-based monitor program unnecessary, and the only requirement for using it is access
to the CPU32 BDM signals. If the design includes the recommended 10 pin Berg-type connector to provide
access to the signals, BDM can even be used with the final application hardware.

BD32 supports a method of extending the available functions through custom driver programs. If a com-
mand that is not part of the standard command set is entered, BD32 searches the PC disk for a file with the
command name and the extension.D32. If a matching file is found, it is executed by the MCU in response
to the command. Parameters can be entered with the command, and are passed to the driver program as
an ASCII text list in memory, pointed to by one of the processor registers.

To ensure that drivers will operate on application hardware systems with differing memory maps, BD32 re-
quires that driver programs be relocatable, and uses a load address specified by the BD32 ‘driver’ com-
mand. This feature is used often when programming and erasing the FLASH modules, as the drivers must
not be placed in an address range which will be overwritten by a flash array.

Table 6 shows available BD32 system calls. A driver program executes these calls by executing a BGND
instruction with register D0 containing the appropriate fcode value. Please refer to the BD32 documentation
file BD32.DOC for more information concerning the debugger.
 MOTOROLA AN1255/D
8

PROGRAM/ERASE OPERATION
An erased bit has a logic state of one. A bit must be programmed to change its state from one to zero. Eras-
ing a bit returns it to a logic state of one. Programming and erasing the FLASH module requires a series of
control register writes and a write to an array address. The same procedure is used to program control reg-
isters that contain flash shadow bits. Programming is restricted to a single byte or aligned word at a time.
The entire array and the shadow register bits are erased at the same time.

When multiple FLASH modules share a single VFPE pin, do not program or erase more than one module at
a time. Normal accesses to modules that are not being programmed are not affected by programming or
erasure of another FLASH module.

Following paragraphs give step-by-step procedures for programming and erasure of flash EEPROM arrays.
Parameters used in the descriptions are defined and characterized in the electrical specifications section of
the appropriate device manual.

Table 6 BDM32 Command Summary

Name Function fcode Parameters

QUIT stop driver execution 0 None

PUTS display character string on screen 1 A0 - address of string

PUTCHAR display single character on screen 2 D1 - character

GETS get string from user (CR ends) 3 A0 - address of buffer

GETCHAR get single character from user 4 char returned in D0

GETSTAT returns char ready/not ready status 5 D0 non-zero if ready

FOPEN open disk file on host PC 6
A0 - filename string
A1 - pointer to mode

FCLOSE close disk file 7 D1 - file handle

FREAD read n bytes from disk file 8
D1 - file handle
D2 - byte count
A0 - buffer address

FWRITE read n bytes from disk file 9
D1 - file handle
D2 - byte count
A0 - buffer address

FTELL return current file pointer pos. 10 D1 - file handle

FSEEK seek to position n in disk file 11
D1 - file handle
D2 - offset

FGETS read \n-terminated string from file 12
D1 - file handle
A0 - buffer

FPUTS write null terminated string to file 13
D1 - file handle
A0 - buffer

EVAL evaluate expression from string 14
A0 - string
D1 - return value

FREADSREC read S-record from disk file 15
D1 - file handle
A0 - buffer
AN1255/D MOTOROLA
9

Programming

The following steps are performed to program the array. Figure 3 is a flowchart of programming operation.

1. Increase voltage applied to the VFPE pin to program/erase/verify level.

2. Clear the ERAS bit and set the LAT bit in FEExCTL. This enables the programming address and data
latches.

3. Write data to the address to be programmed. This latches the address to be programmed and the
programming data.

4. Set the ENPE bit in FEExCTL. This starts the program pulse.

5. Delay the proper amount of time for one programming pulse to take place. Delay is specified by pa-
rameter pwpp.

6. Clear the ENPE bit in FEExCTL. This stops the program pulse.

7. Delay while high voltage to array is turned off. Delay is specified by parameter tpr.

8. Read the address to verify that it has been programmed.

9. If the location is not programmed, repeat steps 4 through 7 until the location is programmed, or until
the specified maximum number of program pulses has been reached. Maximum number of pulses
is specified by parameter npp.

10. If the location is programmed, repeat the same number of pulses as required to program the loca-
tion. This provides 100% program margin.

11. Read the address to verify that it remains programmed.

12. Clear the LAT bit in FEExCTL. This disables the programming address and data latches.

13. If more locations are to be programmed, repeat steps 2 through 10.

14. Reduce voltage applied to the VFPE pin to normal read level.

Erasure

The following steps are performed to erase the array. Figure 4 is a flowchart of erasure operation.

1. Increase voltage applied to the VFPE pin to program/erase/verify level.

2. Set the ERAS bit and the LAT bit in FEExCTL. This configures the module for erasure.

3. Perform a write to any valid address in the control block or array. The data written does not matter.

4. Set the ENPE bit in FEExCTL. This applies the erase voltage to the array.

5. Delay the proper amount of time for one erase pulse. Delay is specified by parameter tepk.

6. Clear the ENPE bit in FEExCTL. This turns off erase voltage to the array.

7. Delay while high voltage to array is turned off. Delay is specified by parameter ter.

8. Read the entire array and control block to ensure all locations are erased.

9. If all locations are not erased, calculate a new value for tepk (tei × pulse number) and repeat steps 3
through 10 until all locations erase, or the maximum number of pulses has been applied.

10. If all locations are erased, calculate the erase margin (em) and repeat steps 3 through 10 for the
single margin pulse.

11. Clear the LAT and ERAS bits in FEExCTL. This allows normal access to the flash.

12. Reduce voltage applied to the VFPE pin to normal read level.
 MOTOROLA AN1255/D
10

Figure 3 Programming Flow

FEEPROM PGM FLOW1 TD

npp COUNTER = 50 ?

LOCATION FAILED
TO PROGRAM

npp = 0 ?
READ LOCATION

TO VERIFY

DATA CORRECT ? CLEAR LAT

DONE
PROGRAMMING

REDUCE VFPE TO

NORMAL READ LEVEL,
EXIT PROGRAM ROUTINE

INCREASE VFPE TO
PROGRAM/ERASE/VERIFY LEVEL

CLEAR npp COUNTER,
CLEAR MARGIN FLAG

SET LAT,
CLEAR ERAS

WRITE DATA
TO ADDRESS

SET ENPE

START PROGRAM PULSE
TIMER (pwpp)

DELAY FOR pwpp

CLEAR ENPE,
START tpr TIMER

DELAY FOR tpr

MARGIN FLAG
SET ?

INCREMENT npp COUNTER,
READ LOCATION TO VERIFY

DATA CORRECT ?

SET MARGIN FLAG

DECREMENT
npp COUNTER

INCREMENT ADDRESS

Y

N

N

Y

Y

N

Y

N

Y

N

1

1

2

3

4

NOTES:
 1. SEE ELECTRICAL CHARACTERISTICS FOR VFPE PIN VOLTAGE SEQUENCING.
 2. THE MARGIN FLAG IS A SOFTWARE-DEFINED FLAG THAT INDICATES WHETHER THE PROGRAM SEQUENCE IS
 GENERATING PROGRAM PULSES OR MARGIN PULSES.
 3. TO SIMPLIFY THE PROGRAM OPERATION, THE VFPE BIT IN FEExCTL CAN BE SET.

N

Y

 4. CLEAR VFPE BIT ALSO IF ROUTINE USES THIS FUNCTION.
AN1255/D MOTOROLA
11

Figure 4 Erasure Flow

FEEPROM PGM FLOW2 TD

nep COUNTER = 5 ?

ARRAY FAILED
TO ERASE

CLEAR LAT

REDUCE VFPE TO
NORMAL READ LEVEL,
EXIT ERASE ROUTINE

REDUCE VFPE TO

PROGRAM/ERASE/VERIFY LEVEL

CLEAR nep COUNTER,
CLEAR MARGIN FLAG

SET LAT,
SET ERAS

WRITE TO ARRAY
OR CONTROL BLOCK

SET ENPE

START ERASE PULSE
TIMER (tepk)

DELAY FOR tepk

CLEAR ENPE,
START tpr TIMER

DELAY FOR tpr

MARGIN FLAG
SET ?

Y

N

1

1

2

NOTES:
 1. SEE ELECTRICAL CHARACTERISTICS FOR VFPE PIN VOLTAGE SEQUENCING.
 2. THE MARGIN FLAG IS A SOFTWARE-DEFINED FLAG THAT INDICATES WHETHER
 THE PROGRAM SEQUENCE IS GENERATING ERASE PULSES OR MARGIN PULSES.

N

Y

READ ARRAY AND SHADOW
REGISTERS TO VERIFY ERASE

ALL LOCATIONS
ERASED ?

N

Y CALCULATE EM,
SET MARGIN FLAG

SET tepk = EM

INCREMENT nep COUNTER

CALCULATE NEW
tepk
 MOTOROLA AN1255/D
12

DRIVER SOFTWARE

Driver Relocatability

Because a user can define a driver execution address to be anywhere in the MCU memory map, the BD32
driver system requires that driver code be fully relocatable. Accesses to variables that are relative to the
driver location (e.g. variables within the driver area) therefore cannot use absolute addressing. Instead, use
either PC-relative addressing or offset addressing using register A6. The latter is possible because BD32
writes A6 with the base address of the driver before the driver code is executed, and has the advantage of
allowing writes in a single instruction. Because the CPU32 regards PC-relative addresses as non-alterable
locations, an extra LEA instruction is required when writing a location using this addressing mode.

