MELDSW/D
REV 1

JANUARY 1997

MOTOROLA

EMBEDDED LINK EDITOR
(MELD)

Version 2.0
USER’S MANUAL

OMOTOROLA Inc., 1994, 1997; All Rights Reserved

Important Noticeto Users

While every effort has been made to ensure the accuracy of al information in this document, Motorola
assumes no liability to any party for any loss or damage caused by errors or omissions or by statements of
any kind in this document, its updates, supplements, or specia editions, whether such errors are omissions
or statements resulting from negligence, accident, or any other cause. Motorola further assumes no liability
arising out of the application or use of any information, product, or system described herein; nor any
liahility for incidental or consequential damages arising from the use of this document. Motorola disclaims
all warranties regarding the information contained herein, whether expressed, implied, or statutory,
including implied warranties of merchantability or fitness for a particular purpose. Motorola makes no
representation that the interconnection of products in the manner described herein will not infringe on
existing or future patent rights, nor do the descriptions contained herein imply the granting or license to
make, use or sell equipment constructed in accordance with this description.

Trademarks
This document includes these trademarks:

Motorola and the Motorolalogo are registered trademarks of Motorola, Inc.
IBM, and PowerPC are trademarks of International Business Machines Corporation.

Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

@ MOTOROLA CONTENTS

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 User and SysStem REQUITEMENLSccceeiiiiieiieie ettt n e 1-1
1.2 Manual CONVENLIONSooeeeeeeeeeeeeeeeeee e, 1-2
1.3 REMEIENCES.....ccc oo 1-2

CHAPTER 2 RUNNING THE LINKER

P28 R 1 011 0o L8 o1 o o SRS 2-1
2.2 Command LiNE EXAMPIESccviiiiiieiece ettt ettt sreenne e 2-2

CHAPTER 3 COMMAND LINE INTERFACE

G 35 A 11 0o L8 i (o o [P O 31
3.1.1 Input Object and Library FilES........ccoiiieiicie e 3-2
3.1.2 Linker DEfINITION Fil@......cccieiiicrie ettt ee et et ere e 3-3
313 COMMEANA FIlES......oiiiieciee ettt ettt ree et e s e e e be e saeesbeesaeeenreens 3-3
TNt I A O 11 11 01U @ o= 1 = TS 3-4

MELDSW/D Rev1 iii

CONTENTS @ MOTOROLA
CHAPTER 3COMMAND LINE INTERFACE (Continued)

3.2 Command SWItCh PrOCESSINGcceeiiiiieiieie ettt se et ee et e et aesre e ae e e sneennen 3-4
321 CASE SENSITIVITY .uveeiiiriieieeeeie ettt bbbttt e e r b e 3-4
322 SWitch ProCeSSING OFEYooiiirieriiieriieie ettt 3-4
3.2.3 SWItCN ParamMELErScceiiiieiee ettt e e sre e s ere e s e e reesneeenneens 35

3.3 ComMMEANd SWITCHESoeeiuiiiiie e re e s e s b e e s e e s beesneeereesaneenns 3-6
G T 1 O o - 1 o 1SR 3-7
3.3.2 cdef DEfFIlE. e e 3-7
G TS TG N o L1 | o TSR 3-7
I D B B - = S - | SRR 3-8
3.35 ment ENtryLabelcoooeeeeee e 39
G TR G T =Y o o G = o | SR 39
337 - f COMMANAFIIE......cciiieeece et 3-10
TG 1 B N 1 oY SRS 3-10
TG 1 T IR I [= oi (0] VSRR 3-12
G 1 O T I I = RS 3-13
10 T 01 R o o T Y o 1SR 3-14
1 TS 1 2 o o To [V SRR 3-14
10 TS 0 G B o Vo 1= o) A (7)o 3-15
T 3 I o T U1 1 = SRS 3-16
TG I L T o = Yo = Vo [o= T RS 3-16
G0 11 G o PSS 3-16
G0 11 S 3-17
G TS 1 I T Y - T o [RSP 3-18
3.3.19 - SYM -SYNM, = SYITHE cooiciiieiiiieieeeciiee e e eriee e e s e sare e e e s s are e e s e snee e e s ennneeeeeanneeeeeannens 3-18
T 17 O T B = (£ =1 RS 3-19
G TRl R T - U g VLY = [| PRI 3-19
T I Y- Y RS 3-20
G T 7 T - SRR 321

G A @00 0= o I T =SS 3-21

Revl1l MELDSW/D

@ MOTOROLA CONTENTS

CHAPTER 4 LINKER DEFINITION FILE

4.1 SegmENS aNd SECLIONSc.ciuiiiriiiieieie ettt ettt bt re e se e e e seesbesbesaesrenneas 4-1
411 RESEIVEI SECHIONS......eciiieieieeie ettt e et ee e sseeaeeseesreetesneenseeneens 4-2
O S 0= | D= e N = TP 4-2

4.2 ASSIgNING SECiONSTO SEOMENTS......ccuiiiiiirierieieeie ettt r b sne e 4-3

4.3 DEfAUIt SEOMENLS ...c.veeiicieceeee e ettt st e e sr e e te e e e sre e reenreereenn 4-3

4.4 General Linker Definition File SYNtaXcoeierieiiiieiiiesesesesesesee e 4-5
441 Declarations and DIiFECHIVESccceierieririerinieieerie ettt sre s 4-5
N - 0 -~ USSP 4-6
4.4.3 Literal NUMDENScccoiiiiiieieie ettt bbb nnenne s 4-6
4.4.4 Segment and Symbol EXPreSSiONSccciiieiieieciecee et 4-6
445 SegMENt FUNCLIONSc.cocuieiicie ettt sneene e sreenesnnesneennens 4-8
446 SYMDOl FUNCLIONScooiiieiiciesiese et ettt esreenesneesneennens 4-9

45 SegmMENt DECIAraliONS.cceeiieeiieiee ettt st te e te et e e e s seeaeereesteenesreenneennens 4-10
451 SEOMENE NEBIMIEooiiiiiiieeee et r e r e n e n e nneens 4-11
452 SEOMENTE TYPE ..ottt b e n e e n e nenneens 4-11
453 Segment Start AQAIESScooiieiiieiee e 4-12
454 SEOMENE SIZE ..ottt bbbt b et e et e b re e 4-12
455 Segment AIIGNMENT ..o 4-14
45.6 SEgMENE PrOtECTIONocviieieiieieeeee e 4-14
A5.7 SEGMENE PrIOMITY ..eoiveieiitieieeieee ettt 4-15
4.5.8 SEOMENE SECHIONSocviiiiriiiiieieeeeie ettt sb e 4-16

4.6 SymDOl DECIAraLiONS........ccveiuiiiieiieiieieie ettt n e 4-18
4.6.1 SYMDOl NAIME......ccoecieeieece ettt e e s te et e sae e reeneeneenes 4-19
4.6.2 SYyMDOl EXPIrESSION.eeiviiieitieiteeiesteesteeeeste e s e seesteesesseesseeseeseesteesesneesseenesneenss 4-19
4.6.3 SymbOl VISIDIITY ..ccooiviiiiiiiieieeee e 4-19

