
MECCUM/D

REV 1

JANUARY 1997

MOTOROLA

EMBEDDED C COMPILER
(MECC)

Version 2.0
USER’S MANUAL

MOTOROLA Inc., 1994, 1997; All Rights Reserved

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this document, Motorola
assumes no liability to any party for any loss or damage caused by errors or omissions or by statements of
any kind in this document, its updates, supplements, or special editions, whether such errors are omissions
or statements resulting from negligence, accident, or any other cause. Motorola further assumes no
liability arising out of the application or use of any information, product, or system described herein; nor
any liability for incidental or consequential damages arising from the use of this document. Motorola
disclaims all warranties regarding the information contained herein, whether expressed, implied, or
statutory, including implied warranties of merchantability or fitness for a particular purpose. Motorola
makes no representation that the interconnection of products in the manner described herein will not
infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting or
license to make, use or sell equipment constructed in accordance with this description.

Trademarks
This document includes these trademarks:

Motorola and the Motorola logo are registered trademarks of Motorola, Inc.
AIX, IBM, and PowerPC are trademarks of International Business Machines Corporation.
SPARC is a trademark of SPARC international, Inc.
Sun and SunOS are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of Novell, Inc., in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.
X Window System is a trademark of Massachusetts Institute of Technology.

Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

CONTENTS

MECCUM/D Rev 1 iii

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 MECC Overview ... 1-1

1.2 System Requirements.. 1-2

1.3 MECC Users.. 1-2

1.4 Manual Conventions... 1-3

CHAPTER 2 USING THE COMPILER

2.1 Configuring Environment Variables... 2-1

2.1.1 The PPC_BIN Environment Variable.. 2-1

2.1.2 The PATH Environment Variable... 2-1

2.2 Invoking the Compiler.. 2-2

2.3 Control Options.. 2-3

2.3.1 Suppress Linking Option (-c) .. 2-5

2.3.2 Include Debugging Option (-g) ... 2-5

2.3.3 Search Library Option (-l) .. 2-5

2.3.4 Name Executable Option (-o).. 2-5

2.3.5 Print Process Option (-v) .. 2-5

2.3.6 Suppress Warnings Option (-w) ... 2-5

2.3.7 Assign Value Option (-A) .. 2-6

2.3.8 Assign Value Option (-AA) .. 2-6

2.3.9 Retain Preprocessor Comments Option (-C) .. 2-6

2.3.10 Define Preprocessor Symbol Option (-D)... 2-6

2.3.11 Preprocess-Only Option (-E) ... 2-7

2.3.12 List Preprocessing-Pathname Option (-H) .. 2-7

2.3.13 Include-File Search Option (-I)... 2-8

2.3.14 Compile K&R Option (-K) .. 2-8

2.3.15 Library Search Option (-L) .. 2-9

CONTENTS

iv Rev 1 MECCUM/D

CHAPTER 2 USING THE COMPILER (Continued)

2.3.16 List Dependencies Option (-M) .. 2-9

2.3.17 Optimization Level Option (-O) ... 2-9

2.3.18 Preprocess-Only Option (-P) ... 2-9

2.3.19 Compile-Only Option (-S) ... 2-10

2.3.20 Undefine Preprocessor Symbol Option (-U) ... 2-10

2.3.21 Print Version Option (-V) .. 2-10

2.3.22 Pass Arguments Option (-W).. 2-10

2.3.23 Command Line File Option (@) .. 2-11

CHAPTER 3 CONTROL VARIABLES

3.1 Control Variable Basics.. 3-1

3.2 Assigning Control Variable Values.. 3-2

3.2.1 Assigning Integer Values... 3-2

3.2.2 Assigning Multiple Values... 3-3

3.2.3 Assigning Name Values.. 3-4

3.2.4 Assigning Name-List Values... 3-4

3.3 Pragma Directive Syntax... 3-5

3.4 Control Variable Definitions.. 3-6

3.4.1 ASM Enable/Disable (asm) .. 3-10

3.4.2 C Dialect (c).. 3-11

3.4.3 Character Type (char) .. 3-12

3.4.4 Scheduling Comments (comment) ... 3-13

3.4.5 Default Volatile Variables (defvol).. 3-14

3.4.6 Diagnostic Messages (diag).. 3-17

3.4.7 Debugging Information (g) ... 3-18

3.4.8 Global Instruction Movement (gim).. 3-19

3.4.9 Include Path (inclpath) ... 3-20

3.4.10 Inline Functions (inline) .. 3-21

3.4.11 Enable/Disable Inlining (inllev) ... 3-23

3.4.12 Interprocedural Analysis (ipa) ... 3-25

3.4.13 Memory Limit (memlimit) .. 3-26

3.4.14 No FP Moves (nofp) ... 3-27

3.4.15 Position Independent Code (pic) ... 3-28

CONTENTS

MECCUM/D Rev 1 v

CHAPTER 3 CONTROL VARIABLES (Continued)

3.4.16 Position Independent Data (pid) .. 3-29

3.4.17 Quit for Diagnostics (quit).. 3-31

3.4.18 Return Points (retpts) ... 3-32

3.4.19 Read-Only Small Data Area Allocation (rosda_alloc) 3-34

3.4.20 Register Save (rsave) ... 3-35

3.4.21 Instruction Scheduling (sched) .. 3-37

3.4.22 Small Data Area Allocation (sda_alloc) .. 3-38

3.4.23 Limit Code Space (space) ... 3-39

3.4.24 Target Processor (targ) .. 3-40

3.4.25 Loop Unrolling (unroll)... 3-41

3.4.26 Volatile Variables (volatile)... 3-43

3.5 Alternate Assignment Syntax.. 3-45

3.6 Inline Assembly Pseudo-Functions.. 3-46

3.6.1 asm() ... 3-46

3.6.2 __asmul() ... 3-48

3.6.3 __asmd() ... 3-50

CHAPTER 4 COMPILER OPTIMIZATIONS

4.1 Considerations for Optimization.. 4-1

4.2 Optimization Types... 4-2

4.2.1 Alias Analysis... 4-2

4.2.2 Call Modification Analysis.. 4-2

4.2.3 Eliminating Common Subexpressions.. 4-3

4.2.4 Eliminating Dead Code... 4-3

4.2.5 Hoisting Code Out of Loops ... 4-4

4.2.6 Strength Reduction... 4-4

4.2.7 Copy Propagation... 4-4

4.2.8 Constant Propagation.. 4-5

4.2.9 Forward Code Motion .. 4-5

4.2.10 Control Flow Optimization.. 4-6

4.2.11 Loop Unrolling... 4-6

4.2.12 Register Allocation... 4-7

CONTENTS

vi Rev 1 MECCUM/D

CHAPTER 4 COMPILER OPTIMIZATIONS (Continued)

4.2.13 Instruction Scheduling.. 4-8

4.2.14 Eliminating Loop Induction Variables... 4-8

4.2.15 Global Instruction Movement.. 4-8

4.2.16 Inlining Functions... 4-8

4.2.17 Multiple Return Points.. 4-9

4.3 SETJMP and LONGJMP Functions.. 4-9

CHAPTER 5 EMBEDDED APPLICATION BINARY INTERFACE

5.1 Data Formats .. 5-1

5.2 Register Usage Conventions... 5-3

5.3 Stack Frames.. 5-5

5.4 Parameter Passing... 5-7

5.4.1 Argument Passing Algorithm.. 5-7

5.4.2 Argument Passing Example... 5-9

5.5 Variable Arguments.. 5-10

5.6 Return Values... 5-10

5.7 Function Prologs and Epilogs.. 5-11

5.7.1 Prolog and Epilog Rules.. 5-11

5.7.2 System Subroutines... 5-12

5.8 Instruction-Set Restrictions .. 5-19

5.9 Small Data Areas ... 5-19

APPENDIX A MECC ERROR MESSAGES ...A-1

APPENDIX B LANGUAGE DIALECTS

B.1 ANSI C... B-1

B.2 K&R C...B-4

B.3 Relaxed C...B-7

CONTENTS

MECCUM/D Rev 1 vii

APPENDIX C C RUN-TIME LIBRARIES

C.1 ANSI C Routines... C-1

C.2 Support Routines..C-3

INDEX ...index-1

FIGURES

5-1 EABI Stack Frame Layout.. 5-5

TABLES

1-1 Manual Conventions... 1-3

2-1 MECC Control Options.. 2-4

3-1 Control Variable Directory.. 3-7

5-1 C Scalar Data Types... 5-2

5-2 General Purpose Register (GPR) Conventions... 5-3

5-3 Floating Point Register (FPR) Conventions... 5-4

A-1 MECC Error Messages...A-1

C-1 Functions/Macros Available Via the -DEMB_PPC Option..C-2

C-2 Functions/Macros Not Available Via the -DEMB_PPC Option.......................................C-3

C-3 System Library Support Routines..C-4

CONTENTS

viii Rev 1 MECCUM/D

INTRODUCTION

MECCUM/D Rev 1 1-1

CHAPTER 1

INTRODUCTION

The Motorola Embedded C Compiler (MECC) is an optimizing compiler for C-language source
files. The compiler supports full ANSI C, as well as many extensions to the C language. The
compiler generates code targeted for various PowerPC implementations.

The compiler is one part of the MPCCOMPKG-series Motorola Embedded PowerPC C Compiler
Package. Other parts of the compiler package are the Motorola Embedded Assembler (MEAS),
the Motorola Link Editor (MELD), the Motorola Archiver (MAR), and the Motorola S-Record
Generator (MSREC).

The compiler accepts three C dialects: Kernighan and Ritchie (K&R) C, ANSI C, and a less strict
form of ANSI C (relaxed C).

NOTE

If you use the Motorola Embedded Project (MEPROJ) to develop
your code, the MEPROJ graphical user interface gives you direct
access to the compiler.

1.1 MECC OVERVIEW

Commonly, you want to generate an executable program from a set of source files. You may
submit all the files to the compiler via one command line (this is the default arrangement). The
compiler:

• Analyzes the C-language files.

• Translates the files into optimized PowerPC assembler files. (Chapter 4 explains the
kinds of optimization the compiler can perform.)

• Calls the assembler, which produces relocatable object files.

• Calls the link editor, which binds the relocatable object files into an executable object
file.

During program development, however, you only need to compile specific files that have
changed. Accordingly, you may submit individual source files to the compiler, which produces
individual relocatable object files. You can use a final MECC invocation to produce an executable
object file from such multiple relocatable object files.

INTRODUCTION

1-2 Rev 1 MECCUM/D

Other ways to use the compiler include:

• Creating assembler files from C source code, without producing relocatable object
files.

• Submitting assembler files, to produce relocatable object files.

• Submitting relocatable object files, to produce an executable object file.

When you invoke the compiler, it checks the type of each input file, looks for any command-line
options, then carries out compilation accordingly.

Once the compiler has compiled the files, it calls the assembler to produce object code, then calls
the link editor to produce an executable object file. Control options give you extensive control
over these actions.

1.2 SYSTEM REQUIREMENTS

The compiler runs on specific computers and operating systems. For software installation
instructions, see the appropriate Software Release Guide for your MPCCOMPKG-series
Motorola Embedded PowerPC C Compiler Package. This guide also includes version information
for the operating system software.

1.3 MECC USERS

To get the most benefit from this manual, you should understand embedded MCU applications
and you should have C-language programming experience.

NOTE

If you are a beginning C programmer, Motorola recommends The C
Programming Language, by Kernighan and Ritchie.

INTRODUCTION

MECCUM/D Rev 1 1-3

1.4 MANUAL CONVENTIONS

Table 1-1 lists the syntax and typographical conventions of this manual.

Table 1-1. Manual Conventions

Symbol, Typeface Significance

Courier bold Filenames, variables, commands, control variables, and examples.

Courier bold italic Syntax indicator to be replaced by an actual value.

[] Indicates optional values.

() Groups or delineates values.

* Indicates a value that occurs zero or more times.

| Indicates a choice between two values.

The remaining sections and appendixes of this manual cover these topics:

• Section 2: how to invoke the compiler, including command-line options.

• Section 3: how to use control variables, both in the command line and in pragma
directives.

• Section 4: optimizations that the compiler makes possible.

• Section 5: PowerPC embedded application binary interface (EABI) compatibility.

• Appendix A: MECC error messages.

• Appendix B: language dialects.

• Appendix C: C run-time libraries.

INTRODUCTION

1-4 Rev 1 MECCUM/D

USING THE COMPILER

MECCUM/D Rev 1 2-1

CHAPTER 2

USING THE COMPILER

This section explains how to configure the environment variables and how to invoke the compiler.
In addition, this section explains the many command-line control options.

Before using the compiler, you must install MECC and other development tools software, per
instructions of the compiler-package Software Release Guide.

2.1 CONFIGURING ENVIRONMENT VARIABLES

After you have installed the software, you must set the environment variables TMPDIR, PPC_BIN,
and PATH. TMPDIR, the simplest of these variables, merely contains the name of the directory in
which the compiler stores temporary files. Paragraphs 2.1.1 through 2.1.3 explain the other
environment variables.

You also should be aware of the special preprocessor symbol __MOTO__, which you may use in
preprocessor conditional structures. Paragraph 2.3.10 explains this symbol.

2.1.1 The PPC_BIN Environment Variable

Set the PPC_BIN environment variable to the directory that contains the compiler executables.
For example, if you install the compiler in the directory c:\ppc , make sure that PPC_BIN is set
to that value. This makes sure that the compiler can find its executable components.

2.1.2 The PATH Environment Variable

The value of the PATH environment variable is a list of directories and subdirectories to be
searched for MECC executables. Accordingly, the PATH value must include the directory that
contains these executables.

For example, if you install the compiler in the directory c:\ppc , your PATH environment variable
might be

.;c:\bin;c:\ppc

USING THE COMPILER

2-2 Rev 1 MECCUM/D

2.2 INVOKING THE COMPILER

To invoke the compiler, enter the compiler command line at your command prompt. This
command line consists of the command mecc, followed by control options and filenames. The
control options may include specifications for control variables.

The syntax of the command line is:

mecc [-opt1 -opt2... -optn] file1[file2... filen]

where -opt1 -opt2...-optn represent control options, and file1, file2... filen

represent source files. Note that spaces must separate options and filenames in the command line.

For example,

mecc -c test1.c test2.c test3.c

invokes the compiler for files test1.c , test2.c , and test3.c , producing an object file for
each file. The -c control option tells the compiler to produce object files only. Paragraph 2.3
explains more about control options.

All the example filenames ended in .c , indicating that they are C source files. Filename extensions
identify file types. The standard extensions are:

.c or .C  for C-language source files

.i  for preprocessed source files (which the compiler produces if you use the -P
control option)

.s or .S  for assembly-language source files

.o  for relocatable object files

.a  for library (archive) files

The default arrangement is that the compiler processes all the files you specify in the command
line, outputting a single executable object file. (If the mecc command line specifies files that have
no extensions, or have extensions not in the list above, the compiler passes the files to the link
editor.)

Accordingly, the command line:

mecc test1.c test2.c test3.c

compiles the three files, assembles the files, then calls the link editor to link the files. The compiler
assigns the default name a.out to the executable object file.

USING THE COMPILER

MECCUM/D Rev 1 2-3

The -o option lets you specify the name of the executable object file:

mecc -o test test1.c test2.c test3.c

In this example, the compiler compiles the same three files, assembles the files, and also calls the
link editor. The link editor outputs an executable object file, but the -o option directs the link
editor to name the file test instead of the default name a.out . (If the compiler not only
compiles, but also calls the assembler and link editor, it deletes any object files produced during
compilation.)

A fourth example includes C (.c) files, an assembly-language (.s) file, and an object (.o) file:

 mecc -O3 -o test test1.c test2.c test3.s test4.o test5

The compiler:

1. Compiles the two C files, producing object files test1.o and test2.o . During
compilation the compiler carries out the second level of optimization (per the -O3
option). The C compiler does not compile files test3.s , test4.o , or test5 .

2. Calls the assembler to assemble file test3.s .

3. Calls the link editor, which produces an executable object file from all the object files
produced during steps 1 and 2, plus file test5 . Per the -o option, the link editor
names this executable object file test .

2.3 CONTROL OPTIONS

The compiler command line examples of paragraph 2.2 show how control options modify the
steps of compilation, assembly, and linking. This paragraph explains the basic control options.

Note that some control options conflict. Should you include conflicting control options in the
command line, a warning message indicates that the compiler ignored one or more of the options.

Table 2-1 lists the control options. Paragraphs 2.3.1 through 2.3.23 give additional detail about
these options.

USING THE COMPILER

2-4 Rev 1 MECCUM/D

Table 2-1. MECC Control Options

Option Effect

-c Does not link files.

-g Includes debugging information.

-l Searches the specified library.

-o Names the executable object file.

-v Prints process names and arguments.

-w Suppresses warning messages.

-A Assigns control-variable value; permits pragma overrides.

-AA Assigns control-variable value; does not permit pragma overrides.

-C Retains comments in preprocessor output.

-D Defines preprocessor symbols.

-E Limits MECC to preprocessing.

-H Lists preprocessing pathnames.

-I Adds a search path for include files.

-K Compiles Kernighan & Ritchie (K&R) C.

-L Changes the search order for libraries.

-M Lists dependencies.

-O Activates optimization.

-P Limits MECC to preprocessing.

-S Compiles only: produces, but does not assemble, an assembly-language file.

-U Undefines preprocessor symbols.

-V Prints the version number of the compiler.

-W Hands listed arguments to the specified compiler pass.

@<pathname> Process options in specified file as if they were part of the command line.

USING THE COMPILER

MECCUM/D Rev 1 2-5

2.3.1 Suppress Linking Option (-c)

The -c control option tells the compiler to not call the link editor. If you include this option in the
command line, the compiler compiles and assembles .c or .i files, then calls the MEAS to
assemble any .s files. But as the compiler does not call the link editor, the .o files are the final
output.

2.3.2 Include Debugging Option (-g)

The -g control option tells the compiler to include symbolic debugging information (source
annotations, symbols, and line numbers) in output files, for use with a symbolic debugger.

If the mecc command line includes .s files, for which the compiler calls the assembler, the output
.o files include the debugging information. For .c or .i files of the mecc command line, the
output .s files include the debugging information. However, assembly of such output .s files
would produce output .o files that do not include debugging information.

2.3.3 Search Library Option (-l)

The -l option directs the link editor to search a specified library for object files that can resolve
references during linking. For example, options -lchart , -lmaps , and -lb direct the link editor
to search libraries libchart.a , libmaps.a , and libb.a , respectively. If you use this option
several times in the command line, the link editor carries out the searches in the order of your
command-line use.

2.3.4 Name Executable Option (-o)

The -o option assigns a specified filename to any of the output files. Note that the default
executable filename is a.out . If your command line includes the option -o outfile , the link
editor assigns the name outfile to the executable file.

2.3.5 Print Process Option (-v)

The -v option tells the compiler to print names and arguments as it invokes each compiler sub-
process. (This information is helpful for diagnostics.)

2.3.6 Suppress Warnings Option (-w)

The -w option suppresses MECC warning messages.

USING THE COMPILER

2-6 Rev 1 MECCUM/D

2.3.7 Assign Value Option (-A)

The -A control option assigns a value to one or more control variables, but permits pragma
directives in the source code to override the value assignments. (Section 3 gives the complete
syntax for such value assignments.)

2.3.8 Assign Value Option (-AA)

The -AA control option assigns a value to one or more control variables, but does not permit
pragma directives in the source code to override the value assignments. (Section 3 explains the
complete syntax for such value assignments.)

2.3.9 Retain Preprocessor Comments Option (-C)

The -C control option directs the compiler to retain comments in the preprocessor output.

2.3.10 Define Preprocessor Symbol Option (-D)

The -D control option defines symbols for source files passed through the preprocessor. For
example, the options -Drock , -Dscissors , and -Dpaper define the preprocessor symbols
rock , scissors , and paper . This control option is the command-line counterpart to a
#define directive in source code.

To assign a value at the same time you define a symbol, include the equals sign (=) and the
value. For example, the option -Dversion=4 defines the preprocessor symbol version and
gives the symbol the value 4.

NOTE

In case of conflict between -D control options, the first -D option
of the command line determines the compiler’s behavior. (For other
embedded-tools command-line options, the last determines the
behavior of the tool.) For example, if an mecc command line
includes the options ... -Dalpha=100 ... -Dalpha=300
... -Dalpha=800... , the compiler gives the value 100 to
symbol alpha .

A common use for such symbols is delimiting code that the preprocessor expands conditionally.
For example, assume that the command line includes the option -Dset_zero , and that the
source code includes the line #ifdef set_zero . The -D option defines the symbol set_zero ,
so the condition of the #ifdef directive is true. Consequently, the preprocessor includes the
code that immediately follows the #ifdef directive.