Special care is also required when accessing driver parameters as these cannot be guaranteed to be on
word boundaries. Byte accesses are always used in this case to guarantee correct operation regardless of
driver load address and size/number of driver parameters.

Exception Handling

Basic exception handling routines are built into the PROG and BULK drivers. In normal use no exceptions
are generated, so the handlers simply indicate that an error has caused an exception. Such errors are typ-
ically caused by array address conflicts described in EFFECTS OF LOCK BIT OPERATION.

PROG — Flash Programming Driver

 User Details

The PROG driver is designed to enable programming of flash EPROM from an S-record file on the PC run-
ning BD32. The syntax used is:

PROG <filename.ext> [<start address>]

where <filename.ext> is the filename of the S-record file, and <start address> is an optional parameter that,
if specified, defines the start address of programming, overriding the start address specified in the S-record.
The relative addresses of bytes in the S-record are preserved, with a fixed offset added to each S-record
address. The offset is calculated as:

offset = (start address parameter) – (first S-record address)

If <start address> is not specified, the addresses defined in the S-record file are used unchanged.

Each byte or word is verified after programming. Any verify errors are indicated by an error message, and
the user is given the option to abort or continue programming. This facility is useful if an array is already
partially programmed or damaged, or if the S-record contains programming data for a location not within
any FLASH address range.

For each byte or word to be programmed, the PROG utility searches through all of the possible FLASH mod-
ule addresses to find a match. PROG does not initialize the array base addresses before programming, so
the user must ensure that these are correctly configured.

When specifying programming data for the shadow registers, unimplemented shadow bits must be set to
zero, to avoid verify errors. Registers that may have unimplemented shadow bits are FEEMCR, FEEBAH
and FEEBAL.Make certain that the array address does not overlap registers of the flash EEPROM module
or another module. See FINDING ERRORS for more detail.

Software Details

The PROG routine applies programming pulses to the flash array until the location verifies as correctly pro-
grammed. A final series of pulses is applied for programming margin. The following sequence of steps is
used to program the flash EEPROM array.
AN1255/D MOTOROLA
13

The source files for the PROG driver software are:

PROG.S62 Program code source file

PROG.MSG Message text file used by BD32

IPD.INC Definitions required for the BD32 system calls

M68F333.INC MC68F333 constants definition file, including register addresses, other flash module
information, and programming/erasure timing data. Timing information is compatible with the definitions
used in the MC68F333 device specification to simplify updates.

Common include files used by both drivers are shown after the erasure driver code.

PROG Driver Listing

* 'PROG' Resident Command Driver for MC68F333 device
*
* Utility to program an MC68F333 flash EPROM module from an S record file
*
* Source file : prog.s62
* Object file : prog.d32
* Include files : M68F333.inc (M68F333 addresses and programming constants)
* ipd.inc (BD32 system call constants)
* Message file : prog.msg
*
* Object file format: Motorola S-records
*
* Execute as: prog <filename> [<start_address>]
* Useage : Start_address specifies start of memory to be programmed, if not
* specified the S-record start address is used
*
* Addressing modes : This code is designed as a driver for the BD32 background
* debugger for CPU32 devices. A requirement is that the code must be
* fully relocateable. All addresses (apart from fixed module addresses)
* are relative, and where word alignment is not guaranteed, byte
* accesses must be used.
*
* Word alignment : The embedded text strings have been adjusted in size so
* that the following code remains word aligned - any modifications
* to these strings should be adjusted accordingly. An assembler
* 'even' type directive to force word-alignment could be used if
* available.
*
* 32/23 bit addressing : All flash addresses are forced to 24 bits, with
* upper MSB ignored, so that $xxfff800 will always access FEE1MCR etc.

* Include files
 lib ipd.inc BD32 call code definitions
 lib M68F333.inc M68F333 device constants

* BD32 return error codes : see file PROG.MSG for associated text
UsageError equ 1 Usage: ...
FileError equ 2 Error opening file...
EvalError1 equ 3 Error evaluating start address
EvalError2 equ 4 Error evaluating end address
SRecError equ 4 Starting value for SRec errors
SRecEOFError equ 5 Reached EOF on input file
SRecS9Error equ 6 S9 read (not an error)
SRecChecksum equ 7 Checksum error in record
SRecFormat equ 8 Format error in S-record file
ProgError equ 9 Error programming data
ExcepError equ 10 Unhandled exception error
ProgdOK equ 11 Good return value, programmed OK
 MOTOROLA AN1255/D
14

* BD32 call return codes : see bd32 file BD32.DOC
SRecS9 equ 2 ReadSRecord call - S9 Record read, end of file

* Flash control register constants
* FEEMCR
flashdis equ $90c0 Module DISABLED, disable VFPE in BDM,
* no boot, unrestricted space, 2 cycle access
flashen equ $10c0 Module ENABLED, disable VFPE in BDM,
* no boot, unrestricted space, 2 cycle access
* FEECTL
latch equ $a Enable prog latch
prgen equ $b Enable prog volts
shadow equ $2 Read shadow reg
norm equ $0 Normal operation

* Variable area
 section .data
 dc.l Prog start address (add load offset)
buffer ds.b 40 space for S-record from host
 ds.l 40 stack area
* initial stack pointer
stack

StartAddr ds.l 1 start address parameter

ModeAddr dc.w $0 address mode
OffsetAddr dc.l $0 calculated S-record offset
FilePtr ds.l 1 file pointer
FileName ds.b 64 file name
Error ds.w 1 error code

* CUSTOM VECTOR TABLE (reserved space)

vectable ds.l 13 Alternate vector table

* EXCEPTION HANDLER ROUTINE
* Use - Quits to BD32 with unhandled exception error code
* Exception handling is included because many user errors
* (mapping of flash/drivers etc) could cause bus errors,
* f-line exceptions etc. Flash programming voltage is disabled
* in case exception ocurred during a programming cycle

excep_h move.w #norm,FEECTL(a1) normal flash reads/writes
* disable programming voltage
 move #ExcepError,Error(A5) unhandled excep error
 bra Prog_end

FileMode dc.b 'r',0 read mode for file open syscall

* Execution start of driver 'PROG'
* Entry (from BD32) :
* d0 - number of driver parameters
* a0 - address of parameter array
* a5 - driver offset address
* Useage :
* a7 - stack pointer

Prog
* ***** Exception handler initialisation
 lea.l vectable(PC),a1 get start of vector table
 movea.l a1,a2 working (loop) copy
 lea.l excep_h(PC),a3 get address of handler
 move.w #$0c,d1 initialise copy loop
vecloop move.l a3,(a2)+ build new vector table
 dbf d1,vecloop
 movec.l a1,vbr set up vbr for new table

* ***** SP and general register initialisation
 lea.l stack(A5),a7 set up stack
* lea.l stack(PC),a7 set up stack (equivalent)
 move.l a0,a2 get argv into a2
 move.l d0,d2 get argc into d2
AN1255/D MOTOROLA
15

* ***** Print signon and warning message
 bsr Print print signon message
 dc.b 'M68F333 Flash EEPROM Programmer Version 2.0',13,10,0

* ***** Main initialisation
 bsr Initialize init hardware and address list
 tst d0
 bne Prog_end

* ***** Check command line
 cmpi #2,d2 argc < 2?
 bcs Prog_0
 cmpi #3,d2 argc > 3?
 bls Prog_1
Prog_0 move #UsageError,Error(A5) arg count is wrong
 bra Prog_end

* ***** Get filename, open file, check if OK
Prog_1
 addq.l #4,a2 skip over program name
 move.l (a2)+,a0 get file name of S records
 lea.l FileMode(A5),a1 read mode - "r"
 bsr fopen
 move.w d0,FilePtr(A5) save file pointer
 bne Prog_11 continue if OK
 move #FileError,Error(A5) can't open input file
 bra Prog_end

* ***** Evaluate remaining parameters
Prog_11
 clr.w ModeAddr(A5) Assume no offset first..
 cmpi #3,d2 argv = 3 ?
 bne Prog_2
 move.l (a2)+,a0 evaluate start address parameter
 bsr Eval
 beq Prog_12
 move #EvalError1,Error(A5)
 bra Prog_3 close file and exit
Prog_12 move.l d1,StartAddr(A5) got first param
 move.w #$1,ModeAddr(A5) signal to calculate offset

* ***** Read an S-Record, check for errors
Prog_2
 bsr ReadSRecord get next S Record
 tst d0
 beq Prog_25 continue if no error
 cmpi #SRecS9,d0 S9 record ?
 beq Prog_3 yes - close normally
 addi #SRecError,d0 otherwise flag error
 move d0,Error(A5)
 bra Prog_3

* ***** Program data from S-Record into EEPROM
Prog_25
 bsr ProgRecord program data from S Record
 tst d0
 beq Prog_2 loop till done
 bsr not_prog print fault address
 move #ProgError,Error(A5) error - report it