A7 SINGIE SECLION DIFECLIVEeeveeee ettt ettt re e teene e e sneenneas 4-20

4.8 Segment Overlap Checking DIrECLIVES..........coiiiiieieierieiesese e 4-21

4.9 Use Of ROMCOPY SEOMENTS......ciiiiiiiieiieiieesee ettt e e e e e sre e sraeste e e s sreesseeeteesreeenseesseas 4-22

4.10 Typica Linker Definition File Problems...........c.ooiieece e 4-25
7 (0 50 R @ Vo [ol @0 1 = | 4-25
4.10.2 NOMaChiNg SEOMENL.......ccueiieirieie ettt e e nesneenns 4-27
4.10.3 NO ROOM N SEOMENL ...c.viieeiieeiecee ettt e e e n e e ens 4-28

MELDSW/D Rev1 v

CONTENTS @ MOTOROLA

T80 R 1 01 [F o1 o] ISR 5-1
5.2 List File Command Ling SWItChES..........coiiiiiriieieeee e 5-1
521 The -LIST SWITCN...ciiitiitiieiteeee e 5-2
522 The-SB0 SWITCNot 5-3
5.3.3 The -Xref SWITCH......ccoiiieieeee e 5-4
534 The-sym, -symn, -Syma SWILChES..........cccveiieiieiece e 5-5

5.3 Detailed List FIlE CONENTS......ccouiieiiiesiesie ettt st 5-6
5.3.1 ListFile Structure and Paginalioncccceoeeieerereneneneseseseeee e 5-6
5.3.2 Detailed Look at the Segment LiStiNgccoeveererereneneneneeeeee e 5-7
5.3.3 Detailed Look at the SECtioN LiStiNgcccceoveeeieerieriresienesieseeee e 5-8
5.3.3.1 Section INfOrMELIONcocveeieeiieiieeie ettt nes 5-9
5.3.3.2 Composite Section INFOrMELIONccoceeieeierireresereeeee s 5-10
5.3.3.3 Symbol Cross-REFEIENCEcocoiiiiriiieeeeeee s 5-11

5.34 Detailed Look at the Symbol LiStingccceoeeiieienineninenieieeeee e 5-11
APPENDIX A LINKER ERROR MESSAGEScootiiiienieneeeee s A-1

APPENDIX B MOTOROLA ARCHIVER

B.1 COMMANG SYNEX ...vecveeieeieciieiteeite et e e s et e e s e ste et e e saeeaesseesreesesseesseensesseesseensennnens B-1
B.2 MAR TEMPOIArY FIlES.... .ot B-5
B.3 ArChIVE EXAIMPIESeoieciecee sttt ettt et a e e e ne e re e e e enee e B-5

Vi Revl1l MELDSW/D

@ MOTOROLA CONTENTS

APPENDIX C MOTOROLA SSRECORD GENERATOR

C.1 COMMENG SYNEBXerueeuieieieriesiesiestesie e ee et re st besse e e s e s sbesbesbesseebesse e e e s enneseesnenneas C-1
C.2 SegMentS and SECHIONSc.cceeiieiiiiieseere ettt e e te et e sreesre et e saeesreenesneenneennen C-8
C.3 ROMCOPY SEOMENES ...ttt n e b n e r e sneen e C-9
C.4 CoNtrol FIIE FOMMELcooiviiieieiiieeieie et ens C-10
C.5 SRECOMM FOIMMELooiueeieeiesieeieeteste e see e e st ee s e steeseesseesseeseesseenseeneesseeseeneenseenes C-11
C.6 MSREC OULPUL FITES ...cueeviiiicisieseie ettt st ae e nnenes C-15
C.7 Output File CalCUIAIONScootiiiiriieiieieeee et C-18

C.7.1 BetaEXAMPIE ..o C-18

C.7.2 GaMMAEXAMPIEooeieecieee ettt et nne e e reene C-19

C.7.3 DEtAEXAMPIE ..ot C-19
(O = - N - 1.4 o] =SS C-20
INDEX .ottt st b bbbt e e e e b e e b b e e bt bt e bt e st et et e benbenbennenrenneas index-1

FIGURES

4-1 DEfAUIT SEOMENTS......ooiiiiiteiieti ettt bbbt bt it se e e e e e b e sbesnenbenneas 4-4
5-1 List FIleWith -S8g SWITCH ...ccueiiiceeeee e 5-3
5-2 List File With -Xref SWILChcc.coiiiiie e 5-4
5-3 List File With -Symn SWILCh.........ccueiieee e 5-5
5-4 List File With -Syma SWITCHc.coiiii e 5-6
5-5 SeCtion LiStiNg EXCEIPL ...oooveeeeee ettt sttt 5-9
5-6 SymbOl CroSS-REFEIENCEc.eiiieieee e 5-11
5-7 SYMDBOI LISHING ..ecuviieieiticiece ettt e na e s e e aeennesreeneenee e 5-12

MELDSW/D Rev1 vii

CONTENTS @ MOTOROLA

1-1
B-1
B-2
C-1
C-2
C-3

viii

FIGURES (Continued)
Beta Example OQULPUL FIlES..........ocieieee et C-16
Gamma Example Byte ASSIGNMENT.........coiiirieriririeeeiee et C-17
Delta Example Byte ASSIGNMENTccoeiieiieie ettt C-17
Epsilon Example OUIPUL FITES.........ooiiiiiiieeee e C-18
Zeta EXample INPUL FIlE ..ot C-20
Zeta EXample OULPUL FITE ..ot C-21
TABLES
MaNUEl CONVENTIONScveiuiiiieiieieiesie st ste et se e seeeessestesbeseessesnennens 1-2
ATChIVEr ACHION VEIUES ...ttt nne e B-2
ATChIVEr MOGITIEr VAIUES......ccueiieeiieieie ettt st B-3
S-ReCord Generator OPLIONScoueeeeeeierierie sttt e e n e e sre s C-3
S-Record Field COMPOSITIONcc.ocviiieiice ettt C-12
Sl = ol {0 B Y/ o= USROS C-13

Revl1l MELDSW/D

@ MOTOROLA INTRODUCTION

CHAPTER 1

INTRODUCTION

The Motorola Embedded Link eDitor (MELD) is a linker that combines object files and library
file members (in object-file format) into an executable object file. Motorolas MSREC S-record
generator can convert this executable object file to S-records. Motorolas MEDB debugger can
load this executabl e object file into memory.

Using its knowledge of memory layout, the linker assigns physical addresses to code and data. It
assigns address values to symbols; based on these address values, the linker changes code and
data that reference the symbols.

MELD operates on object files and library files generated by these software tools. the MEPROJ
development software, the MECC compiler, the MEAS assembler, and the MAR archiver. These
tools support the PowerPC instruction set and conform to the Power PC Embedded Application
Binary Interface standard.

MELD accepts input object files and library members that are in ELF object-file format; MELD
accepts input library files that are in archive-file format. For information on these formats, see
the System V Application Binary Interface standard or its Power PC Processor supplement.

NOTE

If you use the Motorola Embedded Project (MEPROJ) to develop
your code, MEPROJ gives you direct access to the link editor, the
archiver, and the S-record generator.

1.1 USER AND SYSTEM REQUIREMENTS

This manual is a guide for engineers and programmers who develop code for embedded
PowerPC applications. To get the most from this manual, you should understand the difference
between a high-level programming language and assembly code, as well as what distinguishes
code for embedded applications. You should be familiar with what is in an object file, what a
linker does, and what typically isin startup (system boot) code.

For computer and operating-system requirements, see the software release guide.

MELDSW/D Rev1 1-1

INTRODUCTION @ MOTOROLA

1.2 MANUAL CONVENTIONS

Table 1-1 lists the syntax and typographical conventions of this manual.