USING THE COMPILER

MECCUM/D Rev 1 2-7

NOTE

To undefine a symbol, use the -U control option. However, the -D
control option does not override #define or #undef directives in
source code.

The compiler automatically defines the preprocessor symbol __MOTO__, which you may use in
source-code conditional structures. If you use the MECC to compile, the code expression
#ifdef __MOTO__ evaluates to 1 or TRUE. If you use a different compiler, the expression
#ifdef __MOTO__ evaluates to 0 or FALSE.

This simple code extract prints one comment if __MOTO__ is defined, and a different comment if
__MOTO__ is not defined:

.

.
#ifdef __MOTO__
 printf("Compiled by MECC");
#else
 printf("Not Compiled by MECC");
#endif

2.3.11 Preprocess-Only Option (-E)

The -E control option directs the compiler to carry out preprocessing, directing the stream of
output to stdout , then stop. The compiler does not complete compilation, does not call the
assembler, and does not call the link editor. The preprocessing results do not include comments
(unless the command line also has the -C option). This control option is similar to the -P option,
which produces a .i file.

2.3.12 List Preprocessing-Pathname Option (-H)

The -H control option directs the compiler to pass source files through the preprocessor, listing
pathnames of any included files to stdout , then stop. The I/O stream stdout receives the
pathname list instead of the normal preprocessor results. The compiler does not complete
compilation, does not call the assembler, and does not call the link editor.

USING THE COMPILER

2-8 Rev 1 MECCUM/D

2.3.13 Include-File Search Option (-I)

The -I control option specifies the search order for include files. The default arrangement is that
the system searches through the directories of the standard list. (Installation of the compiler
includes definition of this list, which includes the directory $PPC_BIN/include .)

Each -I option adds another directory in which the compiler searches for include files. The search
proceeds according to the format of the filename file specified in the #include statement:

• If filename file is an absolute pathname, the system searches only that path.

• If filename file is not an absolute pathname but is in quotes in the #include
statement, and if control variable inclpath has the value absolute , the system
searches directories in this order:

1. The directory that contains the primary C source file.

2. Directories specified by any -I options, in their order in the command line.

3. Directories in the standard list.

• If filename file is not an absolute pathname but is in quotes in the #include
statement, and if control variable inclpath has the value relative , the system
searches directories in this order:

1. The directory of the file that contains the #include statement.

2. Directories specified by any -I options, in their order in the command line.

3. Directories in the standard list.

• If filename file is not an absolute pathname but is in angles (< >) in the
#include statement, the system searches directories in this order:

1. Directories specified by any -I options, in their order in the command line.

2. Directories in the standard list.

2.3.14 Compile K&R Option (-K)

The -K control option directs the compiler to compile .c source files according to the Kernighan
and Ritchie (K&R) dialect of C.

USING THE COMPILER

MECCUM/D Rev 1 2-9

2.3.15 Library Search Option (-L)

The -L control option specifies the search order for library files. For example, the option -L dir

tells the link editor to search for library files in directory dir . The compiler always tells the link
editor to search in directory $PPC_BIN/lib . If you specify searches of any additional
directories, the compiler tells the link editor to search in those directories first.

2.3.16 List Dependencies Option (-M)

The -M control option directs the compiler to pass source files through the preprocessor, listing
dependency lines to stdout , then stop. The compiler determines the dependency lines according
to the usage of #include statements (including nested ones). The I/O stream stdout receives
the dependency-line list instead of the normal preprocessor results. The compiler does not
complete compilation, does not call the assembler, and does not call the link editor.

2.3.17 Optimization Level Option (-O)

The -O control option assigns the level of optimization the compiler applies to source code. The
general meaning of -O values is:

• -O1 means do no optimization. (Not including the -O option in your command line
gives this level of optimization.)

• -O2 is reserved for future use. (At present, it defaults to -O3 .)

• -O3 means do local optimization, register allocation, intraprocedural global
optimization, and scheduling. Including the -O option in your command line, but
without a numeric value, gives this level of optimization.)

• -O4 means do local optimization, register allocation, intraprocedural global
optimization, scheduling, and additional aggressive optimizations.

Section 4 explains each type of optimization.

2.3.18 Preprocess-Only Option (-P)

The -P control option directs the compiler to carry out preprocessing, producing a .i file, then
stop. The compiler does not call the assembler, and does not call the link editor. The
preprocessing results do not include comments (unless the command line also has the -C option).
This control option is similar to the -E option, which directs the I/O stream to stdout , instead of
producing a .i file.

USING THE COMPILER

2-10 Rev 1 MECCUM/D

2.3.19 Compile-Only Option (-S)

The -S control option directs the compiler to carry out compilation, then stop. The compiler does
not call the assembler or the link editor. The output of compilation is one or more .s files, which
can be assembled at a later time.

2.3.20 Undefine Preprocessor Symbol Option (-U)

The -U control option undefines preprocessor symbols created via the -D option. For example, if
the option -Dset_zero defines the symbol set_zero , the option -Uset_zero removes the
symbol. The -U option may appear before or after the corresponding -D option.

NOTE

The -U control option does not override #define or #undef
directives in source code.

2.3.21 Print Version Option (-V)

The -V option tells the compiler to print the version number of the compiler.

2.3.22 Pass Arguments Option (-W)

The -W control option tells the compiler to hand off the specified arguments to a particular pass of
the compiler. For example, the option -Wi,avg says to hand off argument avg to the
interprocedural analyzer pass of the compiler. The option -Wa avg,med,mean says to hand off
arguments avg, med, and mean to the assembler pass.

The pass identifiers are:

• p pre-processor pass

• f front-end pass

• i interprocedural analysis pass

• b optimizer and code generator pass

• a assembler (MEAS) pass

• l link editor (MELD) pass

USING THE COMPILER

MECCUM/D Rev 1 2-11

The syntax for specifying pass arguments is

 -Wx, arg

where x represents the pass identifier and arg represents a non-space separated argument. For
example,

-Wa,-DVERSION=10

tells the compiler to pass the argument -DVERSION=10 to the assembly pass of compilation.
(-DVERSION=10 will be the first argument the assembler receives.)

To pass multiple arguments, specify -W multiple times, as in:

-Wa,-DVERSION=10 -Wa,-l -Wa,some_file.list

which tells the compiler to pass arguments -DVERSION=10, -l , and some_file.list to the
assembly pass of compilation.

To confirm that the appropriate arguments reach the pass you intend, use the -v (print process
option) option.

2.3.23 Command Line File Option (@)

The @ control option tells the compiler to use the contents of a specified file as if the contents were
part of the command line. For example, the option @cmd_opts tells the compiler to read file
cmd_opts , considering the contents of the file to be part of the command line. (The specified file
can include multiple lines of text.)

USING THE COMPILER

2-12 Rev 1 MECCUM/D

CONTROL VARIABLES

MECCUM/D Rev 1 3-1

CHAPTER 3

CONTROL VARIABLES

Section 2 explained the various control options for the compiler command line. This section
explains how to use control variables for finer control of compilation.

You can assign values to many of the control variables via pragma statements in the source code
itself. The effect and positioning of a pragma statement in the source code depends on the
particular control variable.

3.1 CONTROL VARIABLE BASICS

Each control variable controls an aspect of the compiler’s behavior. To determine that behavior,
you assign a specific value to the control variable or let the control variable have one of two
possible default values. Table 3-1 (in paragraph 3.4) lists specifics for all the control variables.

When you invoke the compiler, the compiler assigns values to all control variables, in one of three
ways:

1. If you include a value assignment in the command line, the compiler gives that value to
the control variable. (Use the -A or -AA control option to assign a value.)

2. If you do not mention the control variable in the command line, the compiler gives the
control variable its first default value.

3. If you mention the control variable in the command line, but do not assign a value, the
compiler gives the control variable its second default value. (Use the -A or -AA
control option to mention a control variable.)

Each control variable has a defined type: integer, name, or name list:

• An integer control variable has an integer value. For example, inllev can have the
values 0, 1, 2, 3, 4, or 5.

• A name control variable has a name value or the value null. For example, inclpath
can have the values relative or absolute.

• There are two name-list control variables, inline and volatile . These control
variables can have several name values, one name value, or the value null.

CONTROL VARIABLES

3-2 Rev 1 MECCUM/D

Pragma directives are source-code statements that temporarily change the values of certain
control variables. The individual explanations of paragraph 3.4 note which control variables are
subject to pragma changes, as well as how long a pragma change lasts. For example, if a pragma
directive changes the value of control variable rsave , the change lasts to the end of the file. If a
pragma directive changes the value of control variable unroll , the change lasts to the end of the
loop.

Paragraph 3.3 explains the syntax for pragma directives.

NOTE

Pragma directives cannot change control-variable values set via the
-AA control option.

3.2 ASSIGNING CONTROL VARIABLE VALUES

To assign values to control variables, add individual assignments to -A or -AA control options of
the compiler command line. You may use either option several times in the command line; each
use may include one or more individual assignments.

Paragraphs 3.2.1 through 3.2.4 explain the basic syntax for assigning values to control variables.
But the compiler accepts several alternative syntaxes; you may use any syntax that you find
convenient, and you may mix syntaxes in your command line. Paragraph 3.5 explains the
alternative syntaxes.

3.2.1 Assigning Integer Values

The general syntax of an individual assignment is the name of the control variable, an equals
sign, and a value, without any spaces. For example,

-Agim=1

assigns the value 1 to control variable gim . This directs the compiler to do global instruction
movement for basic blocks executed non-conditionally. Note that gim is usable in pragma
directives; should a pragma directive give gim a different value, gim would regain the value 1
when the compiler begins compiling the next file.

The assignment

-AAgim=1

also assigns the value 1 to gim . But the -AA control option prevents pragma directives from
changing the value.

CONTROL VARIABLES

MECCUM/D Rev 1 3-3

To assign the second default value to a control variable, omit the equals sign and value from the
individual assignment. For example, both

-Agim and -AAgim

give gim its second default value, 3.

NOTE

As paragraph 3.1 explained, not including a control-variable name
in any -A or -AA option of the command line gives that control
variable its first default value. For example, if you do not include
gim in the command line, it receives the value 0.

3.2.2 Assigning Multiple Values

Usually, when you invoke the compiler, you assign specific values to several control variables,
and mention (give second default values to) several other control variables. A convenient way to
do this is to include several individual assignments in a -A or -AA control option, separating the
assignments with commas.

For example, the control option below gives the respective values 1, 0, 0, and 2 to control
variables gim , inllev , retpts , and sched . (Table 3-1 explains the significance of these
values.)

-Agim=1,inllev=0,retpts=0,sched=2

You can assign second default values in the same way, as in this example:

-Aunroll=7,inllev,space,targ=505,gim,defvol=0,retpts

This -A control option assigns the respective values 7, 505, and 0 to control variables unroll ,
targ , and defvol . The same control option gives second default values (3, 2, 2, and 1,
respectively) to control variables inllev , space , gim , and retpts .

You may put multiple assignments in -AA control options in the same way. The difference, of
course, is that the -AA control option prevents pragma directives from changing the initial values
of the control variables.

A single -A or -AA control option may become difficult to read if it includes all the value
assignments for your command line. If so, you may divide the assignments among several -A or
-AA control options in the command line, in any way that seems convenient.

CONTROL VARIABLES

3-4 Rev 1 MECCUM/D

NOTE

The compiler processes value assignments from left to right. Should
a -A or -AA control option (or multiple options) include two or
more value assignments for the same control variable, the compiler
uses the right-most value assignment when it begins compilation.

3.2.3 Assigning Name Values

Control variables c , char , comment , inclpath , and rsave are the name control variables.
Assign name values to these variables in the same way you assign values to integer variables. For
example, the control option below gives respective values mixed, unsigned, and multiple to
control variables c , char , and rsave :

-Ac=mixed,char=unsigned,rsave=multiple

Note that there are only two possible values for several of the name control variables, so that one
is the first default value and the other is the second default value. This is true for rsave : its only
possible values are normal (the first default value) and multiple (the second default value). This
means that you can merely mention rsave to give it the value multiple, so that this control
option makes the same value assignments as the previous one:

-Ac=mixed,char=unsigned,rsave

You may use the same -A or -AA control option to assign values of different types, as in this
example:

-AAunroll=7,c=mixed,rsave,defvol=1,char=unsigned,retpts

This -AA control option assigns the respective values 7, mixed, 1, and unsigned to control
variables unroll , c , defvol , and char . The same control option gives second default values
(multiple and 1) to control variables rsave and retpts .

3.2.4 Assigning Name-List Values

Control variables inline and volatile are the name-list control variables. To assign multiple
name values to either of these variables, separate the values with plus signs. For example, the
control option below assigns values press, temp, relhum, and dewpt to control variable
volatile :

-Avolatile=press+temp+relhum+dewpt

You may use the same -A or -AA control option to assign values to both inline and
volatile . The same control option also may include value assignments for integer and name
control variables.

CONTROL VARIABLES

MECCUM/D Rev 1 3-5

The special name value %all denotes all the meaningful names for inline or volatile , so
%all can shorten value assignments. For example, suppose that you want the compiler to
consider all possible functions for inlining. Instead of scrutinizing all the possible functions of each
file, you need only include this control option in the command line:

-Ainline=%all

For a subsequent compilation, suppose that you want to exclude the functions relhum and
dewpt from consideration for inlining. Your command line should include this control option:

-Ainline=%all-relhum-dewpt

3.3 PRAGMA DIRECTIVE SYNTAX

As paragraph 3.1 explained, you can use pragma directives in source code to give temporary
values to certain control variables. The duration of such a temporary value depends on the specific
control variable.

Write pragma directives according to the syntax pragma token, compiler token, and value
assignment:

#pragma moto assignment

where:

• Blanks must separate the three fields,

• #pragma (the pragma token) must start in column 1,

• #pragma is case sensitive,

• moto (the compiler token) is case sensitive,

• assignment represents any control-variable value assignment, identical to that of a
command-line -A or -AA control option.

• The #pragma line must not include any other text (such as comments).

Assume, for example, that the compiler command line assigns the initial value 1 to control
variable inllev , directing the compiler to inline small, simple functions. But you do not want
inlining for a particular routine. Accordingly, you can write this pragma directive before the
definition of a function:

#pragma moto inllev=0

This pragma directive gives the temporary value 0 to inllev , stopping inlining. The control
variable regains the value 1 when compilation moves on to the next file.

CONTROL VARIABLES

3-6 Rev 1 MECCUM/D

If the same situation applied to control variable sched , you could use one pragma directive to
temporarily stop both inlining and loop unrolling:

#pragma moto inllev=0,unroll=0

Follow the same pragma syntax for assigning name values, name-list values, and values of
different types, just as you would in a -A control option. For example, this pragma directive
assigns temporary values to control variables inclpath and rsave :

#pragma moto inclpath=relative,rsave=multiple

This pragma directive assigns temporary values to inline :

#pragma moto inline=min+max+avg+med+mean

Finally, note that the special name %all , for the name-list control variables inline and
volatile , works the same way in pragma directives as it does in the command line.

3.4 CONTROL VARIABLE DEFINITIONS

Table 3-1 lists all control variables, explaining the meanings of their possible values. Note, in the
Name column, that certain control variables are underlined. In order for such control variables to
have an effect on compilation, the -O control option must have the value 3 or greater.

In the Values column, the footnote indicators (1) and (2) identify the first and second default
values, respectively.

Paragraphs 3.4.1 through 3.4.26 explain each control variable individually.

CONTROL VARIABLES

MECCUM/D Rev 1 3-7

Table 3-1. Control Variable Directory

Name Values Effect or Meaning

asm 0 Do not allow inline assembly pseudo-functions. (Default if C
value is ANSI.)

1(1)(2) Process asm and other inline assembly pseudo-functions.

c knr Compile per K&R C definition.

ansi(2) Compile per standard ANSI C definition.

relaxed(1) Compile per least-strict ANSI C definition.

char unsigned(1) Make default char type unsigned.

signed(2) Make default char type signed.

comment none(1) Do not add scheduling comments to .s files.

schedule(2) Add basic block scheduling comments to .s files.

defvol 0(1) Do not consider any variables volatile unless they are so
declared.

1 Treat all global variables as volatile, unless they are declared
non-volatile.

2(2) Treat all off-stack variables as volatile, all pointers are type
pointer to volatile.

diag 0 Output error and fatal-error diagnostic messages.

1(1) Output warning, error, and fatal-error diagnostic messages.

2(2) Output remark, warning, error and fatal-error diagnostic
messages.

g 0(1) Do not include debugging information in the assembly or object
file.

1(2) Include debugging information in the assembly or object file.

2 Include in the assembly or object file comments that reference
lines of source code.

gim 0(1) Do no global instruction movement.

1 Do global instruction movement for basic blocks executed non-
conditionally.

2(2) Do global instruction movement for all possible basic blocks.

CONTROL VARIABLES

3-8 Rev 1 MECCUM/D

Table 3-1. Control Variable Directory (cont.)

Name Values Effect or Meaning

inclpath relative(1) Search first for include files in the directory that contains the
#include statement’s file.

absolute(2) Search first for include files in the directory that contains the
top-level source file.

inline none(1) Do not consider any functions for inlining.

(user
specified)

Consider listed functions for inlining.

%all(2) Consider all functions for inlining.

inllev 0(1) Do not inline functions.

1 Inline small, simple functions.

2 Inline functions slightly larger or more complex.

3(2) Inline functions still larger or more complex.

4 Inline functions larger or more complex yet.

5 Inline the largest or most complex functions possible.

ipa 0(1) Do not perform interprocedural analysis.

1(2) Perform interprocedural analysis.

memlimit 0(1)(2) Do requested optimizations.

i Do the degree of requested optimizations that does not exceed
the memory limit of i megabytes.

nofp 0 Allow floating-point loads and stores of non-floating-point data.

1(1) (2) Do not allow floating-point loads and stores of non-floating-point
data.

pid 0(1) Do not make data references position independent.

1(2) Make all data references position independent.

pic 0(1) Do not make code position independent.

1(2) Make code position independent.

quit 0(1) Quit for error or fatal-error deviations.

1(2) Quit for warning, error, or fatal-error deviations.

2 Quit for remark, warning, error, or fatal-error deviations.

CONTROL VARIABLES

MECCUM/D Rev 1 3-9

Table 3-1. Control Variable Directory (cont.)

Name Values Effect or Meaning

retpts 0 Allow multiple return points for compiled routines.

1(1) (2) Compile code so each routine has just one return point.

rsave normal(1) Use one instruction per general purpose register to save or
restore registers.

multiple(2) Use load/store multiple word instructions to save or restore
registers.

rosda_alloc 0 Do not allocate any globally visible external constant scalars in
the .sdata2 section.

132768 Allocate to the .sdata2 section constant scalars of this many
or fewer bytes. (8 is the first and second default value.)

sched 0(1) Do no instruction scheduling.

1 Do instruction scheduling only during pass one.

2(2) Do instruction scheduling during pass one and pass two.

sda_alloc 0 Do not allocate any globally visible external scalars in the
.sdata section.

132768 Allocate to the .sdata section constant scalars of this many or
fewer bytes. (8 is the first and second default value.)

space 0 Always favor faster code over smaller code.

1(1) Balance considerations of faster code versus smaller code.

2(2) Favor smaller code over faster code.

targ 505(1)(2) Compile code to be run on a 505 MCU.

601 Compile code to be run on a 601 MCU.

603 Compile code to be run on a 603 MCU.

604 Compile code to be run on a 604 MCU.

unroll 0(1) Do no loop unrolling.

1(2) Do loop unrolling under automatic control.

2 or more Do loop unrolling this many times for every possible loop.

volatile (user
specified)

Consider listed variables volatile.

CONTROL VARIABLES

3-10 Rev 1 MECCUM/D

asm ASM Enable/Disable

3.4.1 ASM Enable/Disable (asm)

The asm control variable enables or disables processing of the inline assembly pseudo-functions:
asm, __asmul, and __asmd. Paragraph 3.6 gives more information about these pseudo-
functions.

Syntax: asm=0|1

where

0 Do not process inline assembly pseudo-functions. (Default if control
variable c has the value ansi.)

1 Process inline assembly pseudo-functions. (First and second default
value, if c does not have the value ansi.)

Usable in pragmas: no

Related control variables: c

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-11

c C Dialect

3.4.2 C Dialect (c)

The c control variable sets the C-language dialect that the compiler is to compile. Motorola
recommends the ANSI C standard, that is, the ansi value of dialect. Appendix B describes each
dialect.