* ***** Close input file
Prog_3
 bsr CloseInputFile close file

* ***** Report any errors, exit back to BD32
Prog_end move Error(A5),d1 get error code
 moveq.l #BD_QUIT,d0 exit program
 bgnd
 MOTOROLA AN1255/D
16

* ReadSRecord - reads one S record from FilePtr
* Exit - d0 contains returned status
* d1 corrupted
* a0 points to s-record (buffer)

ReadSRecord move.w FilePtr(A5),d1 file pointer
 lea.l buffer(A5),a0 point to S Record buffer
 moveq.l #BD_FREADSREC,d0
 bgnd
 rts

* CloseInputFile - closes FilePtr
* Exit - d0 corrupted
* d1 corrupted
* does not affect Error

CloseInputFile move.l FilePtr(A5),d1
 moveq.l #BD_FCLOSE,d0
 bgnd
 rts

* Eval - evaluates numeric string
* Entry - string address in a0
* Exit - result in D1, error flag in D0

Eval moveq.l #BD_EVAL,d0
 bgnd
 tst d0
 rts

* fopen - performs file open routine
* Entry - filename pointer in A0
* file mode pointer in A1
* Exit - file pointer in D0

fopen moveq.l #BD_FOPEN,d0
 bgnd
 rts

* FindStrEnd - searches an ASCII string for end of string
* marker ('null'/ 0 char)
* Entry - string pointed to by A0
* Exit - returns a0 pointing to end of string marker

FindStrEnd move.w d0,-(a7) push temp register
 moveq #-1,d0 max loop count 1st time thru
FSE_1 tst.b (a0)+ byte == 0?
 dbeq d0,FSE_1 uses loop mode
 bne FSE_1 loop till test true
 subq.l #1,a0 decrement address reg.
 move.w (a7)+,d0 restore register
 rts

* ntoh - prints hex value of register D0 least sig nibble to screen
* Entry - D0 contains nibble value

ntoh movem.l d0/d1,-(a7)
 move.b d0,d1
 andi.w #$f,d1
 addi.b #'0',d1
 cmpi.b #10+'0',d1
 bcs nt_1
 addi.b #'A'-'9'-1,d1
nt_1 moveq #BD_PUTCHAR,d0
 bgnd
 movem.l (a7)+,d0/d1
 rts
AN1255/D MOTOROLA
17

* btoh - prints hex value of byte register D0 to screen
* Entry - D0 contains byte value

btoh ror.b #4,d0
 bsr ntoh
 ror.b #4,d0
 bsr ntoh
 rts

* wtoh - prints hex value of word register D0 to screen
* Entry - D0 contains word value

wtoh ror.w #8,d0
 bsr btoh
 ror.w #8,d0
 bsr btoh
 rts

* ltoh - prints hex value of long word register D0 to screen
* Entry - D0 contains long word value

ltoh swap d0
 bsr wtoh
 swap d0
 bsr wtoh
 rts

* Print - prints constant string in code and returns to
* program at first even location after string
* Entry - parameters indexed from stacked return PC
* Exit - stacked return PC modified to give correct return
* no registers corrupted

Print movem.l a0/d0,-(a7) save registers
* WARNING : Any change to movem list will require change
* to stack offset used below
 move.l 8(a7),a0 get address of string
* (= stacked return address)
 moveq.l #BD_PUTS,d0 function call
 bgnd
 bsr FindStrEnd get end of ASCII string
 move.l a0,d0 test for odd address
 addq.l #1,d0 skip past end of string
 btst #0,d0
 beq Print_1
 addq.l #1,d0 it's odd - return to next addr
Print_1 move.l d0,8(a7) update stacked return address
 movem.l (a7)+,d0/a0 get back registers
 rts done

* crlf - prints carriage return, line feed combo
* Exit - no registers corrupted

crlf bsr Print carriage return, line feed
 dc.b 13,10,0,0
 rts

**
* getchar - returns character typed by user
* Exit - d0 contains character typed

getchar moveq.l #BD_GETCHAR,d0
 bgnd
 rts
 MOTOROLA AN1255/D
18

* usedelay - programmable software delay loop
* Entry - delay in us (approximate) stored in d1,
* legal values are 2 ... 65535
* Exit - d1 corrupted
* Environment- timings assume 2 clock program memory access and 16.778MHz
* clckout frequency

* jsr usdelay 13
usdelay subq #2,d1 2 - adjust for overhead
 asl #1,d1 6 - multiply count by 2 for us
loop tst d1 2
 dbf d1,loop 6
 rts 12

* check_address - searches through valid flash address ranges
* to find which array is being accessed, and therefore
* which set of control registers to use.
*
* Note - flash register ranges are tested first, as they
* have priority over an array that is mapped to the same
* address.
*
* Entry - A0 contains address to be programmed
* Exit - A1 contains start address of register bank, or 0 if
* no valid flash module found for adress

check_address movem.l d0,-(a7) push working reg for now
 move.l a0,d0 restrict address to 24 bits
 and.l #$00ffffff,d0
 move.l d0,a0

* Is a0 within 16K register block?
ca_regs
 cmpa.l #FER_1&$ffffff,a0 range 1 start test..
 bcs ca_2 is a0 > range start?
 cmpa.l #(FER_1+FER_REGSZ-1)&$ffffff,a0
* yes, now test against end..
 bhi ca_2 is a0 < range end?
 move.l #FER_1,a1 yes, within range
 bra ca_good

* Is a0 within 48K register block?
ca_2
 cmpa.l #FER_2&$ffffff,a0 range 2 start test..
 bcs ca_3 is a0 > range start?
 cmpa.l #(FER_2+FER_REGSZ-1)&$ffffff,a0
* yes, now test against end..
 bhi ca_3 is a0 < range end?
 move.l #FER_2,a1 yes, within range
 bra ca_good

* Is a0 within 16K flash array?
ca_3
 move.l FEEBAH+FER_1,d0 read array1 start address
 and.l #$00ffffff,d0 clear d0[31:24]
 move.l d0,a1
 cmpa.l a1,a0
 bcs ca_4 is a0 > range start?
 add.l #FEE_SIZE_1-1,d0 calculate end addresses
 move.l d0,a1
 cmpa.l a1,a0
 bhi ca_4 is a0 < range end?
 move.l #FER_1,a1 yes, within range
 bra ca_good

* Is a0 within 48K flash array?
ca_4
 move.l FEEBAH+FER_2,d0 read array2 start address
 and.l #$00ffffff,d0 clear d0[31:24]
 move.l d0,a1
 cmpa.l a1,a0
 bcs ca_bad is a0 > range start?
 add.l #FEE_SIZE_2-1,d0 calculate end addresses
AN1255/D MOTOROLA
19

 move.l d0,a1
 cmpa.l a1,a0
 bhi ca_bad is a0 < range end?
 move.l #FER_2,a1 yes, within range
 bra ca_good

* No valid module being addressed - return 0 in A1
ca_bad
 movea.l #0,a1
ca_good
 movem.l (a7)+,d0
 rts

* do_prog - Programs one byte/word of data to memory
* Entry - Target address in A0
* byte or word data in D0
* byte flag in d5 (non-zero => program byte data)
* Exit - d0 contains difference between data to be programmed and read
* back data ($00 if programming successful)
* or $ff if address to be programmed is not recognised as flash
* d3 is corrupted
* a0 and d5 are unchanged

do_prog
 bsr dis_both disable both modules (STOP)
 clr.w d3 initialise pulse counter = 0
 bsr check_address get register address

 tst.l a1 address OK?
 beq dp_addrfail no - bomb out

 move.w #flashen,FEEMCR(a1) only enable module to be programmed
 move #latch,FEECTL(a1) enable verify + latch
 tst d5 byte or word?
 beq dp_word

* ** Byte data to programming latch
 move.b d0,(a0) write byte data to EEPROM
 bra dp_prgloop

* ** Word data to programming latch
dp_word move.w d0,(a0) write word data to EEPROM

* ** Initialise prog pulse time
dp_prgloop move.w #pwpp,d1 pulse time ready for usdelay

* ** Programming stage
 move.w #prgen,FEECTL(a1) enable prog voltage : set ENPE
 bsr.w usdelay wait pwpp microseconds

* ** 'Off' time
 move.w #latch,FEECTL(a1) disable voltage : clear ENPE
 move.w #tpr,d1 delay tpr microseconds after turning off vprog
 bsr usdelay
 addq.w #1,d3 increment pulse count

* ** Verify stage - store diff in d0
 moveq.l #0,d0 d0 ready to hold byte/word diff.
 tst d5 byte or word?
 beq dp_verw
 move.b (a0),d0 byte verify
 bra dp_vertst
dp_verw move.w (a0),d0 word verify
dp_vertst beq dp_margin verify O.K?