Table 1-1. Manual Conventions

Symbol, Typeface Significance
Couri er Command syntax and examples.
Courier italic Syntax indicator to be replaced by an actual value.

[] Indicates entire value is optional.

{1} Indicates portion of string is optional.

Indicates repetition of values is permissible.

The remaining chapters and appendixes of this manual cover these topics:
e Chapter 2: Examples of using the linker.
* Chapter 3: Command-line interface syntax and semantics.
» Chapter 4: Linker definition file syntax and semantics.
» Chapter 5: List file contents.
* Appendix A: Linker error messages.
* Appendix B: Motorola Archiver, which creates library (archive) files.

* Appendix C: Motorola S-Record Generator, which generates S-records from object
files.
1.3 REFERENCES

System V Application Binary Interface, Third Edition, UNIX System Laboratories, 1994 (ISBN
0-13-100439-5).

System V Application Binary Interface Power PC Processor Supplement, SunSoft and IBM, 1995
(SunSoft Part No: 802-3334-10).

PowerPC Embedded Application Binary Interface, Motorola and IBM, 1995 (Motorola
EABI/D).

1-2 Revl1l MELDSW/D

@ MOTOROLA USING THE LINKER

CHAPTER 2

USING THE LINKER

This chapter presents introductory examples of using the MELD linker. If you already are
knowledgeable about linkers, reading these examples may yield enough information for you to
use MELD with your application.

2.1 LINKER OPERATION

The linker produces an executable object file by combining object files and object members.
(Object members are library file members in object-file format.) Object files and object members
contain symbol definitions, references to symbols, and sections. A section is a named area that
contains code, data, or information to be used by linkers, loaders, or debuggers. Paragraphs 3.1.1
and 3.1.4 give more about object files and object members.

First, MELD processes the input object files you specify. For each input object file, the linker
records sizes and other section information, symbol definitions, and references to symbols the
file does not define.

After the linker processes the input object files, it may have references to symbols not defined in
any of the object files. If so, MELD searches the library files you specify, looking for the
definitions.

object members that define those symbols. If a member defines a needed symbol, the linker
extracts it from its library file and includes it in the link. The linker records that member’s
section information, symbol definitions, and which symbols it references but does not define.
The linker repeatedly searches the libraries until all referenced symbols are defined, or until a
complete pass through all the libraries fails to define any undefined symbols.

MELD then assigns the sections in input object files and library members to outgegrfiknts:

areas of an executable object file containing code or data that is loadable into physical memory

on your target system. If the linker assigns sections with the same name from two or more files or

members to a segment, then in the segment the linker combines the sections into one section with
that name. During assignment, the linker determines the physical addresses of all sections and all
symbols within all sections.

MELDSW/D Rev1 2-1

USING THE LINKER @ MOTOROLA

You can describe segments to MELD in a linker definition file (LDF). An LDF lets you define
the start address and size of each segment and declare which sections the linker should place in
each segment. In addition, an LDF lets you define symbols and assign them values. Y our code
can refer to LDF-defined symbols to provide information such as the size of a segment or the
address of a memory-mapped device. (See Chapter 4, Linker Definition File.) If you do not
supply an LDF, or there are no segments defined in it, the linker defines a default set of
segments, as described in Section 4.3, Default Segments.

Next, MELD defines the output object file’s entry point (address of the first PowerPC instruction
your application executes). The default entry point is the value of the global synsiar t
(two leading underscore characters).

MELD generates the base addresses for the small data areas. Each small data area contains data
items, and every byte in the area can be addressed as a 16-bit signed offset from that small data
area’s base address. If you load the base address into a general purpose register (GPR) at the start
of your application, your code can take advantage of the several PowerPC processor instructions
that load or store data using a 16-bit signed offset from the value in a GPRe(bae 4.1.2,

Small Data Areas.)

The linker copies the code and data from all input file and library member sections to the output
file. Sometimes the value of code or data depends on the value (address) that the linker assigns to
a symbol. In that case, the code or data is said to reference or refer to the symbol. For each
reference, the input file or member contains a relocation instructiam odation instruction

tells the linker how to change code or data copied to the output file based on the value (address)
assigned to the referenced symbol. The linker also copies the relocation instructions themselves
to the output file. For information about relocation instructions, BeserPC Embedded
Application Binary Interface, System V Application Binary Interface PowerPC Processor
Supplement, andSystem V Application Binary Interface.

Optionally, after the linker writes the output object file, the linker generates a list file. The list
file can display information about segments, sections, and symbols.

22 COMMAND LINE EXAMPLES

MELD is tailored to meet embedded needs. It lets you customize the assignment of code and data
to the memory partitions. You can define symbols, with values set by the linker, that your code
can use. You can put both customizations and symbol definitions in a linker definition file (LDF)
that the linker processes. The examples in this section start with a simple link of object files and
progress through using library files, an LDF, and a command file.

2-2 Revl1l MELDSW/D

@ MOTOROLA USING THE LINKER

Example 2.1: Simplelink

To link two object filestype:

meld startup.o tinmer.o

The linker links the object filesst art up. o and ti mer . o. It produces an executable object file
named a. out in the current directory.

Usually, when an application begins, it executes startup code that sets processor operating
modes, copies read/write initialized data from ROM into RAM and zeros out uninitialized data.
The startup code also sets up a stack, initializes registers, and branches to the beginning label of
the application (usually mai n). For this example, the startup codeisinst art up. o.

Somewhere in the object files, the startup label __st art must be defined. This label will usually
be at the beginning of the startup code. The linker records the location of this symbol in the
output file. The Motorola Embedded Debugger uses this address to locate the beginning point of
execution.

If you want your application to boot at the startup address on the target hardware, you need to
locate the startup code at the boot address for the processor. You can accomplish this with a
linker definition file (LDF). See Chapter 4, Linker Definition File.

Example 2.2: Specifying an output file using the -o switch
This example is just like Example 2.1 above, except that you specify the name of the output
object file. Type:

meld -o prog startup.o tiner.o

The linker links the object files st art up. o and ti mer . o to produce an executable object file
named pr og in the current directory.

Example 2.3: Specifying alibrary file using the -l switch

To link object files with a specific library file, usethe- | switch. For example, type:

meld -o prog startup.o counter.o -l ppc

MELD usesthe -1 switch parameteippc’ to construct a file name. The parameter must follow
‘-1’ with no intervening spaces. MELD prepentsb' to the constructorppc’ and appends

‘. a’, to form the file namd i bppc. a. The linker expect$i bppc. a to be a library file in
archive file format or a valid relocatable ELF object file (usually you use this switch to specify a
library file).

As this example did not use thé switch (see next example) to specify directories in which to
search for constructed file names, MELD looks for a file nahmédgppc. a only in the current
directory.

MELDSW/D Rev1 2-3

USING THE LINKER @ MOTOROLA

MELD linksst art up. o and count er . o. In thisexample, assumel i bppc. a isalibrary filein
the current directory, and count er. o references some functions and variables that neither
startup. o nor counter.o defines. After linking the object files, MELD searches library
l'i bppc. a to find object members that define those referenced functions and variables. It links
those membersfrom | i bppc. a with the contents of st art up. o and count er . o.

Example 2.4: Specifying alibrary path list using the-L switch

Consider this example:
meld -o prog ../project/startup.o counter.o average.o
../project/libmath.a -L ../project/lib -Ippc

MELD links the object files ../ project/startup.o, counter.o and average. o. The
linker finds that file. ./ project/libmath. aisalibrary file, so the linker does not initially
includeitinthelink.