Syntax: c=dialect

where dialect is

knr Compile per the Kernighan and Ritchie definition of C.

ansi Compile per the ANSI C standard; Motorola recommends this dialect
value. (Second default value)

relaxed Compile per the least-strict ANSI C definition, as explained above. (First
default value)

Usable in pragmas: no

Related control variables: asm

Related control options: -K

CONTROL VARIABLES

3-12 Rev 1 MECCUM/D

char Character Type

3.4.3 Character Type (char)

The char control variable sets the default character type.

Standard ANSI C lets you declare variables of type char without specifying whether such
variables are signed or unsigned. The value of char makes this specification for Motorola C.

Syntax: char=unsigned|signed

where

unsigned Make the default character type unsigned. (First default value)

signed Make the default character type signed. (Second default value)

Usable in pragmas: no

Related control variables: none

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-13

comment Scheduling Comments

3.4.4 Scheduling Comments (comment)

The comment control variable enables or disables scheduling comments to the assembly-code
(.s) file.

Syntax: comment=none|schedule

where

none Do not add scheduling comments. (First default value)

schedule Add basic block scheduling comments. (Second default value)

Usable in pragmas: no

Related control variables: sched

Related control options: none

CONTROL VARIABLES

3-14 Rev 1 MECCUM/D

defvol Default Volatile Variables

3.4.5 Default Volatile Variables (defvol)

The defvol control variable determines which variables the compiler considers volatile.

Syntax: defvol= i

where i is

0 Do not consider any variables volatile, unless they are so declared (via the
volatile control variable or the volatile C keyword). (First default
value)

1 Treat all global and externally visible variables as volatile.

2 Treat all off-stack variables as volatile; treat all pointers as type pointer-to-
volatile. (Second default value)

NOTES

For source code written in K&R C, the defvol control variable is
one way to designate variables volatile. (Using the volatile
control variable usually is a better way to designate variables
volatile.)

If your source program includes volatile objects, it must declare
them to be type volatile. If any pointers may reference volatile
objects, the source program must declare the pointers to be type
pointer to volatile.

If your source code includes volatile variables, your code must identify such variables to the
compiler. You may use the control variable defvol to declare classes of variables volatile.

Assume that source code reads a variable, starts an asynchronous input operation on the variable,
waits for the operation to end (by repeatedly checking a status-bit value), and then reads the
variable again. Although the source code does not change the variable or the status bit, the
asynchronous operation can change both. This means that the variable and the status bit are
volatile.

To an optimizing compiler, the second read seems redundant: no code executing between the
reads modifies the variable. Accordingly, the compiler removes the second read, using the value
from the first read. This optimization would make the compiled program fail.

CONTROL VARIABLES

MECCUM/D Rev 1 3-15

defvol Default Volatile Variables

This asynchronous I/O example shows how optimization can conflict with volatile objects. Other
program features that can make memory objects volatile include multi-process shared memory,
trap handlers, and special registers.

It is impractical to avoid source code that may contain volatile objects. But there are some
practical ways to prevent the optimization-and-volatile-object conflict from causing program
failure:

1. Explicitly declaring all volatile objects to be of type volatile, and declaring all pointers
to volatile objects to be of type pointer to volatile. For instructions on making these
declarations, consult your C-language documentation.

2. Using the control variable defvol to designate classes of variables volatile and
classes of pointers as pointers to volatile objects.

3. Using the control variable volatile to designate specific variables volatile and
specific pointers as pointers to volatile objects.

If you designate variables volatile or pointers as pointing to volatile objects, per options 2, 3, or 4
above, the Motorola compiler avoids the optimization-and-volatile-object conflict by preserving
the sequence of references to volatile objects.

Usable in pragmas: yes

NOTE

If your source file includes any #pragma moto defvol
statement, the statement must not be within the body of any
function. The pragma’s effect lasts until the compiler encounters
another #pragma moto defvol statement, or until the compiler
arrives at the end of the file.

Example: Assume that you will enable optimizations for compiling this example C source code.
(That is, assume that the mecc command line will include the option -O3 or -O4 .)

int counter; /* Globally visible variable. */
/* Treat all global and externally visible variables as volatile: */
#pragma moto defvol=1

CONTROL VARIABLES

3-16 Rev 1 MECCUM/D

defvol Default Volatile Variables
void function1 (void)
{
 counter = 10; /* This assignment won’t be optimized out. */
 counter = 20;
}
/* Do not treat global and externs as volatile: */
#pragma moto defvol=0

void function2 (void)
{
 counter = 30; /* This assignment will be optimized out. */
 counter = 40;
}

void function3 (void)
{
#pragma moto defvol=1
 counter = 50; /* This assignment won’t be optimized out. */
 counter = 60;
}

void function4 (void)
{
 counter = 70; /* This assignment won’t be optimized out. */
 counter = 80;
}

Related control variables: volatile

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-17

diag Diagnostic Messages

3.4.6 Diagnostic Messages (diag)

The diag control variable works with control variable quit to determine how the compiler
responds to deviations from the C-language standard. In particular, diag determines which
categories of diagnostic messages the compiler outputs. In command line mode, when the
compiler does output such messages, it outputs them to the file stdout .

Syntax: diag= i

where i is

0 Output error and fatal-error diagnostic messages.

1 Output warning, error, and fatal-error diagnostic messages. (First default
value)

2 Output remark, warning, error, and fatal-error diagnostic messages.
(Second default value)

The compiler evaluates each deviation from standard C for acceptability, issuing a corresponding
internal diagnostic message. The five categories of these messages are:

• Standard  for acceptable language extensions.

• Remark  for unconventional, but acceptable usage.

• Warning  for questionable usage that the compiler nevertheless accepts.

• Error  for syntax or semantic violations. (The compiler may continue compilation,
in order to identify other problems, but does not produce object code.)

• Fatal error  for violations so severe that compilation cannot continue.

Usable in pragmas: no

Related control variables: quit

Related control options: -w

CONTROL VARIABLES

3-18 Rev 1 MECCUM/D

g Debugging Information

3.4.7 Debugging Information (g)

The g control variable determines whether the compiler includes symbolic debugging information
(source annotation, symbols, and line numbers) in the assembly file that the compiler generates.

Syntax: g=i

where i is

0 Do not include debugging information in the assembly file. (First default
value)

1 Include debugging information in the assembly file. (Second default value)

2 Include in the assembly file comments that reference lines of the source
code. (Do not include debugging information.)

Usable in pragmas: no

Related control variables: none

Related control options: -g

CONTROL VARIABLES

MECCUM/D Rev 1 3-19

gim Global Instruction Movement

3.4.8 Global Instruction Movement (gim)

The gim control variable determines the level of global instruction movement the compiler is to
perform.

Global instruction movement is moving instructions across basic blocks, to improve instruction
scheduling.

Syntax: gim= i

where i is:

0 Do not perform global instruction movement. (First default value)

1 Perform global instruction movement for basic blocks executed non-
conditionally.

2 Perform global instruction movement for all possible blocks. (Second
default value)

NOTE

The compiler implements global instruction movement only for
optimization levels 3 or 4 (-O3 or -O4). If you specify a lower
optimization level and your command line includes -Agim=1 or
-Agim=2 , the compiler ignores your request for global instruction
movement.

Usable in pragmas: no

Related control variables: none

Related control options: -O

CONTROL VARIABLES

3-20 Rev 1 MECCUM/D

inclpath Include Path

3.4.9 Include Path (inclpath)

The inclpath control variable determines where the compiler first looks for a file that an
#include statement specifies (via a relative filename, in quotes).

All C implementations search for files named in #include statements, but they may not start
such searches in the same directory. (Standard ANSI C does not specify the starting directory.)
The inclpath value resolves this inconsistency.

Syntax: inclpath=relative|absolute

where

relative Begin the search in the directory that contains the #include statement’s
file. (First default value)

absolute Begin the search in the directory that contains the top-level source file.
(Second default value)

Usable in pragmas: no

Related control variables: c

Related control options: -I

CONTROL VARIABLES

MECCUM/D Rev 1 3-21

inline Inline Functions

3.4.10 Inline Functions (inline)

The inline control variable contains the list of functions which the compiler is to consider for
inlining.

Inlining is moving the instructions of a subroutine to the calling routine, in order to eliminate the
overhead of calling the subroutine and returning from the subroutine.

This control variable works in conjunction with inllev . The first default value is none: do not
consider any functions for inlining. The second default value is %all : consider all functions for
inlining.

Syntax: inline=name1+name2+...

where name1+name2+... is the list of function names. %inline means the current list.

Usable in pragmas: yes

NOTE

If your source file includes any #pragma moto inline
statement, the statement must not be within the body of any
function. The pragma’s effect lasts until the compiler encounters
another #pragma moto inline statement, or until the compiler
arrives at the end of the file.

Example: Assume that the mecc command line will include options -S -O -Ainllev=1 .

/* This #pragma tells the compiler to consider all functions as
 * candidates for inlining: */
#pragma moto inline

long aplusb(long a, long b);

int main()
{
 long a, b, c;

 a = 100;
 b = 50;

 c = aplusb(a,b); /* This will be inline code. */
 return (c);
}

CONTROL VARIABLES

3-22 Rev 1 MECCUM/D

inline Inline Functions
/* Remove aplusb() from consideration for inlining. */
#pragma moto inline=%inline-aplusb
int function1()
{
 long a, b, c;

 a = 1000;
 b = 500;

 c = aplusb(a,b); /* This will be a procedure call. */
 return (c);
}
/* Put aplusb() back on the list of functions to be inlined. */
#pragma moto inline=%inline+aplusb
int function2()
{
 long a, b, c;

 a = 10;
 b = 5;

 c = aplusb(a,b); /* This will be inline code. */
 return (c);
}

long aplusb(long a, long b)
{
 return(a+b);
}

Related control variables: inllev

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-23

inllev Enable/Disable Inlining

3.4.11 Enable/Disable Inlining (inllev)

The inllev control variable sets the degree of inlining the compiler is to perform on the
functions that control variable inline contains.

Two factors determine whether the compiler actually inlines a function: the complexity of the
function and the context into which the function may be inlined.

Syntax: inllev= i

where i is

0 Do not inline functions. (First default value)

1 Inline small, simple functions.

2 Inline functions slightly larger or more complex.

3 Inline functions still larger or more complex. (Second default value)

4 Inline functions larger or more complex yet.

5 Inline the largest or most complex functions possible.

Usable in pragmas: yes

NOTES

If your source file includes any #pragma moto inllev
statement, the statement must not be within the body of any
function. The pragma’s effect lasts until the compiler encounters
another #pragma moto inllev statement, or until the compiler
arrives at the end of the file.

The compiler does not let a pragma specify an inllev value if you
invoke the compiler with an optimization level less than 2 (-O0 or -
O1). Similarly, the compiler does not let a pragma specify an
inllev value if the mecc command line does not specify an
inllev value greater than 0 (for example,
-Ainllev=1).

CONTROL VARIABLES

3-24 Rev 1 MECCUM/D

inllev Enable/Disable Inlining

Example: Assume that the mecc command line will include options -O -Ainllev=1 .

/* Inline all functions possible. */
#pragma moto inline

long aplusb(long a, long b);
long aminusb(long a, long b);

/* Turn off inlining from here ... */
#pragma moto inllev=0
int main()

{
 long c;
 c = aminusb(100,50); /* Will not be inlined. */
 return (c);
}
int function1()
{
 long c;
 c = aplusb(1000,500); /* Will not be inlined. */
 return (c);
}
/* Turn level 1 inlining back on from here. */
#pragma moto inllev=1
int function2()
{
 long c;
 c = aplusb(10,5); /*Will be inlined. */
 return (c);
}

long aplusb(long a, long b)
{
 return(a+b);
}
long aminusb(long a, long b)
{
 return(a-b);
}

Related control variables: inline

Related control options: -O

CONTROL VARIABLES

MECCUM/D Rev 1 3-25

ipa Interprocedural Analysis

3.4.12 Interprocedural Analysis (ipa)

The ipa control variable tells the compiler whether to perform interprocedural analysis, and
whether to apply optimizations across multiple procedures.

Syntax: ipa=0|1

where

0 Do not perform interprocedural analysis: optimize each procedure
individually. (First default value)

1 Perform interprocedural analysis: take multiple procedures into account as
part of optimization. (Second default value)

Usable in pragmas: no

Related control variables: none

Related control options: none

CONTROL VARIABLES

3-26 Rev 1 MECCUM/D

memlimit Memory Limit

3.4.13 Memory Limit (memlimit)

The memlimit control variable lets you increase the memory allocation for compiler
optimizations. If the compiler needs more memory than the 32 megabyte default to carry out all
the optimizations you request, the compiler performs the optimizations that fit within the limit,
then issues a message estimating the memory necessary for all the requested optimizations.

To increase the amount of memory the compiler allocates, enter this control variable with an
integer value: the compiler then can allocate that many megabytes of memory. In all situations, the
compiler performs the greatest degree of optimization possible within the memory limit.

Syntax: memlimit=0| i

where

0 Perform all requested optimizations, using the default 32 megabytes of
memory. If that is not possible, perform as many optimizations as possible,
then issue a message estimate of memory required for all the requested
optimizations. (First and second default values)

i An integer greater than 32: allocate this many megabytes; perform all
requested optimizations possible in this space.

Usable in pragmas: no

Related control variables: none

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-27

nofp No FP Moves

3.4.14 No FP Moves (nofp)

The nofp control variable determines whether the compiler can use floating-point loads and
stores to move non-floating-point data. If the compiler can do so, fewer instructions are necessary
to move a given amount of data.

Syntax: nofp=0|1

where

0 Allow the use of floating-point loads and stores to move non-floating-point
data.

1 Do not allow the use of floating-point loads and stores to move non-
floating-point data. (First and second default values)

Usable in pragmas: no

Related control variables: none

Related control options: none

CONTROL VARIABLES

3-28 Rev 1 MECCUM/D

pic Position Independent Code

3.4.15 Position Independent Code (pic)

The pic control variable determines whether the compiler generates position independent
(relocatable) code. If the compiler does, at run time you can move the .text section to an
address different from the address it received during linking. Instructions may reference symbols
in the .text section, but this does not require the symbols to be at particular addresses.

Syntax: pic=0|1

where

0 Do not make code position independent. (First default value)

1 Make code position independent. (Second default value)

NOTE

The extended conformance level of the PowerPC Embedded
Application Binary Interface (EABI) standard includes a definition
of position independent code. If you use the pic control variable
with the value 1, the compiler generates position independent code
that does not comply with the EABI definition.

Specifying code to be position independent, imposes an initialization restriction regarding any
global or static variable that is a pointer to a function. Your declarations cannot give such a
variable an initial value that specifies a function address.

If an executable consists of multiple object files or library files, you must compile each object or
library file with the pic value 1, in order for the executable to be position-independent

Appendix C explains library routines, some of which support the position-independent code that
you produce via the pic control variable.

Usable in pragmas: no

Related control variables: pid

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-29

pid Position Independent Data

3.4.16 Position Independent Data (pid)

The pid control variable determines whether the compiler generates position independent
(relocatable) data. If the compiler does, at run time you can move program sections containing
data to addresses different from the addresses they received during linking. Instructions may
reference data in such sections, but this does not require the data to be at particular addresses.

Syntax: pid=0|1

where

0 Do not make data position independent. (First default value)

1 Make data position independent. (Second default value)

Specifying data to be position independent only affects global and static variables. The object
code creates variables with local extent (automatic variables) upon entry to a function or block;
upon exiting the function or block, the object code destroys automatic variables.

Specifying data to be position independent imposes an initialization restriction regarding any
global or static pointer variable. Your declarations cannot give such a position independent
pointer variable an initial value that specifies the address of another position independent variable
(including string constants).

NOTES

The extended conformance level of the PowerPC Embedded
Application Binary Interface (EABI) standard includes a definition
of position independent code. If you use the pid control variable
with the value 1, the compiler generates position independent code
that does not comply with the EABI definition.

With regard to position independence, the compiler considers the
sections .data , .bss , and .sbss to be a single segment of
read/write data. Any run-time relocation of read/write data must
move all read/write sections as a unit, by the same amount.
Similarly, the compiler considers the sections .rodata and
.sdata2 to be a single segment of read-only data; a run-time
relocation of read-only data must move all the read-only sections as
a unit.

CONTROL VARIABLES

3-30 Rev 1 MECCUM/D

pid Position Independent Data

NOTE

The computer addresses the read/write data relative to the SDA
register and the read-only data relative to the SDA2 register. This
enables the object program to update these registers if there is a
run-time relocation of data. Chapter 7 of the MEAS assembler
user's manual gives more information about the SDA and SDA2
registers.

If an executable consists of multiple object files or library files, you must compile each object or
library file with the pid value 1, in order for the executable’s data to be position independent.

Appendix C explains library routines, some of which support the position-independent code that
you produce via the pid control variable.

Usable in pragmas: no

Related control variables: pic

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-31

quit Quit for Diagnostics

3.4.17 Quit for Diagnostics (quit)

The quit control variable works with control variable diag to determine how the compiler
responds to deviations from the C-language standard. In particular, quit determines the
deviation severity level at which the compiler quits (that is, does not try to produce a .s file).

If the compiler quits based on a remark, warning, or error, it continues compilation activity, trying
to find any additional deviations.

Note that the basis for quitting is the deviation, not the corresponding diagnostic message. For
example, if the quit value is 2 and the diag value is 0 when the compiler finds a remark
deviation, compilation stops but the compiler does not output a remark message.

(Paragraph 3.4.6 explains the categories of MECC diagnostic messages.)

Syntax: quit= i

where i is

0 Quit based on error or fatal-error deviations; output corresponding
diagnostic messages. (First default value)

1 Quit based on warning, error, or fatal-error deviations; output
corresponding diagnostic messages per the diag value. (Second default
value)

2 Quit based on remark, warning, error, or fatal-error deviations; output
corresponding diagnostic messages per the diag value.

Usable in pragmas: no

Related control variables: diag

Related control options: -w

CONTROL VARIABLES

3-32 Rev 1 MECCUM/D

retpts Return Points

3.4.18 Return Points (retpts)

The retpts control variable determines whether routines of the compiled code may have
multiple return points. (A return point is a sequence of instructions that return program flow to
the calling routine.) Code that includes multiple return points usually executes faster than
equivalent code that has only one return point, even though the multiple-return-point code is
larger. Accordingly, the compiler can add return points to improve performance. Additionally,
certain other optimizations may create multiple return points from a single source-code return
statement, further enhancing execution speed.

Syntax: retpts=0|1

where

0 Allow multiple return points for compiled routines.

1 Compile code so that each routine has just one return point. (First and
second default value)

Usable in pragmas: yes

NOTE

If your source file includes any #pragma moto retpts
statement, the statement must not be within the body of any
function. The pragma’s effect lasts until the compiler encounters
another #pragma moto retpts statement, or until the compiler
arrives at the end of the routine.

Example: This example is compiled with the -O option.

int a, b, c;
/* Suppress collapsing of multiple return points into a common */
/* return point. */
#pragma moto retpts=0
void main (int arg1, int arg2)
{
 if (arg1 > 0) {
 a = 12;
 b = 0;
 c = 10;
 return;
 }
 if (arg1 < 0) {
 a = b = c = 99;
 return;
 }
}
/* Collapsing multiple return points into a common return point. */
#pragma moto retpts=1
void other (int arg1, int arg2)

CONTROL VARIABLES

MECCUM/D Rev 1 3-33

retpts Return Points
{
 if (arg1 > 0) {
 a = 12;
 b = 0;
 c = 10;
 return;
 }
 if (arg1 < 0) {
 a = b = c = 99;
 return;
 }
}

Related control variables: rsave

Related control options: none

CONTROL VARIABLES

3-34 Rev 1 MECCUM/D

rosda_alloc Read-Only SDA Allocation

3.4.19 Read-Only Small Data Area Allocation (rosda_alloc)

The rosda_alloc control variable directs the compiler to allocate constant global variables in
the .sdata2 area. The rosda_alloc value is the maximum number of bytes such a variable
may occupy in that area. If the size of the variable exceeds the rosda_alloc value, the compiler
instead allocates the variable in the .rodata area.

The rosda_alloc value also affects how the compiler addresses external constant global
variables. If the rosda_alloc value is 8, the compiler generates code to access all constant
externals of 8 or fewer bytes as if they were allocated in the .sdata2 area. The compiler
assumes that any external constants larger than 8 bytes must be in the .rodata area.

Allocating constant global variables in the .sdata2 area makes it possible to address them using
a 16-bit offset and the SDA2 register. (Chapter 7 of the MEAS assembler user's manual gives
more information about the SDA2 register.) This means that in most cases loading a value
requires only one instruction, leading to smaller, faster compiled code.

NOTE

If an executable consists of multiple object files or library files, you
should compile each object or library file with the same
rosda_alloc value. Doing otherwise could prevent linking or
cause incorrect program execution.