* ** Failed to verify
 cmpi.w #npp,d3 over max number of program pulses?
 bcs dp_prgloop no - continue

* ** Failed to verify and max program time used
 move.w #norm,FEECTL(a1) normal flash reads/writes
 bra dp_end return programming data error to caller

* ** programmed OK - now re-program for the same number of pulses (100% margin)
 MOTOROLA AN1255/D
20

dp_margin subq.w #1,d3 compensate for extra dbcc loop
dp_mrgloop move.w #pwpp,d1 set program pulse time
 move.w #prgen,FEECTL(a1) enable prog voltage : set ENPE
 bsr usdelay and delay
 move.w #latch,FEECTL(a1) disable voltage : clear ENPE
 move.w #tpr,d1 set program recovery time
 bsr usdelay and delay
 dbf d3,dp_mrgloop count down pulses

* ** Check still programmed - store diff in d0
 moveq.l #0,d0 d0 ready to hold byte/word diff.
 tst d5 byte or word?
 beq dp_verw2
 move.b (a0),d0 byte verify
 bra dp_vertst2
dp_verw2 move.w (a0),d0 word verify
dp_vertst2 move.w #norm,FEECTL(a1) normal flash reads/writes
 bra dp_end return programmed data to caller
* (don't need to test)

* ** check_address address fail
dp_addrfail move.w #$ff,d0 force fail because of bad address

* ** Fail + pass termination
dp_end bsr dis_both disable both modules
 rts and quit

* Initialize - initialize routine is called by BD32 before any programming
* initialize and check main registers
* initialize global variables
* returns non-zero in D0 if can't continue with programming
*
* Exit - d0 cleared

Initialize
* (Initialise modules but leave STOPped)

* ***** Initialisation module 1 main registers

 move.w #flashdis,FEEMCR+FER_1 STOP module 1
 move.w #$4,FEECTL+FER_1 make sure verify mode off

* ***** Initialisation module 2 main registers
 move.w #flashdis,FEEMCR+FER_2 STOP module 2
 move.w #$4,FEECTL+FER_2 make sure verify mode off

* ***** Now initialize globals
 clr.l d0 no error function return value
 move #ProgdOK,Error(A5) initialise successful return value
 rts done - return no error

* ProgRecord - programs data from S-record buffer into EEPROM
* loops through the record, retrieving each byte/word and
* programming it at the specified S-record address + OffsetAddr
*
* IF ModeAddr == $1, OffsetAddr is calculated so that :
* (OffsetAddr + S-record address) = StartAddress
* (where StartAddress is user specified) and ModeAddr is then
* cleared
*
* Entry - no parameters: assumes S Record is in 'buffer'
* Exit - d0 is difference between data and EEPROM location
* (this will be 0 if programmed successfully)
* a0 will contain address at which program failed
* d5 will be non-zero if byte program, 0 if word program

ProgRecord movem.l a1/a2/d6,-(a7) save working registers
 lea.l buffer(A5),a2 point to S-record buffer
 clr.l d6
 move.b (a2)+,d6 get record type

 beq prog_good record type 0 (header)
AN1255/D MOTOROLA
21

* - exit as no data to program
 cmpi.b #7,d6
 bcs prog_start record type 1,2 or 3 (code/data)
* - start programming

 bra prog_good record type >3, (not code/data)
* - exit as no data to program

prog_start move.b (a2)+,d6 get byte count from s-record
 subi.b #4,d6 remove byte count due to address
 move.l (a2)+,a0 get address (note : BD32 always
* stores 4 byte address field)

prog_offs cmpi.w #$1,ModeAddr(A5) Should we calculate offset?
 bne prog_addoff
 move.l a0,d5 put address in d5
 move.l StartAddr(a5),a1 Yes, get desired start
 suba.l d5,a1 ..use to calculate offset
 move.l a1,OffsetAddr(a5) ..store
 clr.w ModeAddr(A5) ..clear mode to signal done
prog_addoff adda.l OffsetAddr(a5),a0 add offset to address

prog_1 move.l a0,d5 store address in d5

 andi.l #1,d5 mask all but bit 0
 bne prog_2 program byte if odd address
 cmpi #1,d6 count == 1?
 bne prog_3 word program if not

* program byte data if address is odd or byte count is 1

prog_2 moveq #1,d5 flag byte write
 move.b (a2),d0 byte - get data
 bsr do_prog program byte/word
 tst.w d0 programmed O.K?
 beq prog_25

quit1 bsr not_progd no - does user want to quit?
 bne prog_done

* Either programmed O.K. (byte), or user wishes to continue
*
prog_25 addq.l #1,a0 increment target address
 addq.l #1,a2 increment buffer address
 subq #1,d6 dec byte count
 bne prog_1 loop till byte count = 0
 bra prog_good otherwise done

* program word data if address is even and byte count not equal to 1

prog_3 move.b (a2)+,d0 get word - we don't know if
 asl.w #8,d0 ..data in buffer is word aligned
 move.b (a2)+,d0 ..so read two bytes

 bsr do_prog program byte/word
 tst.w d0 programmed O.K?
 beq prog_35

quit2 bsr not_progd no - does user want to quit?
 bne prog_done

* Either programmed O.K. (word), or user wishes to continue
*
prog_35 addq.l #2,a0 increment target address
 subq #2,d6 dec byte count
 bne prog_1 loop till byte count = 0

prog_good moveq.l #0,d0 no error
prog_done movem.l (a7)+,a1/a2/d6 restore registers
 rts done
 MOTOROLA AN1255/D
22

**
* not_progd - informs user of programming error
* not_blank - informs user of blank check error
* user enters escape to stop, any other key to continue programming
* exit - d0 is $0 and Z flag is set if user wants to continue
* d0 is non-zero, and Z flag is clear if user wants to abort

not_progd: bsr Print
 dc.b 'prog: program fail at address $',0
 bra n_b1

not_blank: bsr Print
 dc.b 'prog: EEPROM not blank, address $',0
n_b1 move.l a0,d0 print address
 bsr ltoh

 bsr Print
 dc.b 13,10,'prog: Press <esc> to stop, any other to continue: ',7,0
 bsr getchar
 move d0,-(a7) save char
 bsr crlf
 move (a7)+,d0 get char
 andi #$ff,d0
 cmpi #$1b,d0 escape?
 seq d0 make d0 nonzero if so
 tst d0 set SR for subsequent test
 rts

**
* not_prog - informs user of programming error
* Entry - a0 contains fault address

not_prog: bsr Print
 dc.b 'prog: program failed before $',0
 move.l a0,d0 print address
 bsr ltoh
 bsr crlf
 rts

**
* dis_both - disables both flash EEPROM modules
* exit - no registers modified

dis_both move.w #flashdis,FEEMCR+FER_1 disable module 1 (set STOP)
 move.w #flashdis,FEEMCR+FER_2 disable module 2 (set STOP)
 rts
 end

**
* Prog msg - message file for programming driver

prog <filename> [<start>] program M68F333 flash EEPROM from file
prog: Usage error: prog <filename> [<start address>]
prog: Error opening input file
prog: Error evaluating <start> address parameter
prog:
prog: End of file reached before S7/S8/S9 record was read
prog: S9 record read - file closed normally
prog: Checksum error in S-Record input file
prog: Format error in S-Record input file; file is probably not S-Records
prog: Programming error - check Vfpe / EEPROM is blank
prog: Unhandled exception encountered
prog: Programming completed O.K.
AN1255/D MOTOROLA
23

BULK — Erasure Driver

User Details

The BULK driver performs bulk erasure of a single flash EPROM module. The syntax used is:

BULK <module id>

The argument <module id> is used to specify the module to be erased. The value can be either ‘16’ or ‘48’
to specify the 16 kbyte or 48 kbyte Flash EEPROM modules respectively. A series of erasure passes are
used. Each successive pulse is of progressively longer duration, until erasure is verified. Each erasure pass
is indicated by the printing of a period, and if erasure is not verified after the maximum erasure time has
been used, a bulk fail message is printed, along with the address of the first failed location.

As with the PROG driver, the BULK driver does not map the flash array to a particular address. The user
must make certain that the array address does not conflict with addresses of other MCU modules, causing
erasure to fail. The array can be relocated either by programming the shadow registers and then resetting
the device, or by directly reconfiguring the base address registers. The base address registers can only be
changed when the FLASH module LOCK bit is cleared.

Software Details

The BULK software applies erase pulses of increasing duration until the array and shadow registers verify
as erased, then a final erase pulse is applied as an erase margin.

The source files for the BULK driver software are:

BULK.S62 Erase code source file

BULK.MSG Message text file used by BD32

IPD.INC Definitions required for the BD32 system calls

M68F333.INC MC68F333 constants definition file, including register addresses, other flash module
information, and programming/erasure timing data. Timing information is compatible with the definitions
used in the MC68F333 device specification to simplify updates.

Common include files used by both drivers are shown after the erasure driver code.
 MOTOROLA AN1255/D
24

BULK Driver Listing

* 'BULK' Resident Command Driver for MC68F333 device
*
* Utility to bulk erase an MC68F333 flash EPROM module
*
* Source file : bulk.s62
* Object file : bulk.d32
* Include files : M68F333.inc (M68F333 addresses and programming constants)
* ipd.inc (BD32 system call constants)
* Message file : bulk.msg
*
* Object file format: Motorola S-records
*
* Execute from BD32 as: bulk <module ID>
* Module ID can be '16' or '48' and specifies which MC68F333 flash
* module is to be bulk erased.
*
* Addressing modes : This code is designed as a driver for the BD32 background
* debugger for CPU32 devices. A requirement is that the code must be
* fully relocateable. All addresses (apart from fixed module addresses)
* are relative, and where word alignment is not guaranteed, byte
* accesses must be used.
* Supervisor program space accesses are used when reading the flash
* array to allow operation regardless of the configuration of the
* flash modules's ASPC bits (FEEMCR).
*
* Word alignment : The embedded text strings have been adjusted in size so
* that the following code remains word aligned - any modifications
* to these strings should be adjusted accordingly. An assembler
* 'even' type directive to force word-alignment could be used if
* available.