As in Example 2.3, MELD constructs the file name | i bppc. a from the -1 switch. MELD
searches for | i bppc. a in the paths (directories) in the library path list. The library path list is
initially empty, and each - L switch processed adds a path to the end of the list. In this example,
the library path list for | i bppc. a is directory . ./ proj ect/|ib. If the linker does not find
l'i bppc. a in that directory, then it looks in the current directory. If the linker cannot find a
properly-formatted library or object file named |i bppc. a, MELD issues an error. In this
example, assume the linker finds alibrary filenamed| i bppc. aindirectory. ./ project/lib.

The linker only searches in library path list directories for file names constructed using the - |
switches. The linker determines whether the files it finds are object files or library files. If they
are object files, the linker links them in before it searches any libraries. If they are libraries, the
linker searches them for object members that resolve symbols that are referenced by not defined.

After linking the three object files, MELD discovers that there are symbols that are referenced
but undefined. So it searches library ../project/libmath.a and then library
../project/lib/libppc.a for members that define any needed symbols. If needed symbols
are defined in an object member, the linker extracts the member and links it in. If a linked
member references other undefined symbols, the linker searches the libraries again. The linker
repetitively searches the libraries until: 1) there are no more referenced-but-undefined symbols,
or 2) acomplete pass through the libraries fails to yield any additional needed symbol definitions.

The - L switch adds a directory (path) to the library path list. You use a separate - L switch for
each directory you want to add. The linker starts with an empty list and adds each new directory
specified with a - L switch to the end of the current list. After the linker constructs a file name
using a- | switch, the linker searches for afile with that name in the current library path list. The
current list is the list specified up to the point in the command line or a command file where the
-1 option occurs. If the linker does not find the file using the current library path list, the linker
checks the current directory.

2-4 Revl1l MELDSW/D

@ MOTOROLA USING THE LINKER

If we had typed -L ../project/lib after -1 ppc, there would have been an empty library
path list when the linker processed - | ppc. The linker would have searched only in the current
directory. Make sure that you add the necessary directory to the library path list before you
specify the files that you want the linker to find there.

Example 2.5: Using a linker definition file

MELD alows you to define segments that describe the major memory partitions of your
application. You do thisin alinker definition file (LDF). Thisfile is also where you declare the

values of absolute symbols. Y ou can base the values on the addresses and sizes of the partitions,

and your application’s startup code can use them to initialize your application. For information
about the contents of a linker definition file, &&epter 4, Linker Definition File.

In this example, we have a linker definition file nam@dj ect . | df . The following is the
contents of that file:

#H#H#

Copyright Mtorola 1994-1995 - All rights reserved.

#

This linker definition file is specific to the Power PC MPC505

processor. It is nmeant to be used with the Mtorola MPC505EVB
#H#H#

#H#H#

#H#H#

Before the MPC505 can access code and data in off-chip menory, chip

select registers nmust be set to define the off-chip nenory. The
segnments chi psO and chipsl_5 contain these chip selects. These
Segnments are the first segnents defined, so that any | oader that
downl oads segnents in the order they appear in the executable file,

will first set chip selects, and then downl oad the code and dat a.

#itH#

segnent chi psO st art =0x8007FDEC (chi ps0);
segnent chipsl 5 start=0x8007FDCO (chipsl 5);
#itH#H

Place read-only (ROvable) code and data in addresses 0x2000 through
Ox7fff, and read-wite data in addresses 0x8000 and above.

#

The nunber of bytes fromthe start of .data to the start of .sbss is
forced to be a multiple of 8.

HHt##H

MELDSW/D Rev1 2-5

USING THE LINKER @ MOTOROLA

segnent .text start=0x20000(.text rodata sdata2) align=8;
segnent .idata t ype=r ontopy(. data);
segnent .data st art =0x40000(. data sdata) ali gn=8;

segnent . bss type=reserved (.sbss bss) align=8;
segnent . stack type=reserved si ze=x40000 al i gn=8;
HiH#H

Define values to be used by the startup code before main()

is called

#iH#H

Size in 4-byte words of initialized data val ues which will

be copied from ROM (pl us any paddi ng between .data and . sdata;
rounded to a multiple of 4)

synmbol _startup.idata words = (segsize(.data) + 3) / 4;

Start address - 4 of where initialized data values in ROV
synmbol _startup.idata_values = segstart(.idata) - 4;

Start address - 4 of where initialized data will be copied into
RAM

synmbol _startup.idata = segstart(.data) - 4;

Size in words of uninitialized data to be zeroed before main()
#is called

synmbol _startup.udata words = (segsize(.bss) + 3) / 4,

Start address - 4 of uninitialized data

synmbol _startup.udata = segstart(.bss) - 4;

The stack is 64K bytes, 8 byte aligned, starting after

uninitialized data

synmbol _startup.stack = segafter(.stack) - 8;

The above definition file defines seven segments (memory partitions).

Segments chi ps0 and chi ps1_5 contain the values for MPC505 processor chip select registers
as described in the MPC500 family System Integration Unit reference manual. Chip select
registers define the characteristics of off-chip memory.

The . t ext segment contains code and read-only data. The . i dat a segment follows the text
segment. It contains the initialized data that is stored in ROM, and is copied into RAM at system
boot time.

The . i dat a segment is a romcopy segment for the . dat a segment. That means the .i dat a
segment contains the initial values for variables in the . dat a segment. The . i dat a segment is
located in ROM, and the . dat a segment isin RAM. The startup code must copy the image of
the . dat a segment, whichislocated in the . i dat a segment, to the . dat a segment. The . dat a
segment is the location where your code accesses the initialized data during execution. For more
information about romcopy segments, see Section 4.9, Use of Romcopy Segments.

2-6 Revl1l MELDSW/D

@ MOTOROLA USING THE LINKER

The . bss segment reserves space for uninitialized data. It followsthe . dat a segment.
Finally thereisthe. st ack segment, which reserves space for the stack.

The symbol definitions in the LDF that start with __st ar t up define absolute symbols based on
the sizes or locations of segments.

An application’s startup code copies the initialized data values initet a segment to the
read/write. dat a segment. It also set the bytes in thss segment to 0. It initializes the first

stack frame and sets the stack frame pointer to the current top of stack. The startup code uses
symbols defined in the LDF (such asst art up. i dat a_wor ds) to provide the start addresses

and sizes of these various segments.

As the linker sets the values of those symbols, when the segments grow or change position you
will not have to change your startup code.

You can only provide one LDF for any given link. To link the application in the previous
example using the above LDF, type:

meld -o prog -def ../project/project.|df
../ project/startup.o counter.o average.o
../project/libmath.a -L ../project/lib -Ippc

MELD links the object files . / proj ect / st art up. o, count er. o, andaver age. o. The file
../project/libmath. ais a library file. The linker constructs the file natmeppc. a from

the-1 switch and finds this file in the directory/ proj ect/li b (a library path specified by

the- L switch). It is also a library file. The linker searches the two libraries for object members
that define symbols that are referenced elsewhere. It extracts those members so that the symbols
become defined. This process is described in more detail in Example 2.4.

In the previous examples, the linker used the default memory segments. In this example, the user
supplies a memory layout description in the linker definition.filepr oj ect/ proj ect . | df .
You provide the name of this file to the linker using tthef -switch.