Syntax: rosda_alloc= i

where i is

0 Do not allocate constant global variables to the .sdata2 area; allocate all
constant global variables to the .rodata area.

1 32768 Allocate to the .sdata2 area constant global variables whose size is less
than or equal to this value; allocate larger constant global variables to the
.rodata area. (The first and second default value is 8.)

Usable in pragmas: no

Related control variables: sda_alloc

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-35

rsave Register Save

3.4.20 Register Save (rsave)

The rsave control variable determines what instructions the compiler uses to save or restore
registers in function prologs and epilogs.

Syntax: rsave=normal|multiple

where

normal Use one instruction per general purpose register to save or restore
registers. (First default value)

multiple Use a load/store multiple word instruction to save or restore general
purpose registers. (Second default value)

Usable in pragmas: yes

NOTE

If your source file includes any #pragma moto rsave statement,
the statement must not be within the body of any function. The
pragma’s effect lasts until the compiler encounters another
#pragma moto rsave statement, or until the compiler arrives at
the end of the file.

Example: This example has no visible results unless the -O option value is 3 or greater.

void external_func (int *, int *)
/* Use a single stmw (store multiple word) and single lmw (load
 * multiple word) to save/restore general purpose registers in
 * function prolog/epilong sequences.
 */
#pragma moto rsave=multiple
void main(void)
{
 int a, b, c, d;

 a = 22;
 b = 44;
 for (c = 10; c < 100; c++)
 for (d = 0; d < 10; d++)
 printf (“alpha”, a, “beta”, b, “gamma”, “delta”, c, d);
 external_func(&a, &b);
}
/* Use multiple stw (store word) and lwz (load word) instructions to
 * save/restore general purpose registers in function prolog/epilog
 * sequences.
 */
#pragma moto rsave=normal
void other(void)

CONTROL VARIABLES

3-36 Rev 1 MECCUM/D

rsave Register Save
{
 int a, b, c, d;

 a = 22;
 b = 44;
for (c = 10; c < 100; c++)
 for (d = 0; d < 10; d++)
 printf (“alpha”, a, “beta”, b, “gamma”, “delta”, c, d);
 external_func(&a, &b);
}

Related control variables: retpts

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-37

sched Instruction Scheduling

3.4.21 Instruction Scheduling (sched)

The sched control variable determines whether and when the compiler does instruction
scheduling.

Instruction scheduling is reordering instructions to take advantage of the processor’s capabilities.
In particular, if the processor can execute certain instructions in parallel, instruction scheduling
can reduce program execution time significantly.

The -O control option assigns a value to sched automatically: -O0 or -O1 gives sched the
value 0; - O2, -O3 , or -O4 gives sched the value 1.

Syntax: sched= i

where i is

0 Do no instruction scheduling. (First default value)

1 Do instruction scheduling only during pass one of register allocation.

2 Do instruction scheduling during pass one and during pass two of register
allocation. (Second default value)

Usable in pragmas: no

Related control variables: comment

Related control options: -O

CONTROL VARIABLES

3-38 Rev 1 MECCUM/D

sda_alloc SDA Allocation

3.4.22 Small Data Area Allocation (sda_alloc)

The sda_alloc control variable directs the compiler to allocate global variables in the .sdata
and .sbss areas. The sda_alloc value is the maximum number of bytes such a variable may
occupy in that area. If the size of the variable exceeds the sda_alloc value, the compiler instead
allocates the variable in the .data or .bss area.

The sda_alloc value also affects how the compiler addresses external non-constant global
variables. If the sda_alloc value is 8, the compiler generates code to access all externals of 8 or
fewer bytes as if they were allocated in the .sdata or .sbss area. The compiler assumes that
any external variables larger than 8 bytes must be in the .data or .bss area.

Allocating global variables in the .sdata or .sbss area makes it possible to address them using
a 16-bit offset and the SDA register. (Chapter 7 of the MEAS assembler user's manual gives more
information about the SDA register.) This means that in most cases loading a value requires only
one instruction, leading to smaller, faster compiled code.

NOTE

If an executable consists of multiple object files or library files, you
should compile each object or library file with the same
sda_alloc value. Doing otherwise could prevent linking or cause
incorrect program execution.

Syntax: sda_alloc= i

where i is

0 Do not allocate globals to the .sdata or .sbss area; allocate all globals
to the .data or .bss area.

1 32768 Allocate to the .sdata area global variables whose size is less than or
equal this value; allocate larger global variables to the .data area. (The
first and second default value is 8.)

Usable in pragmas: no

Related control variables: rosda_alloc

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-39

space Limit Code Space

3.4.23 Limit Code Space (space)

The space control variable directs the compiler to favor smaller executable code instead of faster
executable code. (Certain code sequences may execute faster in a PowerPC processor, even
though they take up more space than comparable sequences.)

Syntax: space= i

where i is

0 Favor faster-executing code over smaller code.

1 Balance considerations of code execution speed versus code size. (First
default value)

2 Favor small code over faster-executing code. (Second default value)

Usable in pragmas: no

Related control variables: none

Related control options: -O

CONTROL VARIABLES

3-40 Rev 1 MECCUM/D

targ Target Processor

3.4.24 Target Processor (targ)

The targ control variable tells the compiler the processor on which the program is to be run.
This knowledge enables the compiler to apply certain processor-specific enhancements to its
optimizations.

Syntax: targ= i

where i is

505 Apply optimization enhancements specific for a 505 target processor.
(First and second default value)

601 Apply optimization enhancements specific for a 601 target processor.

603 Apply optimization enhancements specific for a 603 target processor.

604 Apply optimization enhancements specific for a 604 target processor.

Usable in pragmas: no

Related control variables: none

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-41

unroll Loop Unrolling

3.4.25 Loop Unrolling (unroll)

The unroll control variable determines the level of loop unrolling the compiler is to perform.

Loop unrolling is replicating several times the code of innermost loops. This means that the
system tests fewer conditions, reducing program execution time.

The -O control option assigns a value to unroll automatically: -O0 or -O1 gives unroll the
value 0; -O2 , -O3 , or -O4 gives unroll the value 1.

Syntax: unroll= i

where i is

0 Do no loop unrolling. (First default value)

1 Do loop unrolling under automatic control. (Second default value)

2 or more Do loop unrolling for every possible loop this many times.

Usable in pragmas: yes

NOTE

You may place a #pragma moto unroll statement anywhere in
a C source file. The pragma’s effect lasts until the compiler
encounters another #pragma moto unroll statement, or until
the compiler arrives at the end of the file.

Example: For this example, assume that the -O option value is 2 or greater.

#define AS 20
main()
{
 int 1;
 int iA[AS];
 float aA[AS];
 for (i = 0; i < AS; i++) { /* This loop gets unrolled. */
 iA[i] = 0;
 }
#pragma moto unroll=0
 for (i = 0; i < AS; i++) { /* This loop will not be unrolled. */
 aA[i] = 1.0;
 }
}
same_func()

CONTROL VARIABLES

3-42 Rev 1 MECCUM/D

unroll Loop Unrolling
{
 int i;
 int iA[AS];
 float aA[AS];
 for (i = 0; i < AS; i++) { /* This loop will not be unrolled. */
 iA[i] = 0;
 }
#pragma moto unroll=1
 for (i = 0; i < AS; i++) { /* This loop will be unrolled. */
 aA[i] = 1.0;
 }
}

Related control variables: none

Related control options: -O

CONTROL VARIABLES

MECCUM/D Rev 1 3-43

volatile Volatile Variables

3.4.26 Volatile Variables (volatile)

The volatile control variable contains the list of variables which the compiler is to consider
volatile. There is no default value for volatile .

Syntax: volatile=name1+name2+...

where name1+name2+... is the list of variables

The special name %volatile lets you redefine the list of volatile variables in terms of the most
recent definition, plus or minus other variable names. For example, this command-line argument:

 -Avolatile=xxx+yyy

declares variables xxx and yyy volatile. Later, in the same command line, you could declare zzz
volatile, as well, by including this additional argument:

-Avolatile=%volatile+zzz

Use the minus sign to remove a variable from the list of volatile variables. For example, suppose
that you included this third argument in the same command line:

 -Avolatile=%volatile-yyy

When the compiler processes this argument, it would remove yyy from the list of volatile
variables, leaving xxx and zzz still volatile.

The special name %all tells the compiler to consider all the variables volatile, including global
variables, local static variables, and automatic stack variables. For example, this command-line
argument:

 -Avolatile=%all-www

tells the compiler to consider all the variables but www volatile. Use %all carefully, however, as
identifying most variables volatile severely limits the compiler’s ability to optimize your code.

Usable in pragmas: yes

NOTE

You must place a #pragma moto volatile statement before
the declarations of variables to be declared volatile. Once the
compiler encounters the definition of a variable, #pragma moto
volatile statements cannot make the variable volatile.

CONTROL VARIABLES

3-44 Rev 1 MECCUM/D

volatile Volatile Variables

Example: For this example, assume that the command line includes the arguments -O
-Avolatile=counter2 .

/* Add counter to the list of volatile variables */
#pragma moto volatile=%volatile+counter
int counter;

/* Removed counter2 from the list or volatile variables */
#pragma moto volatile=%volatile-counter2
int counter2;
void function1 (void)
{
 counter = 10;
 counter = 20; /* This store will not be optimized out. */
}
void function2 (void)
{
 counter = 30;
 counter = 40; /* This store will not be optimized out. */
}
void function3 (void)
{
 counter = 50;
 counter = 60; /* This store will not be optimized out. */
}
/* Try to make counter2 volatile again, This will not work. */
#pragma moto volatile=%volatile
void function4 (void)
{
 counter = 30;
 counter = 40; /* This store will not be optimized out. */
 counter2 = 70;
 counter2 = 80; /* This store will be optimized out. */
}
void function5 (void)
{
 counter = 70;
 counter = 80; /* This store will be optimized out. */
 counter2 = 90;
 counter2 = 100; /* This store will be optimized out. */
}

Related control variables: defvol

Related control options: none

CONTROL VARIABLES

MECCUM/D Rev 1 3-45

3.5 ALTERNATE ASSIGNMENT SYNTAX

Paragraph 3.2 explained the basic syntax for assigning a value to a control variable: the name, an
equals sign, and the value, as part of a -A or -AA control option. Provided there is no ambiguity,
you can use any of these alternate patterns:

• the name, an equals sign, and the value in parentheses

• the name and the value in parentheses (without an equals sign)

• the name and the value (without an equals sign)

This means that any of these control options assigns the value 4 to control variable inllev :

-Ainllev=4 -Ainllev=(4) -Ainllev(4) -Ainllev4

You may even mix syntaxes for a control option that assigns several values:

-Aagim=(1), inllev(0), retpts=(0), unroll7, defvol=1, space1

But to prevent ambiguity, the syntax for a name control variable must have an equals sign or
parentheses. Any of these control options assigns the value ansi to control variable c :

-Ac=ansi -Ac=(ansi) -Ac(ansi)

Value assignments for name-list control variables must have addition signs, but may use
parentheses instead of the equals sign. Either of these examples assigns the same names to
volatile :

-Avolatile=press+temp+relhum+dewpt

-Avolatile(press+temp+relhum+dewpt)

The compiler lets you assign multiple values, in any order, in mixed syntax, in the same -A or
-AA control option. Accordingly, many possible control options assign exactly the same values,
even though they differ in syntaxes and order.

CONTROL VARIABLES

3-46 Rev 1 MECCUM/D

3.6 INLINE ASSEMBLY PSEUDO-FUNCTIONS

The special pseudo-functions asm() , __asmul() , and __asmd() let you embed PowerPC
assembly language in your C source code anywhere that C allows a function call. This lets you
access supervisor-level instructions without writing assembly-language programs.

You can use these pseudo-functions anywhere C allows a normal function call. (You may think of
such a pseudo-function as another executable statement of your C program.)

NOTE

Use the inline assembly pseudo-functions carefully. Each entails
significant potential for embedding assembly-language statements
that could cause incorrect program execution. For example, you
could easily overlook an interaction between the assembly
instruction you embed into the code and the code the compiler
generates.

Although these pseudo-functions are not part of standard ANSI C, there are two ways to make
their use possible:

• Use the K&R or relaxed C dialect instead of ANSI C. The c control variable lets you
specify either dialect; the -K option specifies the K&R dialect.

• Enable the pseudo-functions by specifying the value 1 for the asm control variable.

(If you use any of these pseudo-functions with standard ANSI C, the compiler will regard it as a
user-supplied function, generating a call to a function named asm() , __asmul() , or
__asmd() .

3.6.1 asm()

The asm() pseudo-function embeds the specified assembly-language instructions in your C
source code. This pseudo-function does not have a return value.

Syntax: asm(" instruction ")

where instruction is one or more valid PowerPC assembly-language instructions, to be inserted
verbatim into the .s file the compiler generates.

CONTROL VARIABLES

MECCUM/D Rev 1 3-47

NOTES

The compiler cannot verify that the instruction value consists of
valid PowerPC assembly-language instructions. Using the asm()
pseudo-function with any other instruction value can cause
incorrect code.

The compiler does not know which assembly-language instructions
you use in the asm() pseudo-function, so the compiler cannot
protect against any error that these instructions may cause by
modifying registers.

Example: This program inserts the eieio instruction into the .s file:

extern void some_other_routine(int arg1, int arg2);

void main(void)

{

int a, b;

 a = 12;

asm("\teieio\t\t\t #inserted by asm() pseudo-function");

b = 20;

some_other_routine(a,b);

}

Note that the function argument contains tab formatting directives (\t) as well as the eieio

instruction. Placing a leading tab and a trailing comment in this way makes it easy to find the
inserted instruction in the .s file.

The corresponding part of the generated .s file would be code of this form:

.main:

start of prologue, stack size = 64

mfspr r0,1r

stw r0,0x8(sp)

stwu sp,-64(sp)

end of prologue

addi r3,r0,0xc

stw r3,0x38(sp)

eieio #inserted by asm() pseudo-function

addi r4,r0,0x14

CONTROL VARIABLES

3-48 Rev 1 MECCUM/D

stw r4,0x3c(sp)

bl .some_other_routine

nop

.

.

The eieio instruction appears between the assignments of value 12 to variable a and value 20 to
variable b.

3.6.2 __asmul()

The __asmul() pseudo-function function embeds the specified assembly-language instructions
in your C source code, and lets your inline assembly read and write C variables. This pseudo-
function has a return value: the contents of r3 (a value of type unsigned long).

Syntax: unsigned long __asmul (" instruction ", [values ,...])

where

unsigned long indicates the return-value type. The return value is the value in register r3 .

instruction is one or more valid PowerPC assembly-language instructions, to be
inserted verbatim into the .s file the compiler generates.

values are as many as 8 non-floating-point argument values, and as many as 8
floating-point argument values. The compiler assigns the non-floating-point
values to registers r3 through r10 ; it assigns the floating-point values to
registers f1 through f8 . Once in registers, these values are available to the
instructions that make up the instruction value.

The compiler loads the values values into registers before it embeds the instruction instructions.
This lets your inline assembly code operate on those values.

The __asmul() pseudo-function is much like a function call to the compiler: the compiler
saves values of volatile registers before executing the pseudo-function, and restores those register
values after executing the pseudo-function. This means that the embedded instructions can use
volatile registers without interfering with other code the compiler generates. Paragraph 5.2 gives
additional information about register usage.

CONTROL VARIABLES

MECCUM/D Rev 1 3-49

NOTES

The compiler cannot verify that the instruction value consists of
valid PowerPC assembly-language instructions. Using the
__asmul() pseudo-function with any other instruction value can
cause incorrect code.

The compiler loads values values into registers according to the
parameter-passing conventions paragraph 5.4 explains.

The compiler does not know which assembly-language instructions
you use in the __asmul() pseudo-function, so the compiler
cannot protect against any error that these instructions may cause
by modifying registers.

Example:

{

 unsigned long a = 2;

 unsigned long b = 3;

 unsigned long c;

 c = __asmul("\

 andi r3,r3,0xff \n\

 andi r4,r4,0xff \n\

 add r3,r3,r4 \n\", a, b);

}

In this example, the compiler passes arguments (local variables a and b) to __asmul(). The
pseudo-function loads them into r3 and r4 , per the parameter passing conventions. The
assembly instructions operate on these values, leaving the result in r3 . The pseudo-function
returns the value in r3 , assigning it to variable c .

CONTROL VARIABLES

3-50 Rev 1 MECCUM/D

3.6.3 __asmd()

The __asmd() pseudo-function function embeds the specified assembly-language instructions
in your C source code, and lets your inline assembly read and write C variables. This pseudo-
function has a return value: the contents of f1 (a value of type double).

Syntax: double __asmd(" instruction ", [values ,...])

where

double indicates the return-value type. The return value is the value in register f1 .

instruction is one or more valid PowerPC assembly-language instructions, to be
inserted verbatim into the .s file the compiler generates.

values are as many as 8 non-floating-point argument values, and as many as 8
floating-point argument values. The compiler assigns the non-floating-point
values to registers r3 through r10 ; it assigns the floating-point values to
registers f1 through f8 . Once in registers, these values are available to the
instructions that make up the instruction value.

The compiler loads the values values into registers before it embeds the instruction instructions.
This lets your inline assembly code operate on those values.

The __asmd() pseudo-function is much like a function call to the compiler: the compiler saves
values of volatile registers before executing the pseudo-function, and restores those register
values after executing the pseudo-function. This means that the embedded instructions can use
volatile registers without interfering with other code the compiler generates. Paragraph 5.2 gives
additional information about register usage.

NOTES

The compiler cannot verify that the instruction value consists of
valid PowerPC assembly-language instructions. Using the
__asmd() pseudo-function with any other instruction value can
cause incorrect code.

The compiler loads values values into registers according to the
parameter-passing conventions paragraph 5.4 explains.

The compiler does not know which assembly-language instructions
you use in the __asmd() pseudo-function, so the compiler
cannot protect against any error that these instructions may cause
by modifying registers.

CONTROL VARIABLES

MECCUM/D Rev 1 3-51

Example:

{

 double fpscr;

 fpscr = __asmd(“mffs f1\n”)

}

In this example, the mffs instruction moves the contents of register FPSCR into f1 . The
pseudo-function returns the contents of f1 , assigning them to the C variable fpscr .

CONTROL VARIABLES

3-52 Rev 1 MECCUM/D

COMPILER OPTIMIZATIONS

MECCUM/D Rev 1 4-1

CHAPTER 4

COMPILER OPTIMIZATIONS

This section explains considerations for optimization and the kinds of optimization that the
compiler can perform.

4.1 CONSIDERATIONS FOR OPTIMIZATION

Previous chapters explain how to have the compiler apply many kinds of optimization to your
source code, and how to specify the degree of these optimizations. Before you apply
optimization, however, you should note these implications:

1. Compilation takes more time when it includes optimization. The higher the
optimization level, the more analyses the compiler must perform, so the longer it takes
to compile your program.

2. If different compilations with optimizations enabled cause your program to produce
different results, a source program probably is incorrect.

3. Optimization can interfere with a source-level debugger. If you plan to use the
Motorola Embedded Debugger (MEDB) to debug your code, Motorola strongly
recommends that that you compile with the -g (include debugging) option and accept
the default optimization level (-O1).

Also note that optimization usually gives better results when you submit more of the program to
the compiler at one time. For example, assume that the source program loads a variable both
before and after calling a subroutine. Also assume that the subroutine calls several other
subroutines. If you submit only the main routine, the compiler must allow the subroutines to
modify the variable. This means that the compiler must retain both load instructions.

But if you submit all the routines at the same time, the compiler can determine whether the
subroutines can modify the variable. If they cannot, the compiler can decrease execution time by
storing the variable value in a register, eliminating the second load instruction.

However, the drawbacks of a single, large compile invocation is that compilation takes
significantly more time.

Paragraph 4.2 explains each of the possible MECC optimizations.

COMPILER OPTIMIZATIONS

4-2 Rev 1 MECCUM/D

4.2 OPTIMIZATION TYPES

Paragraphs 4.2.1 through 4.2.17 explain the different types of optimizations that the compiler can
perform. In some cases, a specific control variable governs the degree of one kind of optimization.
In other cases, a control variable governs the degree of several kinds of optimization.

Not all these optimizations reduce program execution time by the same amount. But in many
situations, an optimization that produces a marginal improvement itself enables other
optimizations to make dramatic improvements.

4.2.1 Alias Analysis

Alias analysis is checking whether source code includes multiple references to the same memory
object. Although not an optimization itself, alias analysis gathers information necessary for actual
optimizations.

Alias analysis reveals whether two memory references cannot refer to the same memory object, in
any possible execution. Such non-interfering references are opportunities for optimization.