* Include files
 lib ipd.inc BD32 call code definitions
 lib M68F333.inc M68F333 device constants
* BD32 return error codes : see file BULK.MSG for associated text

UsageError equ 1 Usage: ...
BulkError equ 2 error programming data
ExcepError equ 3 unhandled exception
PassError equ 4 erase successful

* BD32 call return codes : see bd32 file BD32.DOC
SRecS9 equ 2 S9 Record - end of file

* General constants
ErasedValue equ $ffff erased state of EEPROM
sup_prog equ $6 supervisor/program space code

* Flash control register constants
* FEEMCR
flashdis equ $90c0 Module DISABLED, disable VFPE in BDM,
* no boot, unrestricted space, 2 cycle access
flashen equ $10c0 Module ENABLED, disable VFPE in BDM,
* no boot, unrestricted space, 2 cycle access
* FEECTL
erase_on equ $7 Erase, VFPE enabled (VFPE,ERAS,LAT,ENPE set)
erase_off equ $6 Erase, VFPE disabled (VFPE,ERAS,LAT set)
norm equ $0 No programming/erase (All cleared)

* Variable area
 section .data
 dc.l Bulk start address (add load offset)
 ds.l 30 Stack area
* initial stack pointer
stack

ModSize dc.l $0 Module size
ModAddress dc.l $0 Module address
StartAddress dc.l $0 Start array address

Error ds.w 1 error code
AN1255/D MOTOROLA
25

Era_shadow dc.w $9B00,$0000,$FFFF,$E000 erased shadow register mask
 dc.w $0000,$0000,$0000,$0000 used for verification of erase
 dc.w $FFFF,$FFFF,$FFFF,$FFFF
 dc.w $0000,$0000,$0000,$0000

* CUSTOM VECTOR TABLE

vectable ds.l 13 Alternate vector table

* EXCEPTION HANDLER ROUTINE
* Use - Quits to BD32 with unhandled exception error code
* Exception handling is included because many user errors
* (mapping of flash/drivers etc) could cause bus errors,
* f-line exceptions etc. Flash programming voltage is disabled
* in case exception ocurred during a programming cycle

excep_h move.w #norm,FEECTL(a1) normal flash reads/writes
* disable programming voltage
 move #ExcepError,Error(A5) unhandled excep error
 bra Bulk_end

FileMode dc.b 'r',0 read mode for file open

* Execution start of driver 'BULK'
* Entry (from BD32) :
* d0 - number of driver parameters
* a0 - address of parameter array
* a5 - driver offset address

Bulk
* ***** Exception handler initialisation
 lea.l vectable(PC),a1 get start of vector table
 movea.l a1,a2 working (loop) copy
 lea.l excep_h(PC),a3 get address of handler
 move.w #$0c,d1 initialise copy loop
vecloop move.l a3,(a2)+ build new vector table
 dbf d1,vecloop
 movec.l a1,vbr set up vbr for new table

* ***** SP and general register initialisation
 lea.l stack(A5),a7 set up stack
 lea.l stack(PC),a7 set up stack
 move.l a0,a2 get argv into a2
 move.l d0,d2 get argc into d2

* ***** Print signon and warning message

 bsr Print print signon message
 dc.b 'M68F333 Flash EEPROM Bulk Eraser Version 2.0 ',13,10,0

* ***** Check command line
 cmpi #2,d2 argc = 2?
 beq Bulk_1
 move #UsageError,Error(A5) arg count is wrong
 bra Bulk_end

* ***** Get module parameter, and use to set up ModAddress
Bulk_1
 move.l #FER_1,ModAddress(a5) assume 16K module initially
 move.l #FEE_SIZE_1,ModSize(a5)
 addq.l #4,a2 skip over program name
 move.l (a2)+,a0 get address of parameter

 move.b (a0)+,d0 get two bytes of parameter
 asl.w #8,d0 (data in buffer may not be
 move.b (a0)+,d0 word aligned so read 2 bytes)
 MOTOROLA AN1255/D
26

 cmpi.w #'16',d0 16k array specified?
 beq Bulk11 yes, so O.K. to continue..
 move.l #FER_2,ModAddress(a5) no, so first assume 48k
 move.l #FEE_SIZE_2,ModSize(a5)
 cmpi.w #'48',d0 ..and then verify
 beq Bulk11 yes, so O.K. to continue..
 move #UsageError,Error(A5) no, so flag useage error
 bra Bulk_end ..and quit

* ***** Initialise module, and calculate array addresses
Bulk11 bsr Initialize init hardware

* ***** Erase module now
 bsr Erase
 tst.b d0 was erase succesful?
 beq Bulk_end

 move #BulkError,Error(A5) no, so flag erase error
 bra Bulk_end

* ***** Report any errors, exit back to BD32
Bulk_end move Error(A5),d1 get error code
 moveq.l #BD_QUIT,d0 exit program
 bgnd

* FindStrEnd - searches an ASCII string for end of string
* marker ('null'/ 0 char)
* Entry - string pointed to by A0
* Exit - returns a0 pointing to end of string marker
* all other registers preserved

FindStrEnd move.w d0,-(a7) push temp register
 moveq #-1,d0 max loop count 1st time thru
FSE_1 tst.b (a0)+ byte == 0?
 dbeq d0,FSE_1 uses loop mode
 bne FSE_1 loop till test true
 subq.l #1,a0 decrement address reg.
 move.w (a7)+,d0 restore register
 rts

* ntoh - prints hex value of register D0 least sig nibble to screen
* Entry - D0 contains nibble value
* Exit - all registers preserved

ntoh movem.l d0/d1,-(a7)
 move.b d0,d1
 andi.w #$f,d1
 addi.b #'0',d1
 cmpi.b #10+'0',d1
 bcs nt_1
 addi.b #'A'-'9'-1,d1
nt_1 moveq #BD_PUTCHAR,d0
 bgnd
 movem.l (a7)+,d0/d1
 rts

* btoh - prints hex value of byte register D0 to screen
* Entry - D0 contains byte value
* Exit - all registers preserved

btoh ror.b #4,d0
 bsr ntoh
 ror.b #4,d0
 bsr ntoh
 rts
AN1255/D MOTOROLA
27

* wtoh - prints hex value of word register D0 to screen
* Entry - D0 contains word value
* Exit - all registers preserved

wtoh ror.w #8,d0
 bsr btoh
 ror.w #8,d0
 bsr btoh
 rts

* ltoh - prints hex value of long word register D0 to screen
* Entry - D0 contains long word value
* Exit - all registers preserved

ltoh swap d0
 bsr wtoh
 swap d0
 bsr wtoh
 rts

* Print - prints constant string in code and returns to
* program at first even location after string
* Entry - parameters indexed from stacked return PC
* Exit - stacked return PC modified to give correct return
* all registers preserved

Print movem.l a0/d0,-(a7) save registers
 move.l 8(a7),a0 get address of string
* (= stacked return address)
 moveq.l #BD_PUTS,d0 function call
 bgnd
 bsr FindStrEnd get end of ASCII string
 move.l a0,d0 test for odd address
 addq.l #1,d0 skip past end of string
 btst #0,d0
 beq Print_1
 addq.l #1,d0 it's odd - return to next addr
Print_1 move.l d0,8(a7) update stacked return address
 movem.l (a7)+,d0/a0 get back registers
 rts done

* crlf - prints carriage return, line feed combo
* Entry - no parameters
* Exit - all registers preserved

crlf bsr Print carriage return, line feed
 dc.b 13,10,0,0
* even
 rts

**
* getchar - returns character typed by user
* Entry - no parameters
* Exit - d0 contains character typed

getchar moveq.l #BD_GETCHAR,d0
 bgnd
 rts

* msdelay - programmable milliseconds delay
* Entry - delay time in ms in d1
* legal values are 1 ... 65535
* Exit - d1 corrupted
* Note - routine calibrated for 16.78MHz clock / 2 clock memory

msdelay move.l d2,-(a7) preserve d2
 subq.w #1,d1 compensate for dbcc offset of 1
 move.w #$826,d2 initialise inner loop count to
* compensate for entry overhead
 MOTOROLA AN1255/D
28

loop tst d1
loop2 tst d2
 dbf d2,loop2
 move.w #$82d,d2 inner loop count
 dbf d1,loop
 move.l (a7)+,d2 restore d2
 rts

* Erase - bulk erase routine
* performs erase algorithm until maximum allowed erase pulses
* used, or array has verified as correctly erased
* Entry - module defined by ModAddress
* ModSize
* Exit - D0 is non zero if erase unsuccessful
* A0 contains first error address if erase unsuccessful,
* otherwise A0 corrupted
* All other registers unchanged

Erase
 movem.l d1-d3/a1,-(a7) preserve registers

* ***** Initialise timing and address parameters
 clr.w d2 initialise pulse counter k = 0
 clr.w d3 initialise cumulative erase time = 0
* (used as erase margin)
 move.l ModAddress(a5),a1 get module address into a1

 move.w #erase_off,FEECTL(a1) set VFPE/ERAS/LAT
 move.w d0,(a1) write data to EEPROM