Example 2.6: Using a command file

If you link repeatedly, you may discover that you type certain options and paths over and over

again. It is laborious to retype the library paths, startup code file name and LDF file name every

time. Instead, you can place these file names and options with their parameters in a command
file. Build a linker command file namext oj ect . cnd that contains the following:

-def ../project/project.ldf ../project/startup.o
../project/libmath.a -L ../project/lib -Ippc

MELDSW/D Rev1 2-7

USING THE LINKER @ MOTOROLA

Now type:
meld -f project.cnd -0 prog counter.o average.o

Thisisthe same as typing:
meld -def ../project/project.ldf ../project/startup.o
../project/libmth.a -L ../project/lib -Ilppc
-0 prog counter.o average.o
If you define the environment variable MELDRC to name the file pr oj ect . cnd, the linker opens

and uses the command file before processing the command line. So the effect is the same as
though you typed- f pr oj ect . cnd asthefirst item on the command line.

Type:
set MELDRC=project.cnd

meld -o prog counter.o average.o

Thisisthe same as typing (leaving the MEL DRC environment variable undefined):

meld -f project.cnd -0 prog counter.o average.o

2-8 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

CHAPTER 3

COMMAND LINE INTERFACE

3.1 INTRODUCTION

You may specify the names of files and switches, with their parameters, on the command line.
Anything on the command line beginning with is interpreted to be a switch. Parameters are
either numeric values, symbol names, file names or file name constructors. These follow after the
switch. Either a colon: () or a space must separate the switch from its parameter, except for the
- | switch.

Switches are used to set various options, provide names of output files, name the linker definition
file or command files, set the starting address of segments and set the entry address.

Any other item on the command line is taken to be the name of an object file or library (archive)
file. You can also specify object files or library files using theswitch, which takes a file
constructor, and searches a set of directories for the file name constructed. For more information
seeSection 3.3.8,-ILibKey.

The linker determines whether each file specified directly or usinglttssvitch is a library file

or object file. An object file is included in the link; that is, its sections, symbol definitions and
symbolic references become part of the output object file. The members of a library file are only
extracted and included in the link if they are in object members (in object file format) and define
symbols which are referenced but undefined by the set of object files and members already
included in the link. The linker repeatedly searches through the libraries until all of the
referenced symbols are defined, or a complete pass through the libraries fails to find a definition
for any symbol that is referenced but not yet defined.

Some switches affect the way that object files are processed. These switches are accumulated as
the linker encounters them on the command line from the leftmost switch to the rightmost one.
As object files or library files are encountered on the command line, either directly or constructed
via the-1 switch, only the switches in effect up to that point in the command line affect the
object processing. The switches that behave this way are aalkedependent switches.

Other switches have an effect over the entire link in some way. These switches arerdailled
independent switches. For more information, s&eetion 3.2.2, Switch Processing Order.

MELDSW/D Rev1 3-1

COMMAND LINE INTERFACE @ MOTOROLA

The linker lets you put command line options into a file, called a command file, which can then
be read by the linker. Each file name or switch is processed from left to right and then from top
to bottom as though it were typed on the command line. The linker checks for the environment
variable MELDRC at startup. If it isdefined, and if it names afile that can be opened and read, the
linker begins its command processing from this file. After the end of the file, the command
processing continues after the point where the command file was called. For more information,
see Section 3.4, Command Files and Section 3.3.7, -f CommandFile.

You can define your own memory segments, which define the memory architecture of your
system. You can aso define symbolic values. This is done in the linker definition file. For more
information see Chapter 4, Linker Definition File and Section 3. 2.4.2, -def DefFile.

The linker outputs an ELF object file in executable form. It optionally outputs a list file showing
the locations and sizes of segments, composite sections, and the values of symbols. The list file
also shows what sections reference and define which symbols.

3.1.1 Input Object and Library Files

The linker accepts input object files, and object members of libraries, that are in ELF object file
format, are marked as for the PowerPC architecture, and are in relocatable form. These files and
members contain initialized code and data, instructions for reserving uninitialized space,
definitions of symbols, and instructions for changing code and data that references symbols when
the addresses of those symbols change.

An ELF object file flag indicates whether the object file or object member is for embedded
applications. The linker accepts input object files that are either embedded or not embedded.
However, al input object files must be consistent with respect to this flag, and the linker will
only include library members in the link whose flag is consistent the flags in input object files.
The MEPROJ project tool, the MECC compiler, and the MEAS assembler produce embedded
ELF object files.

The linker accepts library files which are in archive file format. The Motorola Archiver (MAR)
can create a library file in archive file format from any set of files, but usually the members of a
library file will be object files. See Appendix B, Motorola Archiver.

For information about ELF object file format and archive file format, see System V Application
Binary Interface, System V Application Binary Interface PowerPC Processor Supplement, and
Power PC Embedded Application Binary Interface.

3-2 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

3.1.2 Linker Definition File

The linker definition file (LDF) is used to define the memory regions for your application. Each
region in memory is called a segment, and segments are defined in thisfile.

You can aso define symbols in this file. This allows you to define a symbolic address for a
memory-mapped device, or provide symbolic data that can change at link time. Symbols can be
defined in terms of the start addresses or sizes of segments or sections. For information about the
syntax and meaning of declarations in the LDF, see Chapter 4, Linker Definition File.

3.1.3 Command Files

The linker allows you to creste a file that contains the names of the object files, linker switches,
parameters, and the names of library files. This linker can take command line information taken
from the file. Thisis very convenient when there is a long command string to type and you need
to repeatedly invoke the linker with the same command string.

To get the linker to accept input from afile, use the - f switch. For more information about this
switch, see Section 3.3.7, -f CommandFile. The linker accepts input from the file as though the
contents of the file had been typed on the command line instead of the - f switch. You may aso
nest command files; that is, have acommand file call another command file.

The linker looks for the environment variable MELDRC. If this variable is defined, the linker
attempts to open the file named by this variable and use thisfile as a startup command file.

For more information on command files, see Section 3.4, Command Files.

3.1.4 Output Object File

The linker takes the specified object files and those extracted from the libraries, locates the
sections in the object files to some addresses, and outputs these sections to the output object file.
This output file is an ELF object file in executable form. For more information about this file
format, see System V Application Binary Interface.

The output file has the PowerPC architecture flag set. If al of the processed objects are
embedded, the embedded flag is set; otherwise the embedded flag is not set.

In some cases you may want to create an output object that can be used as input to subsequent

links. Y ou can do this by using the - r switch; see Section 3.3.17, -r. In this case, the output file
will bein relocatable format.

MELDSW/D Rev1 3-3

COMMAND LINE INTERFACE @ MOTOROLA

The linker optionally outputs a list file, if requested. This file shows the segments defined, the
sections assigned to them, their addresses, sizes and types. It also lists what sections define what
symbols, and which symbols they reference. The list file also shows the symbols defined, their
values, scopes, and types. These symbols can be listed in alphabetic or numeric order. For more
information, see Chapter 5, List File.

3.2 COMMAND SWITCH PROCESSING

The linker provides several switches that allow you to set address values, control symbol
resolution, name output files, request a listing, etc. The syntax for these switches is the same
whether they are typed on the command line or are part of a command file. See Section 3.4,
Command Files.