At the same time, alias analysis determines whether there is any possible execution in which two
references do pertain to the same memory object. Such interfering references, or aliases, limit the
possible optimizations.

The compiler performs alias analysis based on:

• declarations of all variables that appear in the memory references.

• constant subscripts of non-pointer array references.

• pointer values within procedures.

• pointer values between procedures.

The value of the -O control option determines the number of these bases for alias analysis.

4.2.2 Call Modification Analysis

Call modification analysis is determining which objects can be modified by calling subroutines.
Although not an optimization itself, call modification analysis gathers information necessary for
actual optimizations.

Objects that cannot be modified because of a subroutine call may be opportunities for
optimization. Objects that can be modified because of a subroutine call limit the possible
optimizations.

COMPILER OPTIMIZATIONS

MECCUM/D Rev 1 4-3

For example, a subroutine can alter an argument passed by reference, so the argument is
modifiable. Similarly, a subroutine can alter a C global variable, so the variable is modifiable.

The compiler performs call modification analysis inside procedures or between procedures,
according to the value of the -O control option.

4.2.3 Eliminating Common Subexpressions

A common subexpression is an expression recomputation, even though there have been no value
changes in the variables that make up the expression. Common subexpressions are unnecessary,
so eliminating them speeds program execution.

For example, suppose that Line 2 of a block is:

r = 8*i/j;

that Line 6 is:

t = 50 + (8*i/j);

and that Line 11 is:

w = 8*i/j;

Lines 6 and 11 contain the common subexpression 8*i/j . If the block has no reassignments of
the i or j values between Lines 2 and 11, the compiler can substitute variable r for the
subexpression 8*i/j in lines 6 and 11. This eliminates two recalculations of the subexpression.

The value of the -O control option determines the level of eliminating common subexpressions.

4.2.4 Eliminating Dead Code

Dead code is source code that never will be executed, or for which results never will be used.
Eliminating dead code reduces program size. (Even if none of the original source code is dead,
some of the code can become dead after the compiler applies other optimizations.)

The value of the -O control option determines the level of dead-code elimination.

COMPILER OPTIMIZATIONS

4-4 Rev 1 MECCUM/D

4.2.5 Hoisting Code out of Loops

Hoisting code out of loops is moving invariant computations or store instructions out of loops, to
points outside. For example, if a while loop begins with the line:

while (dewpt >= avtemp+10)

the processor must compute the expression avtemp+10 for each execution of the loop. But if
nothing in the loop changes the value of avtemp , the compiler can move that calculation outside
the loop, as in:

t = avtemp+10

while (dewpt >= t)

This means that the processor calculates avtemp+10 only once.

The value of the -O control option determines the level of hoisting code out of loops.

4.2.6 Strength Reduction

Strength reduction is substituting expressions that use computationally less-expensive operators
(such as + and -) for expressions that have more powerful, time-consuming operators (such as *
and /). For example, suppose that a and b are integers, and that a source-code line is:

a = b * 9;

The compiler recognizes that multiplication by 8 would give the same result as a three-place left
shift. Addition of another b value would make the result the same as the original multiplication by
9. Accordingly, the compiler optimizes the assignment as:

a = (b << 3) + b;

Even together, the left-shift and addition operators are less expensive than the multiplication
operator, so the replacement assignment line executes more quickly than the original.

The value of the -O control option determines the level of strength reduction.

4.2.7 Copy Propagation

Copy propagation is using copy b as much as possible after a value assignment of the form b =
a, instead of using a again.

The compiler performs copy propagation within blocks (locally) or among blocks (globally). The
value of the -O control option determines the level of this optimization.

COMPILER OPTIMIZATIONS

MECCUM/D Rev 1 4-5

4.2.8 Constant Propagation

Constant propagation is calculating at compile time the expressions that involve constant
operands. Then, the compiler uses the constant values instead of variables (that is, propagates the
constant values) where no intervening reassignments would affect the variables. For example,
suppose that a and b are integers, and that a source-code line assigns a constant value to a:

a = 2;

Suppose that the value of a does not change before this subsequent line:

b = a + 25;

Knowing that a still has a constant value at this point, the compiler substitutes the constant for
the variable, speeding execution:

b = 2 + 25;

(This optimization also enables a subsequent constant-folding optimization that would make the
assignment b = 27 ; , further reducing program execution time.) The compiler performs constant
propagation within blocks (locally) or among blocks (globally). The value of the -O control
option determines the level of this optimization.

4.2.9 Forward Code Motion

Forward code motion is moving store instructions or invariant calculations from the body of a
loop to a point after the loop. The idea of forward code motion is similar to that of hoisting code
out of loops. But forward code motion pertains to situations in which the store or use of
calculations can take place after the loop body; this difference can be significant due to the
compiler’s internal processing. Forward code motion is particularly important for store
instructions.

For example, suppose that a while loop contains an assignment for variable a: the unoptimized
program must carry out a store instruction each time it executes the loop:

while (dewpt >= avtemp+10)
{
 a = a + 10;
 .
 .
}

COMPILER OPTIMIZATIONS

4-6 Rev 1 MECCUM/D

The optimizer establishes the temporary register r , giving it the value of a before the loop begins.
Within the loop, register r receives the incremented value. After the loop ends, a receives the
final r value. This optimization reduces the previous multiple store instructions to just one.

r = a;
while (dewpt >= avtemp+10)
{
 r = r + 10;
 .
 .
}
a = r;

The compiler performs forward code motion for loops that do not have conditional code flow or
for all loops. The value of the -O control option determines the level of this optimization.

4.2.10 Control Flow Optimization

Control flow optimization includes eliminating unreachable code, collapsing GOTOs that transfer
to other GOTOs, merging adjacent basic blocks (where possible), and simplifying branches. For
example, in the source code, instruction A jumps flow ahead to instruction B, but B is a jump
instruction to C. As part of control flow optimization, the compiler rewrites instruction A as a
jump to C and eliminates instruction B.

The value of the -O control option determines whether the compiler performs this optimization.

4.2.11 Loop Unrolling

Loop unrolling is changing the code of loops, to reduce the number of loop executions. This
means that the system tests fewer conditions during program execution, so the program runs
faster. Loop unrolling also increases the potential for other optimizations, such as schedule
instruction improvements.

Complete unrolling would eliminate a loop by making its code linear. Although this ultimate goal
rarely is possible, it often is possible for the optimizer to reduce the number of loop executions.

For example, this unoptimized loop executes 10 times:
for (i = 1; i <= 10; i++)
{
 a[i] = a[i] * b + 10
}

COMPILER OPTIMIZATIONS

MECCUM/D Rev 1 4-7

This unrolled loop carries out the same value assignments, but executes only five times:
for (i = 1; i <= 5; i = i + 2)
{
 a[i] = a[i] * b + 10;
 a[i+1] = a[i+1] * b + 10;
}

The unrolled loop may lead to further time saving if the processor can execute store instructions
in parallel. Such a processor can interleave the loads and stores of a[i] and a[i+1] with the
actual calculations. Note, however, that loop unrolling increases code size.

The value of control variable unroll determines whether the compiler performs loop unrolling
under automatic control or a specific number of times. The default value for this optimization is
not enabled. (You can set the unroll value indirectly by specifying the value of the -O control
option. The -O control option value 0 or 1 assigns the value 0 to unroll ; other -O control
option values assign the value 1 to unroll .)

4.2.12 Register Allocation

Register allocation is using registers to hold as many operand values as possible. Instructions
involving register operands take much less time than instructions involving operands in memory.
So an important way the compiler can speed program execution is to reassign specific memory
values to the fast registers of the target processor.

Beyond the few values that must be allocated to registers (such as the first few parameters for a
subroutine call), values that might well be held in registers are:

• Intermediate values involved in the language’s expression evaluation or statement
execution. Examples are subexpressions of the evaluated expressions and quantities
involved in addressing expressions.

• Scalar C variables: variables that are not arrays, array elements, structures, or structure
elements. Such scalars must have automatic extent and their addresses must not be
taken with the & operator.

As the number of available registers rarely equals the values that could be stored in registers, the
compiler attempts to find the greatest optimization benefit. One approach is to use registers to
hold the most frequently used variables. Where possible, the compiler even makes a register the
place where a variable lives, instead of storing the variable in memory.

Another part of register allocation is considering the order of computations: this order also can
affect program execution speed, so the compiler must decide whether to change the original order
of routines.

COMPILER OPTIMIZATIONS

4-8 Rev 1 MECCUM/D

The compiler performs register allocation inside procedures, between procedures without
reordering routines, or between procedures while reordering routines. The value of the -O control
option determines the level of this optimization.

4.2.13 Instruction Scheduling

Instruction scheduling is reordering machine instructions to exploit the characteristics of the
target processor. If, for example, the target processor lets certain instructions execute in parallel,
the compiler reorders instructions appropriately, reducing program execution time.

The compiler performs instruction scheduling during compiler pass one or during compiler passes
one and two. The value of control variable sched determines the level of this optimization.
Alternatively, the value of the -O control option can determine the level of this optimization.

4.2.14 Eliminating Loop Induction Variables

Loop induction variables are secondary or tertiary loop-control variables that have some
consistent relationship with the primary loop-control variable, no matter how many times the
processor executes the loop. The compiler uses the primary loop-control variable to devise new
expressions that substitute for the loop induction variables. This lets the compiler eliminate the
loop induction variables, reducing program execution time.

The value of the -O control option determines whether the compiler performs this optimization.

4.2.15 Global Instruction Movement

Global instruction movement is moving instructions across basic blocks, to improve instruction
scheduling. Note that a basic block is a sequence of instructions with these qualities: execution
must begin with the first instruction of the block, all contained instructions must be executed, and
execution ends with that last instruction of the block (that is, there cannot be any branches out of
the block).

The compiler performs global instruction movement for basic blocks executed non-conditionally
or for all possible blocks. The value of control variable gim determines the level of this
optimization.

4.2.16 Inlining Functions

Inlining a function is moving its instructions to the calling routine. If it is possible to inline a
particular function, the compiler eliminates the overhead of calling the function and returning from
the function.

COMPILER OPTIMIZATIONS

MECCUM/D Rev 1 4-9

Two MECC control variables give you control over this optimization: inline lets you list the
functions the compiler should consider for inlining, and inllev determines the size and
complexity of functions the compiler should inline. Alternatively, the value of the -O control
option can determine the level of this optimization, provided that you have supplied a value to
inline .

4.2.17 Multiple Return Points

A return point is a sequence of instructions that returns program flow to the calling routine.
Typically, a routine that has multiple return points executes faster than an equivalent routine that
has only one return point, even though the multiple-return-point routine code is larger. A
programmer can write C code that includes multiple return points; an optimizing compiler can add
return points as it compiles the code. Additionally, some other optimizations may create multiple
return points from a single source-code return statement, further enhancing performance.

The value of control variable retpts determines whether the compiler may create multiple return
points.

4.3 SETJMP AND LONGJMP FUNCTIONS

The functions setjmp and longjmp bear on appropriate levels of optimization. Processing for a
setjmp call includes storing register values in a buffer. Processing the return from longjmp
(back to the setjmp call) retrieves those values from the buffer and restores them to the
registers.

If setjmp returns with a nonzero value, static variables have their proper values as of the time
longjmp was called. Automatic (stack) variables local to the function containing the setjmp
call have their correct values in ANSI C only if the variables have been declared volatile or if the
values were not changed between the original call to setjmp and the corresponding longjmp
call.

In other words, if a program modifies the value of a register-resident variable between the
setjmp call and the longjmp call, the setjmp /longjmp mechanism restores the register set to
the values at the time of the original setjmp call.

The higher the optimization level, the greater the likelihood that automatic variables have been
kept in registers, rather than in memory. Therefore:

If, between setjmp and longjmp calls, program code modifies
any local variables that have automatic scope, your program must
not subsequently use such variables in any way that affects program
correctness.

COMPILER OPTIMIZATIONS

4-10 Rev 1 MECCUM/D

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-1

CHAPTER 5

EMBEDDED APPLICATION BINARY INTERFACE

To work smoothly with the output of the compiler, your assembly-language functions should
comply with the PowerPC Embedded Application Binary Interface (EABI) standard.

This section explains the most important EABI conventions, with regard to embedded
applications. For a discussion of all the conventions, consult the EABI standard itself.

5.1 DATA FORMATS

Data types in both your assembly-language functions and your C-language functions should
conform to the C scalar types. Table 5-1 lists these data types, along with the related assembler
pseudo operations.

EMBEDDED APPLICATION BINARY INTERFACE

5-2 Rev 1 MECCUM/D

Table 5-1. C Scalar Data Types

Scalar Type Storage Element Alignment PowerPC Format

signed char byte 1 byte signed byte

char,
unsigned char

byte 1 byte unsigned byte

short,
signed short

halfword 2 bytes signed halfword

unsigned short halfword 2 bytes unsigned halfword

int,
signed int,
long,
signed long,
enum

word 4 bytes signed word

unsigned int,
unsigned long

word 4 bytes unsigned word

long long,
signed long long

doubleword 8 bytes signed doubleword

unsigned long,
long

doubleword 8 bytes unsigned
doubleword

pointer to anything(1) word 4 bytes unsigned word

float word 4 bytes IEEE 32-bit float

double doubleword 8 bytes IEEE 64-bit float

long double(2) quadword 16 bytes quadword (IEEE
128-bit float)

(1) That is, a pointer to an object of any type.

(2) The long double format is 16-byte IEEE double extended precision with a sign
bit, 15-bit exponent (bias of -16383), and a 112-bit fraction.

These examples show equivalent C and assembly-language data definitions:

long i = 3; i: .long 3

double j; j: .double 0.0

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-3

5.2 REGISTER USAGE CONVENTIONS

The PowerPC architecture has 32 general-purpose registers, GPR0 through GPR31, which the
assembler refers to as r0 through r31 . Each GPR is 32 bits wide; Table 5-2 shows the usage
conventions for these registers.

Note that registers r0 , and r3 through r12 are volatile: a called function can modify the contents
of volatile registers without restoring the values. Thus, if function a_one calls function b_two ,
b_two could modify these volatile registers and return without restoring their values.
Consequently, a_one must save its own volatile values before calling b_two , then restore these
volatile values after the return from b_two .

Registers r13 through r31 are nonvolatile. A called function must save the contents of
nonvolatile registers before modifying them. The called function must restore the contents of
nonvolatile registers before returning to the calling function.

Table 5-2. General Purpose Register (GPR) Conventions

Register Status Use

r0 volatile For function prologs, epilogs, and other language-specific uses.

r1 dedicated Stack pointer (SP): always points to the lowest allocated valid stack
frame, growing toward low addresses. The word r1 points to
contains the address of the previously allocated stack frames. The
called function can decrement the stack frame.

r2 dedicated Contains the base of the ELF segment .sdata2 , if the object file has
that segment. (The base is a kind of central address for the segment:
every byte of the segment is within a signed, 16-bit offset of the
base.) User routines do not modify r2 .

r3, r4 volatile For parameter passing and return values.

r5 
r10

volatile For parameter passing.

r11,
r12

volatile For function prologs, epilogs, and other language-specific uses.

r13 dedicated Contains the base of the ELF segment .sdata , if the object file has
that segment. (The base is a kind of central address for the segment:
every byte of the segment is within a signed, 16-bit offset of the
base.) User routines do not modify r13 .

r14 
r31

nonvolatile For local calculation.

EMBEDDED APPLICATION BINARY INTERFACE

5-4 Rev 1 MECCUM/D

The PowerPC architecture defines 32 floating-point registers, FPR0 through FPR31, which the
assembler refers to as f0 through f31 . Each GPR is 64 bits wide; Table 5-3 shows the usage
conventions for these registers. (Note that registers f0 through f13 are volatile.)

Table 5-3. Floating Point Register (FPR) Conventions

Register Status Use

f0 volatile For language-specific uses.

f1 volatile For parameter passing and return values.

f2  f8 volatile For parameter passing.

f9 
f13

volatile For any uses.

f14 
f31

nonvolatile For any uses.

Note these additional conventions:

• Any routine that calls a variable-argument-list function must define the value of bit 6
of the condition register (CR) immediately before calling the function. (Paragraph 5.5
explains more about such functions.)

• The link register (LR) contains the address to which a called function normally returns.
Functions return by means of a blr instruction.

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-5

5.3 STACK FRAMES

Each function call adds a stack frame to the run-time stack storage area. Figure 5-1 shows the
layout of a stack frame.

High address

SP (low address)

 Back chain save word
 (previous frame)

FPR save area

GPR save area

CR save word

Local variables area

Parameter list area

LR save word

Back chain save word

Stack frame

Figure 5-1. EABI Stack Frame Layout

Source code must comply with these stack frame requirements:

1. The stack frame alignment is on an eight-byte boundary. The stack grows downward,
that is, toward lower addresses. If stack-frame padding is necessary to maintain an 8-
byte alignment, the padding must go into the local variables area.

2. The stack pointer (SP) points to the first word of the lowest stack frame: the back
chain word. The back chain word points to the low address (beginning) of the
previous stack frame, that is, to the stack frame of the calling function. (The first stack
frame of the stack is an exception: its back chain word has a zero value.)

3. If a called function needs another stack frame, the function must decrement the SP
value before calling another function or storing values in a stack-frame area. Before
executing the blr instruction that returns program flow to the calling function, the
called function must restore the original SP value.

EMBEDDED APPLICATION BINARY INTERFACE

5-6 Rev 1 MECCUM/D

4. To decrement the SP value and update the back chain value, code must use one of the
Store Word with Update instructions. The code must use a single instruction to restore
the SP value. This makes sure that the SP always points to the beginning of a linked
list of stack frames.

5. Except in the Store with Update instructions, offsets from the SP must not be
negative.

6. The calling routine allocates the parameter list area, making certain that this area is
large enough to contain all the called arguments.

7. If a function changes the value of any nonvolatile floating-point register, it first must
save the function-start values of that register and all higher-numbered floating-point
registers. The function stores these values in consecutive double words in the FPR
save area, so that the value of f31 is in the double word immediately below the back
chain word of the previous stack frame. (The nonvolatile floating-point registers are
f14 through f31 .) For example, in order to change the value in f20 , the function
first must use the FPR save area to store the values that registers f20 through f31
had when the function began.

8. If a function changes the value of any nonvolatile general-purpose register, it first must
save the function-start values of that register and all higher-numbered general-purpose
registers. The function stores these values in consecutive words in the GPR save area,
so that the value of r31 is in the word immediately below the FPR save area. (The
nonvolatile floating-point registers are r14 through r31 .) For example, in order to
change the value in r24 , the function first must use the GPR save area to store the
values that registers r24 through r31 had when the function began.

9. If a function changes the value of any nonvolatile field of the condition register (CR),
it first must save the function-start values of all CR fields. The function stores these
values in the CR save area.

10. The minimum stack frame consists of the back chain word and the LR save word. (The
standard calling sequence does not define a maximum stack-frame size.) The sizes of
other stack-frame areas depend on the assembly code algorithm. If a function will not
use other areas, it does not have to allocate space for them.

11. The LR save area is for storing the link register (LR) value, in case the function calls
another function. The called function stores the LR value in the LR save area of the
calling function’s stack frame. For example, function A calls function B; when B calls
function C, B saves the LR value in A’s stack frame.

If a function does not call any other functions and does not require any stack-frame areas, the
function does not have to create a stack frame.

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-7

5.4 PARAMETER PASSING

Using registers to pass parameter values, instead of using stack memory, makes the program
execute faster. But the finite number of registers and EABI constraints on types of values allowed
in registers limit this practice.

The PowerPC EABI lets user registers r3 through r10 pass as many as eight non-floating-point
arguments; it lets user registers f1 through f8 pass as many as eight floating-point arguments. (If
a function’s arguments do not need all these registers, the extra registers have undefined values
when function execution begins.)

Only if all the arguments do not fit into the registers should code allocate stack frame space for
argument storage. Even then, the code should allocate only enough space to hold the extra
arguments. Code must assign arguments to registers per the algorithm of paragraph 5.4.1.
Paragraph 5.4.2 shows an example of such argument passing.

5.4.1 Argument Passing Algorithm

This paragraph shows an appropriate algorithm for passing arguments. Explanatory comments
follow this algorithm.

INITIALIZE: Set fr to 1, gr to 3, and starg to the low address of the stack frame’s
parameter list area. (Exception: if the function to be called returns a long
double, or a struct or union longer than 8 bytes, set gr to 4.)

SCAN: If no more arguments, terminate.

Else, if argument is a 4-byte or smaller integer, is a pointer, or has been
converted to being passed as a pointer (that is, is a struct, union, or long
double):

Sign- or zero-extend argument value to 32 bits.