* ***** Erase cycle
db_1 bsr Print print 'progress dots'
 dc.b '.',$0
 addq.w #1,d2 increment pulse counter, k

* ***** Calculate erase time
 move.w #tei,d1 erase pulse time = tei
 mulu.w d2,d1 * k (ms) = d1
 add.w d1,d3 add to cumulative time, d3

* ***** Apply erase pulse
 move.w #erase_on,FEECTL(a1) enable prog voltage : set ENPE
 bsr msdelay wait tei*k milliseconds
 move.w #erase_off,FEECTL(a1) disable voltage : clear ENPE

* ***** Recovery 'Off' time
 move.w #ter,d1 delay erase recovery time, ter
 bsr msdelay

* ***** Blank test array
 bsr check_array array now blank?
 tst.b d0
 bne db_q miss register test if array non-blank

* ***** Blank test shadow registers
 bsr check_regs registers now blank?
 tst.b d0
 beq db_2

* ***** Array and/or registers not blank
db_q cmpi.w #nep,d2 used max pulses, k>=nep?
 bcs db_1 no - continue

* ***** Fail, so print error message and quit
 move.w #norm,FEECTL(a1) yes - flag and quit
 bsr Print
 dc.b 13,10,'bulk: erase failed address $',0
 move.l a0,d0 print address
 bsr ltoh
 bsr crlf
 move.w #$1,d0 flag error in d0
 bra db_end
AN1255/D MOTOROLA
29

* ***** Erase verifies OK - now add erase margin
db_2 move.w d3,d1 erase margin time (em)
* = sum of erase pulses = d3
 move.w #erase_on,FEECTL(a1) enable prog voltage : set ENPE
 bsr msdelay delay em
 move.w #erase_off,FEECTL(a1) disable voltage : clear ENPE

 move.w #ter,d1 delay erase recovery time, ter
 bsr msdelay

 move.w #norm,FEECTL(a1) normal accesses
 clr.l d0 clear d0 to signal success

db_end movem.l (a7)+,d1-d3/a1 restore registers
 rts

* Initialize - initialize routine is called by BD32 before bulk erasing
* initialize main flash registers
* initialize global variables
* returns non-zero in D0 if can't continue with programming
*
* Entry - flash module address (register block) in ModAddress(a5)
*
* Exit - d0 cleared
* all other CPU registers preserved
* flash array address written to StartAddress(a5)

Initialize
 movem.l a3-a4,-(a7) preserve registers

* (Initialise modules but leave STOPped)

* ***** Initialisation and STOP module 1
 move.w #flashdis,FEEMCR+FER_1 STOP module 1
 move.w #norm,FEECTL+FER_1 make sure verify mode off

* ***** Initialisation and STOP module 2
 move.w #flashdis,FEEMCR+FER_2 STOP module 1
 move.w #norm,FEECTL+FER_2 make sure verify mode off

* ***** Start-up module to be erased, and get array addresses
 move.l ModAddress(a5),a3 get module address into a3
 move.w #flashen,FEEMCR(a3) clear STOP
 movea.l FEEBAH(a3),a4 get array start address
 move.l a4,StartAddress(a5) and store

 move #PassError,Error(A5) initialise to successfull erase code

 movem.l (a7)+,a3-a4 restore registers
 rts done - return no error

* check_array - checks EEPROM array contents all are ErasedValue
*
* Entry - StartAddress, ModSize parameters initialised
*
* Exit - if array checks as ErasedValue
* d0 = 0
* a0 corrupted
* D1 corrupted
* else
* d0 = 1
* a0 = error address
* d1 = error data

check_array
 movem.l d2,-(a7) preserve registers
 move.l #sup_prog,d0 configure array accesses as
 movec d0,sfc ..supervisor/program space
 move.l StartAddress(a5),a0 array start in a0
 move.l ModSize(a5),d1 array size in d1
 MOTOROLA AN1255/D
30

 asr.l #1,d1 calculate array size in words
 subq.l #1,d1 set up for dbcc loop
 move.w #ErasedValue,d0 get erased value of EEPROM

bc_1 moves.w (a0)+,d2 get array word from supervisor/program space
 cmp.w d2,d0 test (== ErasedValue?)
 dbne d1,bc_1 loop while equal, and not end of array

 beq bc_2 loop exit because of error?

 move.w d2,d1 yes, put error data in d1,
 move.b #$01,d0 and flag error, array not blank
 bra bc_3

bc_2 clr.l d0 no, flag no error, array tests OK

bc_3 movem.l (a7)+,d2 restore registers
 rts

* check_regs - routine to blank check flash shadow registers for a module
* with register start address specified in a0
*
* Entry - a0 should contain register start address
* Exit - if verified blank d0 = 0
* else d0 = 1
* d1= fault data
* and a0 = fault address

check_regs
 movem.l d2-d3/a1-a2,-(a7) preserve registers
 move.l ModAddress(a5),a0 get module address into a0
 move.l a0,a2 use a2 as general pointer

* ***** Check shadow registers against erased values table
 move.w #15,d1 number of word checks (loop cnt.)
 lea.l (Era_shadow,a5),a1 table address in a1
cr_loop
 move.w (a2)+,d2 get a shadow register value,
 move.w d2,d3 store,
 and.w (a1),d2 ignore un-implemented bits,
 cmp.w (a1)+,d2 and check erased..
 bne cr_bad O.K?
 dbf d1,cr_loop yes, loop if not finished
 clr.l d0 finished - signal blank check OK
 bra cr_end and return

* ***** Un-erased shadow register found - notify and abort
cr_bad
 suba.l #2,a2 get correct fault address
 move.w d3,d1 and fault data
 move.w #1,d0 flag fault
cr_end
 move.l a2,a0 return fault address (if any)
 movem.l (a7)+,d2-d3/a1-a2 restore registers
 rts
 end

* Bulk msg - message file for bulk erase driver

BULK <16/48> Bulk erase Orion 16k/48k EEPROM modules
bulk: usage error: BULK <16/48>
bulk: bulk erase failed
bulk: unhandled exception encountered
bulk: module erased O.K.
AN1255/D MOTOROLA
31

Initialization Files Used By Program and Erase Drivers

* 'M68F333.INC' Define M68F333 addresses and programming constants

FER_1 equ $FFFFF800 register block address for array #1 - 16k bytes
FEE_SIZE_1 equ $4000 size of array #1 - 16k bytes
FER_2 equ $FFFFF820 registers block address for array #2 - 48k bytes
FEE_SIZE_2 equ $c000 size of array #2 - 48k bytes
FER_REGSZ equ $20 size of register block (both arrays)

* register offsets

FEEMCR equ 0 mod config register
FEETST equ 2 test register
FEEBAH equ 4 base address reg - high word
FEEBAL equ 6 base address reg - low word
FEECTL equ 8 program control reg
FEEBS0 equ $10 bootstrap info 0
FEEBS1 equ $12 bootstrap info 1
FEEBS2 equ $14 bootstrap info 2
FEEBS3 equ $16 bootstrap info 3

* bit assignments

STOP equ $8000
FRZ equ $4000
BOOT equ $1000
LOCK equ $800
ASPC1 equ $200
ASPC0 equ $100
WAIT1 equ $80
WAIT0 equ $40

FSTE equ $80
GADR equ $40
HVT equ $20
BTST equ $10
STRE equ 2
MWPF equ 1

VFPE equ 8
ERAS equ 4
LAT equ 2
ENPE equ 1

* Flash EEPROM timing constants

* Programming constants
pwpp equ &20 program pulse width (us)
tpr equ &10 program recovery time (us)
npp equ &50 number of program pulses

* Erase constants
tei equ 100 erase pulse increment time (ms)
ter equ 1 erase recovery time (ms)
nep equ 5 maximum number of erase pulses

* end of M68F333.inc
 MOTOROLA AN1255/D
32

* ipd.inc - equates for BD32 systems calls

BD_QUIT equ 0 quit - return to BD32
BD_PUTS equ 1 puts - put string to console
BD_PUTCHAR equ 2 putchar - print character on console
BD_GETS equ 3 gets - get string from user
BD_GETCHAR equ 4 getchar - get single character from user
BD_GETSTAT equ 5 getstat - return 1 if character waiting from user
BD_FOPEN equ 6 fopen - open disk file with specified mode
BD_FCLOSE equ 7 fclose - close disk file
BD_FREAD equ 8 fread - read from disk file
BD_FWRITE equ 9 fwrite - write to disk file
BD_FTELL equ 10 ftell - report current pointer position
BD_FSEEK equ 11 fseek - seek disk file to given position
BD_FGETS equ 12 fgets - read string from file
BD_FPUTS equ 13 fputs - write string to file
BD_EVAL equ 14 eval - evaluate arithmetic expression
BD_FREADSREC equ 15 read s-record

* end of ipd.inc

PROGRAMMING/ERASURE EXAMPLES
The following examples show various program and erase operations. In all of the examples, keyboard input
from the user is shown as bold text.

Example 1 - Programming The FLASH Modules

This example shows operations required to program the both 16 kbyte and 48 kbyte flash modules from
their erased state. Programming data for the shadow registers is in the file TEST1R.0, while programming
data for the arrays is in the file ARRAY64.0.