The following is the command line with the various valid switches:

meld [-caps] [-def DefFile]l [-dup] [-D DataStart]
[-ent EntryLabel] [-error ErrCnt] [-f ConmandFil e]
[-1LibKey]l] [-L Directory] [-LIST ListFile]
[-nocaps] [-nodup] [-noent{ry}] [-0 QutFile]
[-pad PadChar][-q] [-r] [-seg] [-synm] [-sym] [-synma]
[-T TextStart] [-warn WnCnt] [-weak] [-xref]

3.21 Case Senditivity

Switches aways start with a -. Most switches are case-insensitive. That is, - CAPS,
- caps, - Caps, or - CaPs are al accepted as the - caps switch. There are three exceptions, the
-1,-Land- LI ST switches. The-| and - L switches are case-sensitive. The - LI ST switch must
start with the uppercase - L. After that, it is case-insensitive. - Li st, - LI ST, or - Li ST are al
equivalent.

3.2.2 Switch Processing Order

Switches are processed from left to right on the command line, starting right after the linker
executable name, el d. When the commands appear in a command file, they are processed from
left to right, and then from top to bottom. See Section 3.4, Command Files.

Switches can appear interspersed among object file names, library file names, and the - | switch,
which is used to specify a library or object file. Some switches affect the manner in which an
object file or object member of alibrary is processed. Other switches affect some attribute of the
entire link process, and do not affect object file processing.

3-4 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

Switches that affect the attributes of the entire link are said to be order-independent. The order or
position of these switches with respect to the object files, library files, or - | switches does not
matter. Sometimes these switches can contradict one another. When this is the case, the linker
simply uses the latest (rightmost) information. It does not issue an error or warning.

You may want to provide a default switch setting in a command file that is automatically set
when you invoke the linker, see Section 3.4, Command Files. You might want to override some
of the settings in this file without disabling the others. This can be done as the order-independent
switches can be overridden without error.

mel d -D 0x200 startup.o vector.o -D 0x1000

Thefirst - D switch directs the linker to start the default . dat a segment at 0x200
(hexadecimal). Thisis overridden by the second - D switch, so the linker places the
. dat a segment at 0x1000 instead.

Switches that affect the processing of an object file or object member of a library can be turned
on or off. The state of each switch in effect at the time a file appears on the command lineis the
state used for processing that file. These switches are referred to asorder-dependent switches.

The -1 switch is a shorthand form of specifying a library file. It can also be used to specify an
object file. It has the same effect as typing the full file name on the command line at the point
where the - | file appears. Therefore, the order-dependent switches in effect at the point of the
- | switch are those that affect the object processing, whether in afile or extracted from alibrary.

Object files are processed by the linker, then object members of libraries, so the processing order
of files may not be the same as the command line order in which they appear. The switch state,
accumulated from left to right on the command line (or in a command file) is remembered when
thefileis processed later.

mel d -caps startup.o vector.o -nocaps factor.o -lc

When the linker encountersst art up. o and vect or . o on the command line, the
- caps switch isturned on. This causes all of the symbols defined or referenced in
these files to be converted to uppercase.

The object filef act or. o and object library | i bc. a (specified by the- | ¢ switch) is
encountered after the - nocaps switch. For f act or . o and all of the object members
inlibc. a, the symbols areretained in their original case.

3.23 Switch Parameters
Some of the switches require parameters. They must follow the switch with an intervening space
or colon (:). Care must be taken to supply the parameter, especially for switches that name output

files. If you forget, the linker may take the name of the next object file and use it as the parameter
for the switch. This could cause your object file to be destroyed.

MELDSW/D Rev1 3-5

COMMAND LINE INTERFACE @ MOTOROLA

meld -LIST startup.o vector.o -lc

The- LI ST switch isgiven, but the user forgot to give the name of thelist file. The
filest art up. o isaninput object file. The linker does not detect the error. Instead, it
attemptsto list to afile named st ar t up. o, which overwrites your object file.

The -1 switch is a special case. It requires a parameter, but the convention is to place it
immediately against the switch (without intervening spaces). For this switch only, white space is
not allowed.

Some switches supply the name of afile as a parameter. Where thisis the case, the file name may
be given without a path, in which case the linker assumes that the file existsin, or isto be created
in, the current directory. If a path is given with the file name, it may be specified as an absolute
path name or relative to the current directory.

Casel: neld -LIST project.lst startup.o vector.o

Case2: neld -LIST ../davel/project.|lst startup.o vector.o

Case3: neld -LIST C /usr/hone/dave/ project.lst startup.o vector.o
Case 1 specifiesthat the list file is to be created in the current directory.

Case 2 specifiesthat thelist fileisto be created in directory dave contained in the
parent directory of the current directory.

Case 3 specifiesthat thelist fileisto be created in directory C: / usr / hone/ dave.

Some of the switches require a numeric value as the parameter. Wherever this is the case, the
value must be a smple numeric. It may not be an expression. The unary + and - operators are
permitted.

Number strings that begin witldx’ or ‘0X’, and continue with digit9-9 and lettersA-F or a-f

are interpreted as hexadecimal values (base 16). Number strings that begin with 0, and continue
with the digits0-7 are interpreted as octal values (base 8). Number strings that begin with the
digits 1-9 and continue with digit8-9 are interpreted as decimal values (base 10).

These numeric values are always interpreted as 32-bit unsigned integers, isaa’' shorthand
way of specifying OXFFFFFFFF.

3.3 COMMAND SWITCHES

The following paragraphs document the specific switches supported by the linker. For each of the
switches, we state whether the switch is order-dependent or order-independent. We also state the
initial state or default value.

3-6 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

331 -caps

This switch causes the linker to convert all symbol names defined or referenced in object files or
library object members to upper case. This has the effect of rendering the linker case insensitive
with respect to symbols defined and referenced when the switch is in effect. It also converts the
symbol to uppercase when it is written to the output object file. Remember that the references are
converted also. If the object file or member that defines these references is not also converted,
then the symbol is not resolved and an error occurs. Symbols which are defined in the linker
definition file (LDF) are not converted.

Order Dependent: Yes.

Default State/Value: Turned off. Default is-nocaps.

3.3.2 -def DefFile

Description: This switch lets you specify the name of the linker definition file (LDF). The LDF
allows you to define memory segments and absolute symbols. For more information on the
contents of an LDF, see Chapter 4, Linker Definition File.

Unlike other order-independent switches, this switch is allowed to appear only once per linker
invocation. Y ou are not required to specify an LDF but if you do, you may have only one.

Order Dependent: No. Only one- def switch allowed.

Default State/Value: No default file, but there is a default set of segments defined when thisfile
is not supplied or does not define any segments, see Chapter 4, Linker Definition File.

333 -dup

Description: This switch tells the linker to alow duplicate global symbol definitions. Normally,
if a symbol is globaly defined by some object file or library object member in the linker
definition file, and is defined again later in another file or member, an error occurs.

When processing object files with the - dup switch, subsequent definitions do not cause a
conflict. Duplicate definitions of any symbol are used for references within the same file or
member that defined them. Any files or members that reference the symbol but do not define it
uses the first definition that was globally defined. This switch is very useful when you need to
pull in a member of an object library that globally defines a symbol that you also have globally
defined. In the case where you cannot change the library and do not want to rename your symbol,
you can use the - dup switch.

MELDSW/D Rev1 3-7

COMMAND LINE INTERFACE @ MOTOROLA

The linker processes object files first, in command line order, and then library files. Library files
are processed in command line order, and their members are processed in file order. This
processing order determines which of the duplicate symbols comes first. The linker keeps the
first definition and converts subsequent ones to local visibility. The linker issues a warning
message for the duplicate symbols, just to let you know that they are present. The ideal solution
is to eliminate the duplicate. If you have your warning count set low enough, the warning could
cause the linker to terminate prior to completion of the link.

Order Dependent: Yes.

Default State/Value: Turned off. Default is- nodup.