If gr < 11, pass value in GPR gr , add 1 to gr , and go to SCAN.
Otherwise, go to LIST_AREA and treat argument as a 4-byte long,
4-byte aligned value.

Else, if argument is an 8-byte integer (such as non-ANSI C long long):

If gr < 10, add 0 or 1 to gr to make it an odd number, pass value's
lower-addressed word in GPR gr , pass value's other word in GPR
gr+1 , add 2 to gr , and go to SCAN. Otherwise, go to
LIST_AREA and treat argument as an 8-byte long, 8-byte aligned
value.

EMBEDDED APPLICATION BINARY INTERFACE

5-8 Rev 1 MECCUM/D

Else, if argument is a 4-byte or 8-byte float:

Convert value to 8-byte float.

If fr < 9, pass value in FPR fr , add 1 to fr , and go to SCAN.
Otherwise, go to LIST_AREA and treat argument as an 8-byte
long, 8-byte aligned value.

LIST_AREA: Else, if argument is not handled above:

Round up starg , as needed, so that starg is a multiple of the
argument's alignment.

Copy the value, lowest to highest byte, to the location to which
starg points.

Add the argument's size to starg and go to SCAN.

Comment 1. A simple argument has a four-byte size and alignment. Code sign-extends a signed
simple-argument value shorter than 32 bits. Code zero-extends an unsigned simple-argument
value shorter than 32 bits. A simple argument is one of these types:

• A simple integer (char, short, int, long, or enum) no more than 32 bits wide.

• A pointer to an object of any type.

• A pointer to a structure or union.

Comment 2. Executable code in the called function must treat a structure or union argument as a
pointer to that structure or union object (or to a copy of the object). In a call-by-reference
environment, the pointer points to the object itself; in a call-by-value environment (such as C), the
pointer points to a copy of the object.

Comment 3. Float and double arguments have eight-byte size and alignment; float arguments are
converted to double representation when passed in FPRs.

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-9

5.4.2. Argument Passing Example

Suppose the system runs this code:

typedef struct
{

int a, b;
double dd;

} sparm;
sparm s, t;
int c, d, e, f, g, h, i;
double ff, gg, hh, ii, jj, kk, ll, mm, nn;

x = func(c, ff, d, gg, e, hh, f, ii, g, jj, h, kk, i, ll, s, mm,
t, nn);

Calling the function as shown assigns these values to registers and the stack frame:

• GPRs:

r3 : c r6 : f r9 : i

r4 : d r7 : g r10 : pointer to s

r5 : e r8 : h

• FPRs:

f1 : ff f4 : ii f7 : ll

f2 : gg f5 : jj f8 : mm

f3 : hh f6 : kk

• Stack frame offsets:

08 : pointer to t

0c : nn (low word)

10 : nn (high word)

EMBEDDED APPLICATION BINARY INTERFACE

5-10 Rev 1 MECCUM/D

5.5 VARIABLE ARGUMENTS

In C, functions may have variable-length arguments, or varargs. The ellipsis (...) in the function
prototype indicates a vararg. The printf function, for example, can take a vararg list.

The PowerPC EABI specifies that some arguments be passed in registers and that others be
passed on the stack. Accordingly, a vararg function must call the routine _va_arg to find the
locations and types of the arguments in the list.

Even if you do not need to write vararg routines, you should know how to write routines that call
printf or other vagarg routines. If such a calling routine passes any arguments in FPRs, the
calling routine must assign the value 1 to CR bit 6, via this instruction:

creqv 6, 6, 6 #set CR bit 6

A function that takes a vararg can test CR bit 6: the value 1 tells the function that arguments are
in FPRs. Accordingly, the function must perform eight doubleword saves.

For a routine that calls a vararg routine but does not pass any arguments in FPRs, Motorola
recommends that the calling routine assign the value 0 to CR bit 6, via this instruction:

crxor 6, 6, 6 #clear CR bit 6

If the vararg function tests CR bit 6, the value 0 tells the function that no arguments are in FPRs.
This does away with the need for eight doubleword saves.

5.6 RETURN VALUES

A function returns a float or double value in f1 , rounding a float. A function returns an int, long,
enum, short, char, or pointer value in r3 . The function rounds, sign-extends, or zero-extends an
r3 return value as appropriate.

A function returns a long long, or a union or structure of eight or fewer bytes, in r3 and r4 . The
function returns this value as if it had been read from memory: the lower-addressed word in r3 .
Values in bytes of r3 and r4 after the end of the return value are undefined.

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-11

For a return long double, or a return structure or union of more than eight bytes, the function uses
a storage buffer that the calling function allocates. The calling function passes the address of this
buffer as a hidden argument in r3 , as if it were the first argument. (For the argument-passing
algorithm of paragraph 5.4.1, this means that gr must be initialized to 4, instead of 3. As a result,
the registers used for argument passing are r4 through r10 .)

5.7 FUNCTION PROLOGS AND EPILOGS

Each function typically consists of three code sections: the prolog, the main body, then the epilog.
The code of the main body carries out the tasks of the function; previous paragraphs pertained to
the main body. This paragraph covers the prolog and epilog:

• The prolog sets up registers and performs other housekeeping tasks required before
the main body can execute. A prolog establishes a stack frame, if necessary, and may
save any nonvolatile registers that it uses.

• The epilog restores registers the prolog saved, restores the previous stack frame, and
returns to the calling function.

5.7.1 Prolog and Epilog Rules

The EABI does not dictate specific code sequences for prologs or epilogs. But your prologs and
epilogs must follow these rules (which permit call chain backtracking):

1. Before a function calls any other function, the calling function must establish its own
stack frame. The size of this stack frame must be a multiple of eight bytes. The calling
function must save the link-register (LR) value (at the time execution of the calling
function began) in the LR save word of the previous stack frame. (Assume, for
example, that function A calls function B, which calls function C. As part of calling C,
B establishes its own stack frame and saves the LR value in A’s stack frame.)

2. If a function establishes a stack frame, the function must use a Store Word with
Update instruction to update atomically the back chain word of the stack frame with
the SP.

a. For a stack frame no larger than 32 kilobytes, the prolog should use the stwu
instruction, with an appropriate negative displacement.

b. For a larger stack frame, the prolog must use the addis and addi instructions
or the ori instruction to compute the frame size. Then the prolog must load a
volatile register with the two’s complement of the frame size and issue a
stwux instruction.

3. When a function deallocates its stack frame, it must do so atomically using a single
instruction: either by loading the back chain value into the SP (r1) or by incrementing
the stack pointer (by the amount of the previous stack-pointer decrement).

EMBEDDED APPLICATION BINARY INTERFACE

5-12 Rev 1 MECCUM/D

4. If a function saves a nonvolatile GPR, the function also should save all higher-
numbered GPRs. If a function saves a nonvolatile FPR, the function also should save
all higher-numbered FPRs.

5.7.2 System Subroutines

A prolog may use in-line code to save volatile GPRs or FPRs; similarly, an epilog may use in-line
code to restore such values. But if a function must save and restore many register values, it may
be more efficient to call one of these subroutines:

• savefpr_l.o routines. These routines save FPR values in the FPR save area. These
routines also save r0 (which contains the function-entry LR value).

 .extern _savefpr_l4_l
 .extern _savefpr_l5_l
 .extern _savefpr_l6_l
 .extern _savefpr_l7_l
 .extern _savefpr_l8_l
 .extern _savefpr_l9_l
 .extern _savefpr_20_l
 .extern _savefpr_21_l
 .extern _savefpr_22_l
 .extern _savefpr_23_l
 .extern _savefpr_24_l
 .extern _savefpr_25_l
 .extern _savefpr_26_l
 .extern _savefpr_27_l
 .extern _savefpr_28_l
 .extern _savefpr_29_l
 .extern _savefpr_30_l
 .extern _savefpr_31_l

 .sect .text
 .long 0x00400000 #tag
_savefpr_l4_l: stfd f14, -144(r11)
_savefpr_l5_l: stfd f15, -136(r11)
_savefpr_l6_l: stfd f16, -128(r11)
_savefpr_l7_l: stfd f17, -120(r11)
_savefpr_l8_l: stfd f18, -112(r11)
_savefpr_l9_l: stfd f19, -104(r11)
_savefpr_20_l: stfd f20, -96(r11)
_savefpr_21_l: stfd f21, -88(r11)
_savefpr_22_l: stfd f22, -80(r11)
_savefpr_23_l: stfd f23, -72(r11)
_savefpr_24_l: stfd f24, -64(r11)
_savefpr_25_l: stfd f25, -56(r11)
_savefpr_26_l: stfd f26, -48(r11)
_

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-13

savefpr_27_l: stfd f27, -40(r11)
_savefpr_28_l: stfd f28, -32(r11)
_savefpr_29_l: stfd f29, -24(r11)
_savefpr_30_l: stfd f30, -16(r11)
_savefpr_31_l: stfd f31, -8(r11)
 stw r0, 4(r11)
 blr

• restfpr_l.o routines. These routines restore FPR values, restore the LR and the stack
frame pointer of the calling routine, and return to the calling routine.

 .extern _restfpr_l4_l

 .extern _restfpr_l5_l

 .extern _restfpr_l6_l

 .extern _restfpr_l7_l

 .extern _restfpr_l8_l

 .extern _restfpr_l9_l

 .extern _restfpr_20_l

 .extern _restfpr_21_l

 .extern _restfpr_22_l

 .extern _restfpr_23_l

 .extern _restfpr_24_l

 .extern _restfpr_25_l

 .extern _restfpr_26_l

 .extern _restfpr_27_l

 .extern _restfpr_28_l

 .extern _restfpr_29_l

 .extern _restfpr_30_l

 .extern _restfpr_31_l

 .sect .text

 .long 0x00600000 #tag

_restfpr_l4_l: lfd f14, -144(r11)

_restfpr_l5_l: lfd f15, -136(r11)

_restfpr_l6_l: lfd f16, -128(r11)

_restfpr_l7_l: lfd f17, -120(r11)

_restfpr_l8_l: lfd f18, -112(r11)

_restfpr_l9_l: lfd f19, -104(r11)

_restfpr_20_l: lfd f20, -96(r11)

_restfpr_21_l: lfd f21, -88(r11)

_restfpr_22_l: lfd f22, -80(r11)

_restfpr_23_l: lfd f23, -72(r11)

EMBEDDED APPLICATION BINARY INTERFACE

5-14 Rev 1 MECCUM/D

_restfpr_24_l: lfd f24, -64(r11)

_restfpr_25_l: lfd f25, -56(r11)

_restfpr_26_l: lfd f26, -48(r11)

_restfpr_27_l: lfd f27, -40(r11)

_restfpr_28_l: lfd f28, -32(r11)

_restfpr_29_l: lfd f29, -24(r11)

_restfpr_30_l: lfd f30, -16(r11)

_restfpr_31_l: lwz r0, 4(r11)

 lfd f31, -8(r11)

 mtlr r0

 ori r1, r11, 0

 blr

• savegpr_l.o routines. These routines save GPR values in the GPR save area. These
routines also save the LR value previously stored in r0 . You may use these routines
whether or not FPR values already have been saved.

 .extern _savegpr_14_l

 .extern _savegpr_15_l

 .extern _savegpr_16_l

 .extern _savegpr_17_l

 .extern _savegpr_18_l

 .extern _savegpr_19_l

 .extern _savegpr_20_l

 .extern _savegpr_21_l

 .extern _savegpr_22_l

 .extern _savegpr_23_l

 .extern _savegpr_24_l

 .extern _savegpr_25_l

 .extern _savegpr_26_l

 .extern _savegpr_27_l

 .extern _savegpr_28_l

 .extern _savegpr_29_l

 .extern _savegpr_30_l

 .extern _savegpr_31_l

 .sect .text

 .long 0x00400000 #tag

_savegpr_l4_l: stw r14, -72(r11)

_savegpr_l5_l: stw r15, -68(r11)

_savegpr_l6_l: stw r16, -64(r11)

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-15

_savegpr_l7_l: stw r17, -60(r11)

_savegpr_l8_l: stw r18, -56(r11)

_savegpr_l9_l: stw r19, -52(r11)

_savegpr_20_l: stw r20, -48(r11)

_savegpr_21_l: stw r21, -44(r11)

_savegpr_22_l: stw r22, -40(r11)

_savegpr_23_l: stw r23, -36(r11)

_savegpr_24_l: stw r24, -32(r11)

_savegpr_25_l: stw r25, -28(r11)

_savegpr_26_l: stw r26, -24(r11)

_savegpr_27_l: stw r27, -20(r11)

_savegpr_28_l: stw r28, -16(r11)

_savegpr_29_l: stw r29, -12(r11)

_savegpr_30_l: stw r30, -8(r11)

_savegpr_31_l: stw r31, -4(r11)

 stw r0, 4(r11)

 blr

• savegpr.o routines. These routines also save GPR values in the GPR save area, but
only if FPR values already have been saved. These routines also save the LR value
previously stored in r0 .

 .extern _savegpr_14

 .extern _savegpr_15

 .extern _savegpr_16

 .extern _savegpr_17

 .extern _savegpr_18

 .extern _savegpr_19

 .extern _savegpr_20

 .extern _savegpr_21

 .extern _savegpr_22

 .extern _savegpr_23

 .extern _savegpr_24

 .extern _savegpr_25

 .extern _savegpr_26

 .extern _savegpr_27

 .extern _savegpr_28

 .extern _savegpr_29

 .extern _savegpr_30

 .extern _savegpr_31

EMBEDDED APPLICATION BINARY INTERFACE

5-16 Rev 1 MECCUM/D

 .sect .text

 .long 0x00400000 #tag

_savegpr_14: stw r14, -72(r11)

_savegpr_15: stw r15, -68(r11)

_savegpr_16: stw r16, -64(r11)

_savegpr_17: stw r17, -60(r11)

_savegpr_18: stw r18, -56(r11)

_savegpr_19: stw r19, -52(r11)

_savegpr_20: stw r20, -48(r11)

_savegpr_21: stw r21, -44(r11)

_savegpr_22: stw r22, -40(r11)

_savegpr_23: stw r23, -36(r11)

_savegpr_24: stw r24, -32(r11)

_savegpr_25: stw r25, -28(r11)

_savegpr_26: stw r26, -24(r11)

_savegpr_27: stw r27, -20(r11)

_savegpr_28: stw r28, -16(r11)

_savegpr_29: stw r29, -12(r11)

_savegpr_30: stw r30, -8(r11)

_savegpr_31: stw r31, -4(r11)

 blr

• restgpr_l.o routines. These routines restore GPR values, restore the LR and the stack
frame pointer of the calling routine, and return to the calling routine. You may use
these routines whether or not FPR values already have been restored.

 .extern _restgpr_14_l

 .extern _restgpr_15_l

 .extern _restgpr_16_l

 .extern _restgpr_17_l

 .extern _restgpr_18_l

 .extern _restgpr_19_l

 .extern _restgpr_20_l

 .extern _restgpr_21_l

 .extern _restgpr_22_l

 .extern _restgpr_23_l

 .extern _restgpr_24_l

 .extern _restgpr_25_l

 .extern _restgpr_26_l

 .extern _restgpr_27_l

 .extern _restgpr_28_l

 .extern _restgpr_29_l

 .extern _restgpr_30_l

 .extern _restgpr_31_l

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-17

 .sect .text

 .long 0x00400000 #tag

_restgpr_l4_l: lwz r14, -72(r11)

_restgpr_l5_l: lwz r15, -68(r11)

_restgpr_l6_l: lwz r16, -64(r11)

_restgpr_l7_l: lwz r17, -60(r11)

_restgpr_l8_l: lwz r18, -56(r11)

_restgpr_l9_l: lwz r19, -52(r11)

_restgpr_20_l: lwz r20, -48(r11)

_restgpr_21_l: lwz r21, -44(r11)

_restgpr_22_l: lwz r22, -40(r11)

_restgpr_23_l: lwz r23, -36(r11)

_restgpr_24_l: lwz r24, -32(r11)

_restgpr_25_l: lwz r25, -28(r11)

_restgpr_26_l: lwz r26, -24(r11)

_restgpr_27_l: lwz r27, -20(r11)

_restgpr_28_l: lwz r28, -16(r11)

_restgpr_29_l: lwz r29, -12(r11)

_restgpr_30_l: lwz r30, -8(r11)

_restgpr_31_l: lwz r12, 4(r11)

 lwz r31, -4(r11)

 mtlr r12

 ori r1, r11, 0

 blr

• restgpr.o routines. These routines restore GPR values, restore the LR and the stack
frame pointer of the calling routine, and return to the calling routine, but only if the
FPR values already have been restored.

 .extern _restgpr_14

 .extern _restgpr_15

 .extern _restgpr_16

 .extern _restgpr_17

 .extern _restgpr_18

 .extern _restgpr_19

 .extern _restgpr_20

 .extern _restgpr_21

 .extern _restgpr_22

 .extern _restgpr_23

 .extern _restgpr_24

 .extern _restgpr_25

EMBEDDED APPLICATION BINARY INTERFACE

5-18 Rev 1 MECCUM/D

 .extern _restgpr_26

 .extern _restgpr_27

 .extern _restgpr_28

 .extern _restgpr_29

 .extern _restgpr_30

 .extern _restgpr_31

 .sect .text

 .long 0x00600000 #tag

_restgpr_14: lwz r14, -72(r11)

_restgpr_15: lwz r15, -68(r11)

_restgpr_16: lwz r16, -64(r11)

_restgpr_17: lwz r17, -60(r11)

_restgpr_18: lwz r18, -56(r11)

_restgpr_19: lwz r19, -52(r11)

_restgpr_20: lwz r20, -48(r11)

_restgpr_21: lwz r21, -44(r11)

_restgpr_22: lwz r22, -40(r11)

_restgpr_23: lwz r23, -36(r11)

_restgpr_24: lwz r24, -32(r11)

_restgpr_25: lwz r25, -28(r11)

_restgpr_26: lwz r26, -24(r11)

_restgpr_27: lwz r27, -20(r11)

_restgpr_28: lwz r28, -16(r11)

_restgpr_29: lwz r29, -12(r11)

_restgpr_30: lwz r30, -8(r11)

_restgpr_31: lwz r31, -4(r11)

 blr

An example of prolog and epilog code completes this section. (This example code is for a function
that does not alter the nonvolatile fields of the CR or the FPSCR and that does no dynamic stack
allocation.)

EMBEDDED APPLICATION BINARY INTERFACE

MECCUM/D Rev 1 5-19

.sect .text

.long 0x0000252C #tag word

function: ori r11, r1, 0 #save end-of-frame

stwu r1, -length(r1) #establish new frame

 mflr r0 #save LR in r0

bl _savefpr_14_1 #save LR, FPRs

la r11, -144(r11) #set up for, and

bl _savegpr_14 #save GPRs

#save CR, if needed

... #function main body

addi r11,r1, length-144 #restore GPRs

bl _restgpr_14

#restore CR, if needed

addi r11, r1, length #restore FPRs, LR,

bl _restfpr_14_1 #r1, and return

5.8 INSTRUCTION-SET RESTRICTIONS

An application may use any PowerPC processor instruction, except for Load/Store Multiple Word
instructions and Load/Store String instructions. Do not use any of these instructions in Little-
Endian applications, as they may cause alignment exceptions. In Big-Endian applications, such an
instruction usually is slower than a sequence of other instructions that has the same effect.

5.9 SMALL DATA AREAS

The EABI defines three small data areas (SDAs): data storage areas configured for very efficient
storage or retrieval. Every address in an SDA is within a 16-bit, signed offset from the SDA base
address. This means that each SDA can store as much as 64K bytes of data.

One of the SDAs always uses address 0 as its base address. The other two SDAs have specific
registers, called base registers, that contain their base addresses.

EMBEDDED APPLICATION BINARY INTERFACE

5-20 Rev 1 MECCUM/D

The three SDAs are:

• ELF sections .sdata and .sbss ; the base register is r13 . The linker or loader
determines the base address, assigning it to symbol _SDA_BASE_.

• ELF sections .sdata2 and . sbss2 ; the base register is r2 . The linker or loader
determines the base address, assigning it to symbol _SDA2_BASE_.

• ELF sections .PPC.EMB.sdata0 and .PPC.EMB.sbss0 . The base address always
is 0.

Your code can access data stored in SDAs via a single load or store instruction. Similarly, a single
instruction can produce the address of data stored in an SDA. This can reduce the size of your
code; this can increase the execution speed of your code.

For example, if site3 is a four-byte variable, in section .sdata , these code lines load site3's value
and address:

lwz r5,sda(site3)(r13) # loads r5 with value of site3

addi r6,r13,sda(site3) # loads r6 with address of site3

MECC ERROR MESSAGES

MECCUM/D Rev 1 A-1

APPENDIX A

MECC ERROR MESSAGES

The compiler features an error-detection subsystem that issues remarks, warnings, and error
messages. Table A-1 lists many of these messages, along with the probable causes and appropriate
corrective actions. Messages not in this table should be self-explanatory.