First, initialize MCU memory resources to allow the driver software to execute. In this case, the file SRAM-
HIGH.DO is used to configure the on-chip TPURAM and SRAM.

BD32->do sramhigh.do

The file SRAMHIGH.DO initializes the device, and terminates by checking that the required memory re-
sources are responding correctly. This is done by writing the first few bytes of TPURAM and SRAM, and
then reading them back. The flash register blocks are also displayed.

The macro file prints the following results.

BD32->* Finished, should have TPURAM $100000 - $100e00,
BD32->* SRAM $100e00 - $100fff
BD32->* SSP $100ffe
BD32->* Drivers load @ $100000
BD32->*
BD32->*
BD32->* Test read of TPURAM:
BD32->md $100000 $10
00100000 5450 5520 5241 4D20 6D65 6D6F 7279 2020 TPU RAM memory
BD32->*
BD32->* Test read of SRAM:
BD32->md $100e00 $10
00100E00 5352 414D 206D 656D 6F72 7920 2020 2020 SRAM memory
BD32->*
BD32->* Flash register area:
BD32->md $fff800 $40
AN1255/D MOTOROLA
33

00FFF800 9BC0 0000 00FF C000 0000 0000 0000 0000 .@....@.........
00FFF810 FFFF FFFF FFFF FFFF 0000 0000 0000 0000
00FFF820 9BC0 0000 00FF 0000 0000 0000 0000 0000 .@..............
00FFF830 FFFF FFFF FFFF FFFF 0000 0000 0000 0000

NOTE
Ensure that the VFPE supply is enabled before the programming command is entered.

The base address registers are programmed to ensure that the array is correctly mapped:

BD32->prog test1r.0
($100036)...
Download completed OK - 53 records read
M68F333 Flash EEPROM Programmer Version 2.0
prog: Programming completed O.K.

At this point, the shadow registers are programmed with appropriate values, but the MCU must be reset for
these to take effect. The initialization file SRAMHIGH.DO resets the MCU as one of its operations. If either
of the flash modules have been programmed with the boot option enabled, it is best to disable them by hold-
ing DATA[15:14] low during rest.

BD32->do sramhigh.do

The macro file terminates with the following information:

BD32->* Finished, should have TPURAM $100000 - $100e00,
BD32->* SRAM $100e00 - $100fff
BD32->* SSP $100ffe
BD32->* Drivers load @ $100000
BD32->*
BD32->*
BD32->* Test read of TPURAM:
BD32->md $100000 $10
00100000 5450 5520 5241 4D20 6D65 6D6F 7279 2020 TPU RAM memory
BD32->*
BD32->* Test read of SRAM:
BD32->md $100e00 $10
00100E00 5352 414D 206D 656D 6F72 7920 2020 2020 SRAM memory
BD32->*
BD32->* Flash register area:
BD32->md $fff800 $40

00FFF800 8200 0000 0000 0000 0000 0000 0000 0000
00FFF810 0010 FFFE 0000 1000 0000 0000 0000 0000 ...~............
00FFF820 8200 0000 0001 0000 0000 0000 0000 0000
00FFF830 0010 FFFE 0001 1000 0000 0000 0000 0000 ...~............

The dump of the flash control register blocks shows that the arrays are now mapped to $00000 (16 kbyte)
and $10000 (48 kbyte). These addresses are correct for the array data file ARRAY64.0, which contains a
full 64 kbytes of test data covering both arrays. Remember, the VFPE supply must remain enabled for pro-
gramming to take place. ARRAY64.0 takes around 35 seconds to program.

BD32->prog array64.0
($100038)...
Download completed OK - 53 records read
M68F333 Flash EEPROM Programmer Version 2.0
prog: Programming completed O.K.

Programming is successful. Disable the VFPE supply if no more operations are required.
 MOTOROLA AN1255/D
34

Example 2: Erasing The FLASH Modules

As with the programming example, the MCU is initialized to allow execution of the driver software, in this
case by using the macro file SRAMHIGH.DO.

BD32->do sramhigh.do

The macro file terminates with the following information.

BD32->* Finished, should have TPURAM $100000 - $100e00,
BD32->* SRAM $100e00 - $100fff
BD32->* SSP $100ffe
BD32->* Drivers load @ $100000
BD32->*
BD32->*
BD32->* Test read of TPURAM:
BD32->md $100000 $10
00100000 5450 5520 5241 4D20 6D65 6D6F 7279 2020 TPU RAM memory
BD32->*
BD32->* Test read of SRAM:
BD32->md $100e00 $10
00100E00 5352 414D 206D 656D 6F72 7920 2020 2020 SRAM memory
BD32->*
BD32->* Flash register area:
BD32->md $fff800 $40

00FFF800 8200 0000 0000 0000 0000 0000 0000 0000
00FFF810 0010 FFFE 0000 1000 0000 0000 0000 0000 ...~............
00FFF820 8200 0000 0001 0000 0000 0000 0000 0000
00FFF830 0010 FFFE 0001 1000 0000 0000 0000 0000 ...~............

NOTE
Ensure that the MCU VFPE supply is enabled before the erase command is entered.

The erase driver is then executed.

BD32->bulk 16
($100030)...................................
Download completed OK - 35 records read
M68F333 Flash EEPROM Bulk Eraser Version 2.0
.bulk: module erased O.K.

The message indicates that the erase is successful. The number of periods on the last message line indi-
cates the number of erase passes used. In this instance, there is only one.

An erase failure results in the following message, which indicates the first address to fail erase verification.
As before, the number of periods on the last message line indicates the number of erase passes used. In
this case, five passes (the maximum number) are made before a failure is reported.

BD32->bulk 16
($100030)...................................
Download completed OK - 35 records read
M68F333 Flash EEPROM Bulk Eraser Version 2.0
.....bulk: erase failed address $00000002
bulk: bulk erase failed

To erase the 48 kbyte array, the following command is used.

BD32->bulk 48
($100030)...................................
Download completed OK - 35 records read
M68F333 Flash EEPROM Bulk Eraser Version 2.0
.bulk: module erased O.K.

The erase is successful, with one erase pulse required. Disable VFPE if no more operations are required.
AN1255/D MOTOROLA
35

Example 3 - Attempting To Erase A Conflicting Array

When the 16 kbyte array is mapped to its default erased address of $FFFFC000, portions of the array co-
incide with other MCU register blocks, such as the ADC control registers, which start at $FFFF700. Since
control registers generally take precedence in the memory map, erasure will fail as the erase driver attempts
to verify that the array is blank.

BD32->bulk 16
($100030)...................................
Download completed OK - 35 records read
M68F333 Flash EEPROM Bulk Eraser Version 2.0
.bulk: unhandled exception encountered

The failure indicated is an unhandled exception, but the results of any attempt to erase a conflicting array
are unpredictable, and the operation should be prevented by remapping the array. This can be done either
by modifying the base address in the FEEBAH and FEEBAL registers (if the LOCK bit is cleared), or by pro-
gramming the module shadow registers and resetting the device.

Erasing the 48 kbyte array at the default address will not normally cause these problems, as it is mapped
from $FFFF0000 to $FFFFBFFF, avoiding other MCU register areas.

BD32->bulk 48
($100030)...................................
Download completed OK - 35 records read
M68F333 Flash EEPROM Bulk Eraser Version 2.0
.bulk: module erased O.K.

FINDING ERRORS
Following are descriptions of errors that commonly occur during programming or erasure of FLASH mod-
ules using the BD32 drivers. Typical error messages and fixes are given in each case.

1. Flash array mapped over the BD32 driver area.

Error symptoms – The driver may hang, or terminate with a line $F or non documented error.

To verify, use the BD32 DRIVER command to determine the BD32 driver execution address, and examine
the FEEBAH and FEEBAL registers of the module being programmed/erased. If the driver is within the array
area, either relocate the array (Example 1) or the BD32 driver execution address (Examples 1 and 3)

2. Flash array mapped over the flash module register area, or other registers.

Error symptoms – BULK fails to verify blank after the maximum erase time has been used, and prints the
fail address. This address corresponds to the first register within the array area. The array may be fully
erased in this case, only the verify mechanism fails. PROG will print a program fail error for the first array
address being programmed that corresponds with a module register. It will be impossible to program this
location as the register takes priority.

To verify, examine the FEEBAH and FEEBAL registers of the module being programmed/erased and en-
sure that the module array does not conflict with any other registers.

To fix, remap array, either manually (Example 1) or by programming shadow base registers (Example 3).

3. Attempting to program unimplemented shadow bits.

Error symptoms – PROG prints a program fail error for the shadow register address. The register may have
been programmed correctly, but verify always fails.

To fix, make sure that programming data for unimplemented shadow bits is set to zero.
 MOTOROLA AN1255/D
36

4. No VFPE supplied

Error symptoms – A PROG program fail occurs at the first location to be programmed. BULK fails to verify
blank after the maximum erasure time.

Tofix, apply the correct VFPE supply

5. FLASH module not erased

Error symptoms – A PROG program fail occurs at the first location which has bits to remain erased at one,
that are already programmed to zero.

To fix, program to all zeroes, bulk erase, and reprogram.