3.34 -D DataStart
Description: Allowsyou to set the start address of the default . dat a segment.

The linker must have segments defined in order to complete a link. Y ou can define the segments
in the linker definition file (LDF). If you do not, the linker creates default segments for you (for
more information, see Section 4.3, Default Segments). One of these default segments is named
. dat a. By default, the . dat a segment begins after the . r odat a segment. If you want the
. dat a segment to begin at some specific address, use the - D switch. This allows you to set the
starting address of this. dat a segment to the value given in Dat aSt ar t .

This switch is only used to specify the start address of the . dat a segment created by default. If
you define a segment named . dat a in your LDF, you must use the start parameter as part of the
segment definition to locate the segment. If you define any segments, there is no default . dat a
segment, and use of this switch causes alinker error.

As the default segments . bss and . ot her follow the end of the . dat a segment, changing the
location of the . dat a segment moves these segments al so.

The start address value Dat aSt art must be a numeric value in hex, octal or decimal. Refer to
Section 3.2.3, Switch Parameters. Y ou may override any previous - D switches on the command
line or in acommand file by providing another - D switch to the right of the previous one.

Order Dependent: No.

Default State/Value: . dat a segment islocated after the. r odat a segment by default.
mel d -D 0x10000 startup.o vector.o -lc

The default segment map is used. Because of the use of the- D switch, the . dat a
segment begins at 0x10000 (hexadecimal). The. bss and . ot her segments are
affected by thisaswell.

3-8 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

3.35 -ent EntryLabel

Description: The entry label is used to mark the start address for code execution. The Motorola
Embedded Debugger (MEDB) uses this to determine the starting address for execution. The
linker records this address in the output object file.

The default address for the start of code execution is at the entry label _ start (two
underscores). This label must be a global label. If the linker cannot find the entry label, it issues
an error and terminates without completing the link. You can tell the linker to look for a different
label by using the -ent switch. The parameter for the switch is any legal symbol name (see
Chapter 4, Linker Definition File). If you supply an entry label, it must be agloba symbol.

You can override the entry symbol given by a previous switch. If more than one - ent switch
appearsin the command line or file, the linker uses the last (rightmost) symbol given.

The startup symbol must exist in an object file or the linker definition file (LDF). The linker
looks for the startup symbol at the end of the link, not the beginning. Therefore, if the startup
symbol is not defined in any object file or library member that is already included as part of the
link, it does not exist. The startup symbol is not a reference to that symbol, and does not cause
the member that defines it to be extracted from a library and included in the link. If you do not
want the linker to search for the startup label, use the- noent r y switch.

Order Dependent: No.

Default State/Value: The default entry label is __start .

3.3.6 -error ErrCnt

Description: This switch sets the error message limit. If there are errors during the link process,
the linker issues error messages. As some single error, such as omission of an object file, can
generate many error messages, the linker sets a limit. When the linker reaches its error limit, it
prints out the last error message and then terminates.

Er r Cnt specifies the desired error limit. It must be a numeric value in hex, octal or decimal. For
more information, refer to Section 3.2.3, Switch Parameters. The default error limit is 20.

If you supply an error limit value of O, this means that there is no error limit, not that only O

errors are allowed. At certain stages, the linker terminates if there are any errors. It may terminate
at one of these points, even though the error limit has not been reached.

MELDSW/D Rev1 3-9

COMMAND LINE INTERFACE @ MOTOROLA

Y ou can issue the error switch many times. The linker uses the last (rightmost) error limit given.
Order Dependent: No.

Default State/Value: Error limit of 20.

3.3.7 -f CommandFile

Description: All of the switches and files that you can specify on the command line can also be
placed in an ASCII file. Thisfile can then be specified with the - f switch. At the point where the
switch is encountered, the linker takes all of the commands in the command file and starts
processing them from left to right, and then top to bottom.

This has the same effect as though al of the commands and file names in the command file were
inserted on the command line in place of the - f switch and its parameter. After the last switch or
file name is encountered in the command file, the linker resumes processing back on the
command line, after the switch.

The linker uses a command file, if any, specified by the startup environment variable MELDRC. If
this variable is defined to be the name of afile that can be opened and read, the linker uses this as
the command file as though it were specified by the first switch on the command line. For more
information on the command file, see Section 3.4, Command Files.

Order Dependent: Yes. It is processed when encountered.

Default State/Value: Default is the file name that is specified by the environment variable
MELDRC, if defined. Default command file is processed at the beginning before any other
command line switches or file names.

338 -l LibKey

Description: This switch alows the user to specify a library file or an object file to the linker.
The parameter supplied with the switch must be placed directly against the switch. That is,
without an intervening space or delimiter. This parameter is not the file name, but rather a key
that is used to construct the file name. Traditionally, this switch is used to specify alibrary.

The Li bKey parameter is simply a string of characters. The linker appends this string to the
prefix ‘1i b’. It then takes the resultant string and appendswhich becomes the file name. For
example, ifLi bKey is ‘c’, the file name i$ i bc. a.

3-10 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

The linker searches for this file in the library path list. The linker maintains a list of directories
that is searched for the file constructed using Li bKey. Each directory is searched, in order, until
the file is found in one of them. Y ou can add to thislist of directories. For more information, see
Section 3.3.9, -L Directory. If the fileis not found using the library path list, the current directory
is searched. Once the linker finds the file, it opensit to seeif it should be treated as an object file
or library file. Typically this switch is used for specifying libraries. If the file cannot be found or
opened, or exists but is not a correct format, the linker issues an error message.

This switch is used to specify a file, so it is not an order-dependent switch, but rather, is the
target object of order-dependent switches. These other switches determine the linker's mode of
processing the file that thé switch specifies.

Order Dependent: No, but it specifies a file, and so is the target objecbrdér-dependent
switches.

Default State/Value: None.

Assume the current library path list is:
lusr/projectal/libl/
(which containst i buti | . a)

Type:
mel d startup.o vector.o -lutil

The linker uses thel switch to construct the file namhébut i | . a. The directory
/usr/projectallib/ is searched for this file. The file is found and is a library file.
This file is searched for object members that define unresolved but referenced
symbols.

Assume the current library path list is:

lusr/projectal/libl/

(which containst i butil.a,libstartup.a)

Type:
meld -Istartup vector.o -lutil

The linker uses thel switch to construct the file namhébst art up. a. The

directory/ usr/ proj ect a/ | i b/ is searched for this file. The file is found, and is an
object file, not a library. It is included in the link, whether any symbols defined in it
are referenced or not. This example shows one method of referencing a generic
startup file or member from a common project directory.

The linker constructs the file narhebut i | . a which is found in
/libl/projectallib/. Itisfound to be a library file and is treated as such.

MELDSW/D Rev1 3-11

COMMAND LINE INTERFACE @ MOTOROLA

Assume the current library path list is:

fusr/projectal/lib/
(whichcontains: i butil.a,libstartup.a)

and assumefilel i bdsp. a isin the current directory.

Type:
meld -Istartup vector.o -ldsp -lutil

The linker usesthe- | switch to construct thefilenamel i bst art up. a. The
directory / usr/ proj ectal/ | i b/ issearched for thisfile. Thefileisfound, and isan
object file, not alibrary. It isincluded in the link. Thefilevect or . o isincluded in
the link.

Thelinker usesthe - | dsp switch to construct thefilename | i bdsp. a. The
directory / usr/ proj ect a/ | i b issearched. Thefileisnot found. Next, the current
directory is searched. Thefileisfound, isalibrary file, and is treated as such.