Table A-1. MECC Error Messages

Message Probable Cause Corrective Action

argument to macro is empty Missing argument in macro
calling statement.

Supply the missing argument.

array is too large Handling addresses for this
array would exceed limits.

Shrink one or more array elements.

array of functions is not
allowed

Array elements must have
known, consistent size;
functions have neither.

Convert to array of function pointers.

array of void is not allowed Array elements must be typed;
void is for untyped data.

Convert elements to some non-void
data type.

bit field cannot contain all
values of the enumerated type

Struct bit field too small for the
enumerated type.

In the struct declaration, specify
enough bits for the type.

cast between pointer-to-object
and pointer-to-function

Code attempts to cast a
pointer to a variable into a
pointer to a function (or vice
versa).

Do not use pointers to variables and
pointers to functions
interchangeably.

conversion of non-zero integer
to pointer

Code assigns (or uses) an
integer constant in a context
where the compiler expected a
pointer. The compiler
converted the constant to a
pointer.

Do not assign integer constant
values to pointers.

MECC ERROR MESSAGES

A-2 Rev 1 MECCUM/D

Table A-1. MECC Error Messages (cont.)

Message Probable Cause Corrective Action

could not open source file
<filename>.

File <filename> does not exist. Create file <filename>.

You do not have file
permissions to open file
<filename>.

Set appropriate permissions.

An #include statement
specified file <filename>, but
<filename> is not in any
directory of the -I (include)
search list.

Make sure that the -I search list
contains the directory in which file
<filename> resides.

could not open temporary file
<filename>.

Environment variable TMPDIR
specifies a directory that does
not exist.

Change TMPDIR or create the
specified directory.

You do not have sufficient file
permissions for the directory
that TMPDIR specifies.

Set appropriate permissions for the
specified directory.

The directory TMPDIR
specifies is full.

Delete unneeded files from the
directory.

declaration does not declare
anything

Accidentally omitting the
variable declarator list in a
declaration, as in:

 int;

Remove the empty declaration.

definition for function
<function> is missing

Code declares and references
a non-external (static) function,
but does not define the
function.

Define the missing static function in
the source file.

directive not allowed -- an
#else has already appeared

#else or #elif in a conditional
structure that already has an
#else.

Remove the inappropriate #else or
#elif, or change the first #else to an
#elif.

division by zero A constant expression that
evaluates to zero was
specified as a divisor.

Change the divisor or modify the
expression to avoid division by zero.

enumerated type mixed with
another type

Association of an enum-type
variable to another variable
that is not of the same enum
type.

Use explicit type casts during enum
assignments.

MECC ERROR MESSAGES

MECCUM/D Rev 1 A-3

Table A-1. MECC Error Messages (cont.)

Message Probable Cause Corrective Action

expression must be a
modifiable lvalue

Expression is not a modifiable
lvalue, but context requires it.

Replace the expression with a
complete lvalue not of type array, not
cross-qualified, and not a struct or
union.

expression must be an integral
constant expression

Expression contains
references to non-constant or
non-integral data.

Replace the expression with an
integral constant expression: one
that evaluates to an integral-,
character-, or enumeration-type
constant.

expression must be an lvalue Expression is not an lvalue,
but context requires it.

Replace the expression with an
lvalue: an expression that refers to
an object in a way that permits
examination and alteration of the
object.

expression must be an lvalue
or a function designator

Expression is not an lvalue or
function name, but context
requires one or the other.

Replace the expression with an
lvalue or function name.

external/internal linkage
conflict with previous
declaration

Code declares local a function
previously declared externally
visible from this module.

Remove the inappropriate
declaration.

field selection from incomplete
type not allowed

Code refers to a field selector
(member) of an incomplete
struct type.

Complete the struct type or remove
the field selector reference.

identifier-list parameters may
only be used in a function
definition

Using K&R declaration syntax
inappropriately.

Use prototypes when declaring a
function or do not use a parameter
identifier list for K&R-syntax function
declarations.

improperly terminated macro
invocation

One or more missing close
parentheses.

Use correct number of close
parentheses in macro calling
statements.

incomplete type not allowed Code contains array type of
unknown size, structure type
of unknown content, or union
type of unknown content in an
inappropriate context.

Make sure each type is complete
before code refers to it.

invalid use of non-lvalue array Code refers to a non-lvalue
array, but context requires an
lvalue array.

Change code, to refer to an lvalue
array.

MECC ERROR MESSAGES

A-4 Rev 1 MECCUM/D

Table A-1. MECC Error Messages (cont.)

Message Probable Cause Corrective Action

out of memory Compiling the program at the
requested optimization level
requires additional memory.

Use the -Amemlimit control
variable to increase available
memory, or lower the optimization
level.

pointer initialized to address of
position independent object.

Code initializes a pointer to be
the address of a position-
independent object.

Avoid initializing a pointer to the
address of a position-independent
object. Make such an assignment in
subsequent code, not in
declarations.

this entity may not be initialized Code specifies an initializer for
an object that cannot be
initialized, such as a
parameter or an object with an
incomplete type.

Do not attempt to initialize the object.

translation unit must contain at
least one declaration

Source file lacks any
declarations.

Include at least one declaration in
the source file.

LANGUAGE DIALECTS

MECCUM/D Rev 1 B-1

APPENDIX B

LANGUAGE DIALECTS

This appendix describes the three C dialects that the compiler accepts: ANSI, Kernighan and
Ritchie, and relaxed. The extensions, differences, or constructs of each dialect fall into these
standard categories:

1. Preprocessor

2. Variable/type declarations

3. Syntax

4. Pointer semantics

5. Expressions

6. Extensions

7. Extended operations

B.1 ANSI C

The compiler accepts the ANSI C language defined by X3.159-1989 plus these extensions:

1: Preprocessor:

• The compiler accepts comment text at the end of preprocessing directives.

2: Variable/type declarations:

• The compiler allows bit-fields with base types that are enums or integral types other
than int and unsigned int .

• The compiler accepts a multi-member struct in which the last member has an
incomplete array type.

• The compiler lets a file-scope array have an incomplete struct or union type as its
element type. However, the struct or union type must be completed before the array is
subscripted (if ever); the type must be completed by the end of compilation if the array
is not external.

• The compiler accepts static function declarations in function and block scopes, moving
these declarations to the file scope.

• The compiler accepts incomplete enum tags, defining and resolving tag names later.

LANGUAGE DIALECTS

B-2 Rev 1 MECCUM/D

• The compiler lets you redeclare typedef names in the same scope, but issues a
warning message.

3: Syntax:

• The compiler accepts an empty declaration (a semicolon with nothing preceding it),
but issues a warning message.

• The compiler lets single-value expressions, not enclosed in braces, initialize an entire
static array, struct , or union .

• The compiler accepts long float as a synonym for double .

• The compiler accepts pointers to incomplete arrays for pointer addition, subtraction,
and subscripting, as in this example:

int (*p)[];

...

q = p[0];

If the added or subtracted value is not a constant zero, the compiler issues a warning
message. (The compiler multiplies the value by zero, as the pointer is to a type of zero
size, so the operation does not affect the result.)

• The compiler allows an extra comma at the end of the enum list, but issues a warning
message.

• The compiler lets you omit the final semicolon before the close brace (}) of a
struct or union specifier, but issues a warning message.

• You may follow label definitions immediately with a close brace (}) instead of a
statement, but the compiler issues a warning message.

4: Pointer semantics:

• The compiler lets an initializer pointer constant value be cast to an integral type, if the
integral type is sufficiently large.

• The compiler lets an integer constant, of an integral constant expression, be cast to a
pointer type, then be recast as an integer.

• You may assign pointers to interchangeable but different types, such as unsigned
char * and char * . Similarly, the compiler allows differences between
interchangeable but different pointer types. Eligible pointers include those to same-
sized integral types (typically int * and long *). The compiler issues a warning
message, unless you assign a string constant to a pointer of any kind of character.

LANGUAGE DIALECTS

MECCUM/D Rev 1 B-3

• You may assign pointer types if the destination type has added second- or lower-level
qualifiers (such as int ** to const int **), but the compiler issues a warning
message. Similarly, you may do comparison or pointer-difference operations on such
pairs of pointers, but the compiler issues a warning message.

• In pointer operations, the compiler implicitly converts a pointer to void to another
type whenever such conversion is required. Similarly, the compiler implicitly converts
a null pointer constant to a null pointer of the correct type whenever such conversion
is required.

• For pointers to functions of different types, the compiler allows assignment, equality
comparisons (==), or inequality comparisons (!=) without an explicit type cast, but
issues a warning message.

• The compiler lets a pointers to void be implicitly converted to or from a pointer to a
function type, but issues a warning message.

6: extensions:

• The compiler accepts asm statements and declarations, provided that your command
line specifies -Ac=ansi , then -Aasm=1 .

7: Extended operations:

• The compiler evaluates the expression of __INTADDR__ (expression) as a
constant expression, then converts it to an integer constant.

• ALIGNOF__ is similar to sizeof , but returns the type alignment value. (If there is no
alignment requirement, __ALIGNOF__ returns the value 1.) A type or expression in
parentheses may follow __ALIGNOF__:

Type: __ALIGNOF__(int)

Expression: __ALIGNOF__(a*i+4)

Note that the compiler determines the alignment of the expression (a*i+4), but does
not evaluate the expression.

Also note that the compiler considers the value of a character or string escape to be the character
itself, provided that the character following the backslash (\) has no special meaning. (X3.159-
1989 does not clearly define this situation.)

LANGUAGE DIALECTS

B-4 Rev 1 MECCUM/D

B.2 K&R C

In K&R mode, the compiler accepts the C language Kernighan and Ritchie defined in The C
Programming Language (Prentice-Hall, 1978). Note that the K&R mode does not disable ANSI
C features that do not conflict with K&R C.

The list below highlights specific differences between K&R C and ANSI C:

1: Preprocessor:

• The compiler does not recognize trigraphs.

• The compiler begins searching for include files in the directory holding the file that
contains #include , rather than in the directory containing the primary source file.

• The compiler deletes comments in preprocessing output instead of replacing them with
a space.

• The compiler does not recognize the # or ## operator in macro definitions.

• The compiler does not recognize the escape character \a (alert) in character or string
constants.

• The compiler does not macro expand arguments to macros before inserting them into
the macro expansion. When the compiler rescans the macro expansion it expands
macro invocations in the argument text. This allows for macro recursion.

• The compiler does not maintain end-of-marker tokens: tokens that abut after macro
substitution are parsed as single tokens.

• The compiler ignores multiple #else directives in an #if block, but generates a
warning diagnostic message.

• If a macro parameter name is inside a character or string constant, the compiler
recognizes and expands that macro parameter.

• The compiler generates warning messages instead of error messages for macro
invocations with too many arguments. The compiler ignores the extra arguments.

• The compiler lets you leave undefined the standard preprocessor symbol __STDC__.

• The compiler does not generate extra spaces in textual preprocessing output; this
permits pasting of adjacent tokens.

LANGUAGE DIALECTS

MECCUM/D Rev 1 B-5

2: Variable/type declarations:

• Any declaration of external functions and variables is visible to the rest of the file.

• For function parameter lists beginning with a typedef identifier, the compiler does
not consider the parameter list to be prototyped unless something (except a comma or
close parenthesis) follows the typedef identifier, as in this code fragment:

typedef int t;

int f(t) { } /*old style list*/

int g(t x) { } /*prototyped list*/

In ANSI C mode, the compiler would generate an error on the first example, as ANSI
C considers any parameter list starting with a typedef identifier to be prototyped.

• If a file-scope array has an unspecified storage class and remains incomplete at the end
of compilation, the compiler considers the array’s storage class to be extern .

• In the declaration of a member of a struct or union , the compiler lets you omit a
declarator list to specify an unnamed (non-bit field) field for padding, as in:

struct s {int a; int; int b;} v;

• If you declare a function static but never use the function, the compiler considers
the function to have extern storage class.

• The compiler does not generate any warning message if storage specifiers appear in a
list of specifiers in any position other than first.

• The compiler gives enum keywords the default type int . The compiler uses smaller
integral types if the -Aminsizenums flag is set (that is, given the value 1).

• The compiler treats short , long , and unsigned as adjectives in type specifiers; you
must use an adjective to modify a typedef type.

• The compiler promotes float functions and parameters to double functions and
parameters.

• The compiler lets you omit declaration specifiers:

i;

declares i to be an int variable. The compiler does issue a warning message for such
a default declaration. (ANSI C lets you omit specifiers only for function declarations.)

• The compiler lets identifiers in a function and parameters of the function have the same
name, but issues a warning message.

• The compiler promotes unsigned char and unsigned short to unsigned int .

LANGUAGE DIALECTS

B-6 Rev 1 MECCUM/D

3: Syntax

• The compiler disables the ANSI C keywords signed , const , and volatile to
avoid conflicts. (The compiler does not disable keywords enum and void .)

• The compiler ignores declarations of the form:

typedef some-type void;

• The compiler allows field selections of the form p->field , even if p does not point
to a struct or union that contains field . If x is an lvalue , the compiler allows
x.field even if x is not a struct or union that contains field . Each definition
of field as a field must have the same offset in its respective struct or union .

• The compiler issues a warning message if you apply an ampersand (&) to an array.
The ampersand operation is type address of array element, (not address of array.)

4: Pointer semantics:

• The compiler allows assignment between pointers and integers, and between
incompatible pointer types, without explicit casts (but issues a warning message). You
may assign a pointer to an integer, unless the integer is smaller than the pointer.

• The compiler does not let you share string literals. Identical string literals produce
multiple copies of the string to be allocated.

5: Expressions:

• The compiler performs the usual arithmetic conversions for the shift operators (<<
and >>): it converts the right operand to int ; the result type is the left-operand type.
This means that a long shift count forces the shift to be done as long . (In ANSI C
mode, the compiler does integral promotions on both operands; the result type is the
left-operand type.)

• The compiler maintains an lvalue cast to a type of the same size as that particular
lvalue , unless the lvalue requires a floating-point conversion.

• The compiler lets you apply sizeof to bit-fields; the size is the size of the underlying
type.

• The compiler interprets all float operations as double .

• The compiler considers plain char to be the same as signed char or unsigned
char , according to the default and command-line control options. (In ANSI C, char
is a distinct type.)

• The compiler accepts 0x as a hexadecimal zero and generates a warning message.

• If the compiler finds the digits 8 or 9 in any octal constants, it treats the constant as
decimal.

• The compiler accepts 1E+ as floating-point constant with an exponent of zero (and
issues a warning message).

LANGUAGE DIALECTS

MECCUM/D Rev 1 B-7

• The compiler accepts an integer constant larger than can be stored in an unsigned
long , but truncates the value to an appropriate number of low-order bits. The
compiler issues a warning message.

• The compiler sets the type of a large integer constant according to K&R rules: it does
not assign unsigned in some cases where ANSI C would. The compiler types integer
constants with apparent values larger than LONG_MAX as long . To suppress related
warning messages, the compiler considers such constants non-arithmetic.

B.3 RELAXED C

In relaxed C mode (the default), the compiler accepts a less-strict variant of ANSI C. The
compiler accepts minor violations of the ANSI C standard (but issues warning messages.)
Additionally, it accepts these IBM AIX C constructs:

1: Preprocessor:

• The compiler generates warning messages instead of error messages for macro
invocations with too many arguments. The compiler ignores the extra arguments.

2: Variable/type declarations:

• The compiler lets a function declared to return void be redeclared to return int , and
vice versa. For example, the compiler accepts this function redeclaration:

extern void some_other_routine(int arg1, int arg2);

extern int some_other_routine(int arg1, int arg2);

(The compiler issues a warning message about the second declaration).

• The compiler accepts unnamed struct and union field members. You can use
unnamed members for padding within a struct or union .

• The compiler ignores the creation a typedef named void . This supports pre-ANSI
C code.

typedef int void;

• The compiler accepts function declarations with no storage class or type specifier,
such as:

a(); /* ANSI C error; Relaxed warning */

void main (void)

{

 a(12);

}

LANGUAGE DIALECTS

B-8 Rev 1 MECCUM/D

3: Syntax

• The compiler lets you use the structure member operator (.) or structure pointer
operator (->) with a non-struct variable, provided that the struct -member name
used is unique. An example is:

void main (int bbb)

{

 struct fred {

 int f1;

 char f2;

 int f3;

 } foo;

int a, b;

 a = 12;

 bbb = 999;

 bbb.f2 = 10; /* bbb is not a struct */

}

(If another struct also had a member named f2 , the compiler would not have
accepted this code.)

4: Pointer semantics:

• The compiler lets you mix pointer and int arithmetic, but generates a warning
message.

• The compiler allows assignment between incompatible pointer types, but generates a
warning message.

LANGUAGE DIALECTS

MECCUM/D Rev 1 B-9

5: Expressions:

• The compiler lets you use the C built-in sizeof() on bit-fields:
sizeof(some_bit_field) returns the bit-field type size. For example, in this code
excerpt:

struct abc {

 int field1;

 int field2:24;

 char field3:8

} some_struct;

the value of sizeof(some_struct.field2) is 4; the value of
sizeof(some_struct.field3) is 1.

• The compiler allows a const qualifier on the right-hand side of an expression, but
generates a warning message.

• The compiler relaxes type-qualifier checking when determining compatibility of two
types.

• The compiler promotes unsigned char and unsigned short to unsigned
int .

LANGUAGE DIALECTS

B-10 Rev 1 MECCUM/D

C RUN-TIME LIBRARIES

MECCUM/D Rev 1 C-1

APPENDIX C

C RUN-TIME LIBRARIES

The software for your Motorola Embedded PowerPC Compiler Package includes the Motorola
embedded PowerPC C run-time libraries:

• libppc.a  ANSI C routines for code or data that is not position independent,

• libppcp.a  ANSI C routines for code or data that is position independent,

• libsys.a  support routines for code or data that is not position independent, and

• libsysp.a  support routines for code or data that is position independent.

C.1 ANSI C ROUTINES

The ANSI C routines in libraries libppc.a and libppcp.a are based on P. J. Plauger’s C
library source, version 2.2.1. These libraries contain identical routines, except that routines of
libppcp.a are for position-independent code or data.

 NOTE

Routines of libppcp.a support the position independent code
you create by compiling with the pic control variable. The routines
support the position independent data you create by compiling with
the pid control variable.

Library file libppc.a is an archive of object files. The compiler-package software also includes
the ANSI C routines as a trees of source files and header files that generate the object files. A
read-me file (README.libppc) and library version file (version_libppc.src) accompany
the source files and header files. A copy of file version_libppc.src
(version_libppc.txt) appears inside the archive. (In the corresponding files for
libppcp.a , the string ppcp replaces ppc in the file names.)

Table C-1 lists the ANSI C library functions and macros that remain available if your mecc
command line includes the -DEMB_PPC option. You may need to edit these functions and macros
before including them in your application.

Table C-2 lists the ANSI C library functions and macros not available if your mecc command line
includes the -DEMB_PPC option. These are functions and macros that depend on host operating-
system services: time and date, file system and input/output, dynamic (heap) memory
management, signals, or process management.

C RUN-TIME LIBRARIES

C-2 Rev 1 MECCUM/D

In general, if you use the -DEMB_PPC option to compile and link source files to form executables,
the source files should include libppc.a ’s (or libppcp.a ’s) header files. Furthermore, you
also should use the -DEMB_PPC option to compile the header files.

Table C-1. Functions/Macros Available Via the -DEMB_PPC Option

abs fmod longjmp sinh strspn

acos frexp log sprintf (2) strstr

asin isalnum log10 sqrt strtod

atan isalpha memchr srand strtok

atan2 iscntrl memcmp strcat strtol

atof isdigit memcpy strchr strtoul

atoi isgraph memmove strcmp tan

atol islower memset strcpy tanh

bsearch isprint modf strcspn tolower

ceil ispunct offsetof strerror toupper

cos isspace pow strlen va_arg

cosh isupper printf (1)(2) strncat va_end

div isxdigit qsort strncmp va_start

exp labs rand strncpy vprintf (1)(2)

fabs ldexp setjmp strpbrk vsprintf (2)

floor ldiv sin strrchr

(1) These functions require linkage with the user-defined function
_User_defined_printf_aux() . The prototype of this function appears in function
stdio.h if your mecc command line includes the -DEMB_PPC option. Function
_User_defined_printf_aux() should deliver the number of characters its third
argument specifies; it should store those characters in the buffer its second argument
points to. _User_defined_printf_aux() should return its first-argument value upon
success, or the value zero upon failure.