THE DEMO PROGRAM
DEMO executes from the MC68F333 16 kbyte flash EEPROM array from reset. It displays information on
an RS232 terminal connected to the MCU SCI port via a level shifter. Apart from the level shifter only internal
resources are used, with the FLASH, TPURAM, and SRAM supplying all of the required memory. ANSI con-
trol codes are used to allow cursor movement and screen clearing.

The software is split into the files, DEMOA and DEMOR. DEMOA contains the code to be programmed into
the flash array. DEMOR contains programming data for flash shadow registers (flash array mapped to
$00000000, flash enabled at reset, if reset logic state of DATA15 pin allows) and supplies the CPU32 boot
information (SP = $10fffe, PC = $001000). Example 3 shows how these files are used

DEMO Program Code Listing

* 'DEMOA' demo boot program for the 16K flash array, to be used with the
* register file 'DEMOR'
* Source file: 'DEMOA.S62'
* Object file: 'DEMOA.0'
* Object file format: Motorola S-records

* Character equates for terminal output
ESC equ $1b Escape
CR equ $0d Carr. return
LF equ $0a Line feed
CRGT equ $1c Cursor right
CLFT equ $1d ,, left
CUP equ $1e ,, up
CDN equ $1f ,, down

**
* Main code - initializes system, and displays start up
* message
* Memory map:
* $000000 - $004000 : 16K flash array (internal)
* $010000 - $010dff : 3.5K TPURAM ,,
* $010e00 - $010fff : 0.5K SRAM ,,
**

 section .text
 org $1000
start
 move.w #$0100,$fffb04 TRAMBAR Set TPURAM base address
 move.w #$0000,$fffb00 TRAMMCR Unrestricted space
 move.w #$0e00,$fffb46 SRAMBAL Set SRAM base address
 move.w #$0001,$fffb44 SRAMBAH
 move.w #$0000,$fffb40 SRAMMCR Unrestricted, not locked
 move.l #$010ffe,a7 Initialize stack pointer
AN1255/D MOTOROLA
37

 move.w #$42cf,$fffa00 ,, SMCR
 move.w #$7f08,$fffa04 ,, SYPCR
 move.w #$0006,$fffa20 ,, SYPCR
 move.w #$0000,$fffa1e ,, PFPAR
 move.w #$0000,$fffa4A ,, CSORBT
 move.w #$0000,$fffa4E ,, CSOR0
 move.w #$0000,$fffa76 ,, CSOR10
 bsr sciinit

* MAIN ROUTINE
 bsr clrscrn clear screen
loop bsr home home cursor
 bsr printstring Print 1st frame
 dc.b ' * * * * * * * * * ',CR,LF
 dc.b ' flash EEPROM boot demo ',CR,LF
 dc.b '* * * * * * * * * ',CR,LF,0
 bsr home home cursor
 bsr printstring Print 2nd frame
 dc.b '* * * * * * * * * ',CR,LF
 dc.b ' flash EEPROM boot demo ',CR,LF
 dc.b ' * * * * * * * * * ',CR,LF,0
 bsr home home cursor
 bsr printstring Print 3rd frame
 dc.b ' * * * * * * * * ',CR,LF
 dc.b '* flash EEPROM boot demo * ',CR,LF
 dc.b ' * * * * * * * * ',CR,LF,0
 bra loop and loop..

** **
* PRINTCHAR - Output a single character to SCI serial port
* Entry - Character in D0
* Registers - B15 of D0 cleared only
** **
printchar btst #$0,$fffc0c Ready for transmit (TDRE of SCSR)?
 beq printchar loop if not..
 move.w d0,$fffc0e Send data (to SCDR)
 rts

*** *
* PRINTSTRING- Output a string of characters to serial port
* defined by routine 'printchar'
* Entry - Character string resides at return PC address
* ie. after 'bsr printstring' command
* charcter string is terminated by null ($00)
* Exit - Program returns to word location after string
* end, no registers modified
* Registers - Stack (return address) modified
** **
printstring
 movem.l a0/d0,-(a7) Preserve a0,d0
 move.l ($8,a7),a0 get return PC (address of string)
 moveq.l #$0,d0 clear all of d0
psloop move.b (a0)+,d0 get a char to print
 beq psnull finish if null
 bsr printchar
 bra psloop and loop
psnull
* ensure return PC is word aligned
 move.l a0,d0
 btst #0,d0
 beq psok Already word aligned, so continue
 addq.l #$1,d0 not aligned, so adjust
 MOTOROLA AN1255/D
38

psok
 move.l d0,($8,a7) Update return PC
 movem.l (a7)+,a0/d0 Recover a0,d0
 rts

** **
* CLRSCRN - Clear screen by sending clear screen escapet
* sequence
* Registers - A0,D0 modified
** **
clrscrn bsr printstring 'Clear Screen' escape sequence
 dc.b ESC,'[','2','J',$0,$0 ESC [2 J
 rts

** ******
* HOME - Move cursor to home position
* 'home' escape sequence
* Registers - A0,D0 modified
**
home bsr printstring 'Home' escape sequence
 dc.b ESC,'[','0','H',$0,$0 ESC [0 H
 rts

**
* SCIINIT - SCI initialisation
**
sciinit
 move.w #$0001,$fffc00 Initialize QMCR
 move.w #$000f,$fffc04 QILR
 move.w #$00f0,$fffc14 QPDR
 move.w #$0000,$fffc16 QPAR
 move.w #$0037,$fffc08 SCCR0
 move.w #$000c,$fffc0a SCCR1
 rts
 end

* 'DEMOR' boot program for the 16K flash array, to be used with the
* array file 'DEMOA'
* Source file: 'DEMOR.S62'
* Object file: 'DEMOR.0'
* Object file format: Motorola S-records

* 16K flash module register bank

 org $FFF800
 dc.w $0200 FEE1MCR : STOP = 0
* BOOT = 0
* LOCK = 0
* ASPC = %10

 org $FFF804
 dc.w $0000 FEE1BAH
 dc.w $0000 FEE1BAL (Base addr = $0000)
* (range $0000-$4000)

 org $FFF810
 dc.l $0010fffe FEE1BS0/1 (Reset SP and PC)
 dc.l $00001000 FEE1BS2/3

 end
AN1255/D MOTOROLA
39

Motorola itability
of its prod ny and
all liability cluding
"Typicals others.
Motorola nded to
support o d Buyer
purchase ries, af-
filiates, a al injury
or death
 M
 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the su
ucts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims a
, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, in
" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of
 products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications inte
r sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Shoul
 or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidia
nd distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of person
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

 is a registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE: Motorola Literature Distribution;
 P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447
MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

 * 'DEMOR' boot program for the 16K Flash array, to be used with the
 * array file 'DEMOA'
 * Source file: 'DEMOR.S62'
 * Object file: 'DEMOR.0'
 * Object file format: Motorola S-records*

 * 16K Flash module register bank
 org $FFF800
 dc.w $0200 FEE1MCR : STOP = 0
 * BOOT = 0
 * LOCK = 0
 * ASPC = %10

org $FFF804
 dc.w $0000 FEE1BAH
 dc.w $0000 FEE1BAL (Base addr = $0000)
 * (range $0000-$4000)

org $FFF810
 dc.l $0010fffe FEE1BS0/1 (Reset SP and PC)
 dc.l $00001000 FEE1BS2/3

end
 AN1255/D

	MC68F333 Flash EEPROM Programming Utilities
	Introduction
	The Flash EEPROM Module
	Flash EEPROM Registers
	Table 1 Flash EEPROM Address Map

	Module Configuration Register
	FEEMCR — Flash EEPROM Module Configuration Registe...
	Table 2 Array Space Encoding
	Table 3 Wait State Encoding

	Test Register
	FEETST — Flash EEPROM Test Register $YFF##2

	Base Address Registers
	FEEBAH — Flash EEPROM Base Address High Register $...
	FEEBAL — Flash EEPROM Base Address Low Register $Y...
	Table 4 FEEBAL Bit Implementation

	Flash EEPROM Control Register
	FEECTL — Flash EEPROM Control Register $YFF##8

	Flash EEPROM Bootstrap Words
	FEEBS[3:0] — Flash EEPROM Bootstrap Words; $YFF##0...
	Table 5 Bootstrap Words

	Applying Flash Program Erase voltage
	Figure 1 Programming Voltage Envelope
	Figure 2 VFPE Conditioning Circuit

	EFFECTS of LOCK Bit Operation
	BD32 Background Debugger
	Table 6 BDM32 Command Summary

	Program/Erase Operation
	Programming
	Erasure
	Figure 3 Programming Flow
	Figure 4 Erasure Flow

	Driver Software
	Driver Relocatability
	Exception Handling
	PROG — Flash Programming Driver
	User Details
	Software Details
	Common include files used by both drivers are show...

	PROG Driver Listing
	BULK — Erasure Driver
	User Details
	Software Details
	Common include files used by both drivers are show...

	BULK Driver Listing
	Initialization Files Used By Program and Erase Dri...

	Programming/erasure Examples
	Example 1 - Programming The FLASH Modules
	Example 2: Erasing The FLASH Modules
	Example 3 - Attempting To Erase A Conflicting Arra...

	Finding Errors
	The DEMO Program
	DEMO Program Code Listing