(2) These functions do not support multibyte or wide characters in this implementation.
Code for such support is in the source (when EMB_PPC is not defined), but requires
dynamic memory allocation and environment operating system services.

C RUN-TIME LIBRARIES

MECCUM/D Rev 1 C-3

Table C-2. Functions/Macros Not Available Via the -DEMB_PPC Option

abort fgetc fwrite putc strcoll

asctime fgetpos getc putchar strftime

assert fgets getchar puts strxfrm

atexit fopen getenv raise system

calloc fprintf gets realloc time

clearerr fputc gmtime remove tmpfile

clock fputs localeconv rename tmpname

ctime fread localtime rewind ungetc

difftime free malloc scanf vprintf

exit freopen mblen setbuf wcstombs

fclose fscanf mbstowcs setlocale wctomb

feof fseek mbtowc setvbuf

ferror fsetpos mktime signal

fflush ftell perror sscanf

C.2 SUPPORT ROUTINES

The support routines in libraries libsys.a and libsysp.a contain identical routines, except
that routines of libsysp.a are for position-independent code or data.

 NOTE

Routines of libsysp.a support the position independent code
you create by compiling with the pic control variable. The routines
support the position independent data you create by compiling with
the pid control variable.

Library file libsys.a is an archive of object files. The compiler-package software also includes
the service routines as a trees of source files and header files that generate the object files. A
library version file (version.txt) appears inside the archive. (A corresponding library version
file appears inside file libsysp.a .)

C RUN-TIME LIBRARIES

C-4 Rev 1 MECCUM/D

Table C-3 lists the service routines. All but three of these routines have exceptions; the
description text notes the three routines that do not. Note that a and b, in the description text
denote actual values, not addresses.

Table C-3. System Library Support Routines

Function Prototypes Description

long double
_q_add(const long double *a,
const long double *b)

Returns a + b.

int
_q_cmp(const long double *a,
const long double *b)

Performs an unordered comparison of the
values of a and b. Returns int 0 if a = b,
int 1 if a < b, int 2 if a > b, int 3 if a is
unordered with respect to b.

int
_q_cmpe(const long double *a,
const long double *b)

Performs an ordered comparison of the
values of a and b. Returns int 0 if a = b,
int 1 if a < b, int 2 if a > b, int 3 if a is
unordered with respect to b.

long double
_q_div(const long double *a,
const long double *b)

Returns a / b.

long double
_q_dtoq(double a)

Converts the value of a to a long double
value. Returns that value.

int
_q_feq(const long double *a,
const long double *b)

Performs an unordered comparison of the
values of a and b. Returns a nonzero
value if a = b; returns a zero if a ≠ b.

int
_q_fge(const long double *a,
const long double *b)

Performs an ordered comparison of the
values of a and b. Returns a nonzero
value if a >= b; returns a zero if a < b.

int
_q_fgt(const long double *a,
const long double *b)

Performs an ordered comparison of the
values of a and b. Returns a nonzero
value if a > b; returns a zero if a <= b.

int
_q_fle(const long double *a,
const long double *b)

Performs an ordered comparison of the
values of a and b. Returns a nonzero
value if a <= b; returns a zero if a > b.

int
_q_flt(const long double *a,
const long double *b)

Performs an ordered comparison of the
values of a and b. Returns a nonzero
value if a < b; returns a zero if a >= b.

C RUN-TIME LIBRARIES

MECCUM/D Rev 1 C-5

Table C-3. System Library Support Routines (continued)

Function Prototypes Description

int
_q_fne(const long double *a,
const long double *b)

Performs an unordered comparison of the
values of a and b. Returns a nonzero
value if a = b or if they are unordered.
Otherwise, returns a zero.

long double
_q_itoq(int a)

Converts the int value of a to a long
double value. Returns that value. Does
not have any exceptions.

long double
_q_mul(const long double *a,
const long double *b)

Returns a * b.

long double
_q_neg(const long double *a)

Returns - a . Does not have any
exceptions.

double
_q_qtod(const long double *a)

Converts the value of a to a long double
value. Returns that value.

int
_q_qtoi(const long double *a)

Converts the value of a to a signed int
value by truncating any fractional part.
Returns that value.

float _q_qtos(const long double *a) Converts the value of a to a float value.
Returns that value.

unsigned int _q_qtou(const long double *a) Converts the value of a to an unsigned int
value by truncating any fractional part.
Returns that value.

long double
_q_sqrt(const long double *a)

Returns the square root of a.

long double
__stoq(float a)

Converts the value of a to a long double
value. Returns that value.

long double
_q_sub(const long double *a,
const long double *b)

Returns a - b.

long double
_q_utoq(unsigned int a)

Converts the value of a to a long double
value. Returns that value. Does not have
any exceptions.

unsigned int
__dtou(double a)

Converts the value of a to an unsigned int
value by truncating any fractional part.
Returns that value.

C RUN-TIME LIBRARIES

C-6 Rev 1 MECCUM/D

INDEX

MECCUM/D Rev 1 index-1

INDEX

alias analysis: 4-2

alternate assignment syntax (for control variables): 3-45

ANSI C dialect: B-1  B-3

asm control variable: 3-10

ASM enable/disable control variable (asm): 3-10

assigning values to control variables: 3-2  3-5

assign value control options (-A , -AA): 2-6

basics, control variable: 3-1, 3-2

C dialects:
ANSI: B-1  B-3
K&R: B-4  B-7
relaxed: B-7  B-9

c control variable: 3-11

C dialect control variable (c): 3-11

C run-time libraries: C-1  C-5

C scalar data types (EABI): 5-2

call modification analysis: 4-2, 4-3

char control variable: 3-12

character type control variable (char): 3-12

command line file control option (-@): 2-11

comment control variable: 3-13

common subexpressions, eliminating: 4-3

compile K&R control option (-K): 2-8

compile only control option (-S): 2-10

compiler:
invoking: 2-2, 2-3
optimizations: 4-1  4-9
using: 2-1  2-11

INDEX

index-2 Rev 1 MECCUM/D

configuring environment variables: 2-1

control flow optimization: 4-6

control options: 2-3  2-11
-A , -AA (assign value): 2-6
-c (suppress linking): 2-5
-C (retain preprocessor comments): 2-6
-D (define preprocessor symbol): 2-6, 2-7
-E (preprocess only): 2-7
-g (include debugging): 2-5
-H (list preprocessing pathname): 2-7
-I (include file search): 2-8
-K (compile K&R): 2-8
-l (search library): 2-5
-L (library search): 2-9
list: 2-4
-M (list dependencies): 2-9
-o (name executable): 2-5
-O (optimization level): 2-9
-P (preprocess only): 2-9
-S (compile only): 2-10
-U (undefine preprocessor symbol): 2-10
-v (print process): 2-5
-V (print version): 2-10
-w (suppress warnings): 2-5
-W (pass arguments): 2-10, 2-11
-@ (command line file): 2-11

control variables: 3-1  3-51
alternate assignment syntax: 3-45
assigning values: 3-2  3-5
basics: 3-1, 3-2
definitions:

asm (ASM enable/disable): 3-10
c (C dialect): 3-11
char (character type): 3-12
comment (scheduling comments): 3-13
defvol (default volatile variables): 3-14  3-16
diag (diagnostic messages): 3-17
directory: 3-7  3-9

INDEX

MECCUM/D Rev 1 index-3

control variables: definitions (cont.):
g (debugging information): 3-18
gim (global instruction movement): 3-19
inclpath (include path): 3-20
inline (inline functions): 3-21, 3-22
inllev (enable/disable inlining): 3-23, 3-24
ipa (interprocedural analysis): 3-25
memlimit (memory limit): 3-26
nofp (no FP moves): 3-27
pic (position independent code): 3-28
pid (position independent data): 3-29, 3-30
quit (quit for diagnostics): 3-31
retpts (return points): 3-32, 3-33
rosda_alloc (read-only small data area allocation): 3-34
rsave (register save): 3-35, 3-36
sched (instruction scheduling): 3-37
sda_alloc (small data area allocation): 3-38
space (limit code space): 3-39
targ (target processor): 3-40
unroll (loop unrolling): 3-41, 3-42
volatile (volatile variables): 3-43, 3-44

inline assembly pseudo functions: 3-46  3-51
pragma directive syntax: 3-5, 3-6
pragma value reassignments: 3-2

constant propagation: 4-5

conventions, manual: 1-3

copy propagation: 4-4

data formats (EABI): 5-1, 5-2

dead code, eliminating: 4-3

debugging information control variable (g): 3-18

default volatile variables control variable (defvol): 3-14  3-16

define preprocessor symbol control option (-D): 2-6, 2-7

defvol control variable: 3-14  3-16

diag control variable: 3-17

diagnostic messages control variable (diag): 3-17

INDEX

index-4 Rev 1 MECCUM/D

directory of control variables: 3-7  3-9

eliminating common subexpressions: 4-3

eliminating dead code: 4-3

eliminating loop induction variables: 4-8

embedded application binary interface (EABI): 5-1  5-20
data formats: 5-1, 5-2
C scalar data types: 5-2
epilogs: 5-11  5-19
instruction-set restrictions: 5-19
parameter passing: 5-7  5-9
prologs: 5-11  5-19
register usage conventions: 5-3, 5-4
return values: 5-10, 5-11
small data areas: 5-19, 5-20
stack frames: 5-5, 5-6
system subroutines: 5-12  5-18
variable arguments: 5-10

enable/disable inlining control variable (inllev): 3-23, 3-24

environment variables, configuring: 2-1

epilogs (EABI): 5-11  5-19

error messages: A-1  A-4

formats, data (EABI): 5-1, 5-2

forward code motion: 4-5, 4-6

FPR usage conventions (EABI): 5-4

g control variable: 3-18

gim control variable: 3-19

global instruction movement: 4-8

global instruction movement control variable (gim): 3-19

GPR usage conventions (EABI): 5-3

hoisting code out of loops: 4-4

inclpath control variable: 3-20

include debugging control option (-g): 2-5

include-file search control option (-I): 2-8

INDEX

MECCUM/D Rev 1 index-5

include path control variable (inclpath): 3-20

inline assembly pseudo functions: 3-46  3-51

inline control variable: 3-21, 3-22

inline functions control variable (inline): 3-21, 3-22

inlining functions: 4-8, 4-9

inllev control variable: 3-23, 3-24

instruction scheduling: 4-8

instruction scheduling control variable (sched): 3-37

instruction-set restrictions: (EABI): 5-19

integer values (for control variables): 3-2, 3-3

interprocedural analysis control variable (ipa): 3-25

introduction: 1-1  1-3

invoking the compiler: 2-2, 2-3

ipa control variable: 3-25

K&R C dialect: B-4  B-7

libraries, C run-time: C-1  C-5

library search control option (-L): 2-9

limit code space control variable (space): 3-39

list dependencies control option (-M): 2-9

list preprocessing-pathname control option (-H): 2-7

loop induction variables, eliminating: 4-8

loop unrolling: 4-6, 4-7

loop unrolling control variable (unroll): 3-41, 3-42

longjmp function: 4-9

manual conventions: 1-3

MECC:
overview: 1-1, 1-2
system requirements: 1-2
users: 1-2

memlimit control variable: 3-26

memory limit control variable (memlimit): 3-26

multiple return points: 4-9

INDEX

index-6 Rev 1 MECCUM/D

multiple values (for control variables): 3-3, 3-4

name executable control option (-o): 2-5

name-list values (for control variables): 3-4, 3-5

name values (for control variables): 3-4

nofp control variable: 3-27

no FP moves control variable (nofp): 3-27

optimizations:
considerations: 4-1
types: 4-2  4-9

optimization level control option (-O): 2-9

overview: 1-1, 1-2

parameter passing (EABI): 5-7  5-9

pass arguments control option (-W): 2-10, 2-11

PATH environment variable: 2-1

pic control variable: 3-28

pid control variable: 3-29, 3-30

position independent code control variable (pic): 3-28

position independent data control variable (pid): 3-29, 3-30

PPC_BIN environment variable: 2-1

pragma directive syntax (for control variables): 3-5, 3-6

pragma value reassignments: 3-2

preprocess only control option (-P): 2-9

preprocess only control option (-E): 2-7

print process control option (-v): 2-5

print version control option (-V): 2-10

prologs (EABI): 5-11  5-19

quit control variable: 3-31

quit for diagnostics control variable (quit): 3-31

read-only small data area allocation control variable (rosda_alloc): 3-34

register allocation: 4-7, 4-8

register save control variable (rsave): 3-35, 3-36

INDEX

MECCUM/D Rev 1 index-7

register usage conventions (EABI): 5-3, 5-4

relaxed C dialect: B-7  B-9

requirements, system: 1-2

restrictions, instruction-set (EABI): 5-19

retain preprocessor comments control option (-C): 2-6

retpts control variable: 3-32, 3-33

return points control variable (retpts): 3-32, 3-33

return values (EABI): 5-10, 5-11

rosda_alloc control variable: 3-34

rsave control variable: 3-35, 3-36

run-time libraries: C-1  C-5

scalar data types (EABI): 5-2

sched control variable: 3-37

scheduling comments control variable (comment): 3-13

sda_alloc control variable: 3-38

search library control option (-l): 2-5

setjmp function: 4-9

small data area allocation control variable (sda_alloc): 3-38

small data areas (EABI): 5-19, 5-20

space control variable: 3-39

stack frames (EABI): 5-5, 5-6

strength reduction: 4-4

suppress linking control option (-c): 2-5

suppress warnings control option (-w): 2-5

syntax:
alternate assignment (for control variables): 3-45
pragma directive (for control variables): 3-5, 3-6

system requirements: 1-2

system subroutines (EABI): 5-12  5-18

targ control variable: 3-40

INDEX

index-8 Rev 1 MECCUM/D

target processor control variable (targ): 3-40

TMPDIR environment variable: 2-1

undefine preprocessor symbol control option (-U): 2-10

unroll control variable: 3-41, 3-42

users, MECC: 1-2

using the compiler: 2-1  2-11

values, assigning for control variables: 3-2  3-5

variable arguments (EABI): 5-10

volatile control variable: 3-43, 3-44

volatile variables control variable (volatile): 3-43, 3-44

	EMBEDDED C COMPILER USER’S MANUAL
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 MECC OVERVIEW
	1.2 SYSTEM REQUIREMENTS
	1.3 MECC USERS
	1.4 MANUAL CONVENTIONS
	Table 1-1. Manual Conventions

	CHAPTER 2 USING THE COMPILER
	2.1 CONFIGURING ENVIRONMENT VARIABLES
	2.1.1 The PPC_BIN Environment Variable
	2.1.2 The PATH Environment Variable

	2.2 INVOKING THE COMPILER
	2.3 CONTROL OPTIONS
	Table 2-1. MECC Control Options
	2.3.1 Suppress Linking Option (-c)
	2.3.2 Include Debugging Option (-g)
	2.3.3 Search Library Option (-l)
	2.3.4 Name Executable Option (-o)
	2.3.5 Print Process Option (-v)
	2.3.6 Suppress Warnings Option (-w)
	2.3.7 Assign Value Option (-A)
	2.3.8 Assign Value Option (-AA)
	2.3.9 Retain Preprocessor Comments Option (-C)
	2.3.10 Define Preprocessor Symbol Option (-D)
	2.3.11 Preprocess-Only Option (-E)
	2.3.12 List Preprocessing-Pathname Option (-H)
	2.3.13 Include-File Search Option (-I)
	2.3.14 Compile K&R Option (-K)
	2.3.15 Library Search Option (-L)
	2.3.16 List Dependencies Option (-M)
	2.3.17 Optimization Level Option (-O)
	2.3.18 Preprocess-Only Option (-P)
	2.3.19 Compile-Only Option (-S)
	2.3.20 Undefine Preprocessor Symbol Option (-U)
	2.3.21 Print Version Option (-V)
	2.3.22 Pass Arguments Option (-W)
	2.3.23 Command Line File Option (@)

	CHAPTER 3 CONTROL VARIABLES
	3.1 CONTROL VARIABLE BASICS
	3.2 ASSIGNING CONTROL VARIABLE VALUES
	3.2.1 Assigning Integer Values
	3.2.2 Assigning Multiple Values
	3.2.3 Assigning Name Values
	3.2.4 Assigning Name-List Values

	3.3 PRAGMA DIRECTIVE SYNTAX
	3.4 CONTROL VARIABLE DEFINITIONS
	Table 3-1. Control Variable Directory
	3.4.1 ASM Enable/Disable (asm)
	3.4.2 C Dialect (c)
	3.4.3 Character Type (char)
	3.4.4 Scheduling Comments (comment)
	3.4.5 Default Volatile Variables (defvol)
	3.4.6 Diagnostic Messages (diag)
	3.4.7 Debugging Information (g)
	3.4.8 Global Instruction Movement (gim)
	3.4.9 Include Path (inclpath)
	3.4.10 Inline Functions (inline)
	3.4.11 Enable/Disable Inlining (inllev)
	3.4.12 Interprocedural Analysis (ipa)
	3.4.13 Memory Limit (memlimit)
	3.4.14 No FP Moves (nofp)
	3.4.15 Position Independent Code (pic)
	3.4.16 Position Independent Data (pid)
	3.4.17 Quit for Diagnostics (quit)
	3.4.18 Return Points (retpts)
	3.4.19 Read-Only Small Data Area Allocation (rosda_alloc)
	3.4.20 Register Save (rsave)
	3.4.21 Instruction Scheduling (sched)
	3.4.22 Small Data Area Allocation (sda_alloc)
	3.4.23 Limit Code Space (space)
	3.4.24 Target Processor (targ)
	3.4.25 Loop Unrolling (unroll)
	3.4.26 Volatile Variables (volatile)

	3.5 ALTERNATE ASSIGNMENT SYNTAX
	3.6 INLINE ASSEMBLY PSEUDO-FUNCTIONS
	3.6.1 asm()
	3.6.2 __asmul()
	3.6.3 __asmd()

	CHAPTER 4 COMPILER OPTIMIZATIONS
	4.1 CONSIDERATIONS FOR OPTIMIZATION
	4.2 OPTIMIZATION TYPES
	4.2.1 Alias Analysis
	4.2.2 Call Modification Analysis
	4.2.3 Eliminating Common Subexpressions
	4.2.4 Eliminating Dead Code
	4.2.5 Hoisting Code out of Loops
	4.2.6 Strength Reduction
	4.2.7 Copy Propagation
	4.2.8 Constant Propagation
	4.2.9 Forward Code Motion
	4.2.10 Control Flow Optimization
	4.2.11 Loop Unrolling
	4.2.12 Register Allocation
	4.2.13 Instruction Scheduling
	4.2.14 Eliminating Loop Induction Variables
	4.2.15 Global Instruction Movement
	4.2.16 Inlining Functions
	4.2.17 Multiple Return Points

	4.3 SETJMP AND LONGJMP FUNCTIONS

	CHAPTER 5 EMBEDDED APPLICATION BINARY INTERFACE
	5.1 DATA FORMATS
	Table 5-1. C Scalar Data Types

	5.2 REGISTER USAGE CONVENTIONS
	Table 5-2. General Purpose Register (GPR) Conventions
	Table 5-3. Floating Point Register (FPR) Conventions

	5.3 STACK FRAMES
	Figure 5-1. EABI Stack Frame Layout

	5.4 PARAMETER PASSING
	5.4.1 Argument Passing Algorithm
	5.4.2. Argument Passing Example

	5.5 VARIABLE ARGUMENTS
	5.6 RETURN VALUES
	5.7 FUNCTION PROLOGS AND EPILOGS
	5.7.1 Prolog and Epilog Rules
	5.7.2 System Subroutines

	5.8 INSTRUCTION-SET RESTRICTIONS
	5.9 SMALL DATA AREAS

	APPENDIX A MECC ERROR MESSAGES
	Table A-1. MECC Error Messages

	APPENDIX B LANGUAGE DIALECTS
	B.1 ANSI C
	1: Preprocessor:
	2: Variable/type declarations:
	3: Syntax:
	4: Pointer semantics:
	6: extensions:
	7: Extended operations:

	B.2 K&R C
	1: Preprocessor:
	2: Variable/type declarations:
	3: Syntax
	4: Pointer semantics:
	5: Expressions:

	B.3 RELAXED C
	1: Preprocessor:
	2: Variable/type declarations:
	3: Syntax
	4: Pointer semantics:
	5: Expressions:

	APPENDIX C C RUN-TIME LIBRARIES
	C.1 ANSI C ROUTINES
	Table C-1. Functions/Macros Available Via the -DEMB_PPC Option
	Table C-2. Functions/Macros Not Available Via the -DEMB_PPC Option

	C.2 SUPPORT ROUTINES
	Table C-3. System Library Support Routines

	INDEX