Finally, the linker usesthe- | uti | switch to construct thefilename |i butil . a,
whichisfoundin/1i b/ projectallib.Itisalibrary file, and istreated as such.

3.3.9 -L Directory

Description: This switch isused to add directories (paths) to the library path list. Thislist is only
used to search various directories for object or library files specified using the- | switch.

The library path list starts out empty. Each time the - L switch is encountered, the linker adds the
directory specified by D r ect or y to the end of the library path list.

Whenever the linker encounters the -1 switch, it constructs the desired file name, and then
searches for the file in each of the directories (paths) currently in the library path list. If thefileis
not found in any of these directories, the current directory is checked.

When the linker processes the -1 switch, only the directories added to the library path list by
previous - L switches are considered. Library path specifiers which lie to the right of the -1
switch are not yet added to the library path list. Therefore, the - L switch is an order-dependent
switch.

The Di rect ory parameter switch may be any legal absolute or relative path name, such as

../ dave/lib. You can end the path name with’ ‘or not, as you prefer. For example,
C:/usr/lib/ orC /usr/lib are both valid. Do not use a file name for this parameter, such as
C/usr/lib/libc. a.

Order Dependent: Yes. Only the paths in effect before a libraty switch is encountered are
searched.

3-12 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

Default State/Value: The library path list is initially empty, so only the current working
directory is searched .

nmeld -lc startup.o vectors -L /usr/lib -lutil -L /usr/dave/nylib
-ltrans

Thefirst -1 switch specifiesthefilel i bc. a. Thelinker searches the current
directory.

The second - | switch specifiesthefilel i buti | . a. Thelinker searches/ usr/1i b/
and then the current directory.

Thethird - | switch specifiesthefilel i bt r ans. a. Thelinker searches/ usr/ i b/,
then/ usr/ dave/ nyl i b/ and then the current directory.

3.3.10 -LIST ListFile

Description: This switch specifies the name of the list file output by the linker. If no other list
specific options are given, it also causes the linker to turn on certain default listing options.

The linker has several options which causes information to be output to the list file. The linker
creates a list whose default nameis. /i nker. | st. You can use the - LI ST switch to change
the name of thelist file. Thelist file name is specified as parameter Li st Fi | e.

This switch is order-independent. That is, it does not affect the way input objects are processed.
If more than one of these switches appear on the command line, the linker uses the name given
by the last (rightmost) switch.

The - LI ST switch also turns on default listing content switches. The listing content switches are
-seg, -sym -sym, - syma, and - xr ef . If none of these switches appear on the command line
or an included command file, then the - LI ST switch a so turns on certain default listing contents.
The default contents is the same as though - seg, -symn, and - xref were typed on the
command line.

As the list file is an output file, you need to take care that you supply a file name with the
- LI ST switch. If you do not, one of your input object files or libraries could be mistaken for alist
output file. The linker would then erase this object file.

Order Dependent: No.

Default State/Value: Default list file name is |i nker. | st. In the default state, no list
information is output.

MELDSW/D Rev1 3-13

COMMAND LINE INTERFACE @ MOTOROLA

3.3.11 -nocaps
Description: Turns off the effect of the - caps switch.

The linker provides a - caps switch that causes all of the symbols defined or referenced in
included objects to be converted to uppercase on input. This switch is order-dependent, so only
the object files or members or objects extracted from library files that are named on the
command line after the - caps switch are converted. If you want to turn the conversion off for
subsequent objects or libraries on the command line, use the - nocaps switch.

For more information on the - caps switch, see Section 3.3.1, -caps.
Order Dependent: Yes.

Default State/Value: Mixed case symbol input (-nocaps mode) is the defaullt.
meld startup.o -caps vector.o -lc -nocaps dsp.o -lutil

None of the symbols defined or referenced infilest ar t up. o are converted to upper
case. After the - caps switch, object filevect or . o and any of the object members
extracted from library filel i bc. a (the- | ¢ switch) have al of their defined or
referenced symbols converted to uppercase. After the- nocaps switch turns off case
conversion, none of the defined or referenced symbols from filedsp. o or from
extracted membersin library | i buti | . a are converted.

Note that if symbol mai n isdefined in object vect or . o it isconverted to MAI N. If
st art up. o references this, it needsto call MAI N, not mai n. Also if object

st art up. o definessymbol i ni t, it isnot converted. There will not be away for
vect or . o to referencei ni t . Any referencetoi nit invect or. o isconverted to
INIT.

Unless you carefully manage the case of what is called and what is referenced in each
of thefilesor libraries, it is best to leave case conversion turned off for al of the files
and libraries.

3.3.12 -nodup

Description: Directs the linker to disallow duplicate global symbols from object files or objects
included from library files that appear on the command line after this switch. The linker permits
duplicate global symbol definitions when the - dup switch is on. This switch is order-dependent,
so object files and library files that occur after the - dup switch on the command line are affected.
For more information on the - dup switch, see Section 3.3.3, -dup. The - nodup switch turns off
the duplicate global symbols allowed mode for al subsequent object files or members from
library files that are specified on the command line after the switch.

3-14 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

Order Dependent: Yes.

Default State/Value: At the start of command line processing. the linker does not alow
duplicate global symbols.

meld startup.o -dup vector.o -l1c -nodup dsp.o -lutil

All of the global symbols defined in filest ar t up. o must not conflict with any
global symbols already defined. In this case there are none, as thisis the first member
and thereis not alinker definition file to define absolute symbols. After this, the- dup
switch causes the linker to allow duplicate global symbols. If filevect or . o defines
any global symbols which conflict with global symbols that are already defined, you
receive awarning. The same s the case for object members extracted froml i bc. a
(the -1 ¢ switch).

The - nodup switch turns off allowing duplicates. Object filedsp. o and object
members extracted from | i but i | . a may not define global symbolsthat are
duplicates of global symbols already defined, even if they were defined by
vect or . o when duplicates were allowed.

3.3.13 -noent{ry}

Description: The - noent ry switch directs the linker not to look for an entry point symbol. The
entry address field of the output object receives the value 0. No error message is issued if the
entry label does not exist, as the linker does not look for it.

This switch is not order-dependent. The - ent switch specifies the entry label. It does not specify
that an entry label search is to be done. So if the - noent ry switch and the - ent switch are
both on the command line in any order, the linker does not look for the entry label specified by
the - ent switch.

For the - noent {ry} switch to be recognized by the linker, you must type - noent and you may
optionally type any leading part of the string shown in the braces ({r y}). Do not type the braces

{}
Order Dependent: No.
Default State/Value: The linker looks for an entry point, and the default entry label is
__start.
meld -noentry -ent EntrylLabel vector.o -lc

The linker does not look for any entry label. The entry address field in the output
object isset to 0. If the- noent ry switch isremoved, the linker searches for the entry
label Ent ryLabel .

MELDSW/D Rev1 3-15

COMMAND LINE INTERFACE @ MOTOROLA

3.3.14 -oOutFile

Description: This switch specifies the name of the output object file generated by the linker. The
linker outputs the linked object files or members into an output file in ELF format. The default
name for thisfileis. / a. out . Asyou can see, it is created in the current directory.

If you want the file name to be something other than the default, use this switch. The parameter
to the switch is the desired name of the output file.

This switch is not order-dependent. You can put several of these on the command line or in a
command file, and the linker uses the last (rightmost) switch to determine the output file name.

Order Dependent: No.

Default State/Value: The default output file nameis. / a. out .

3.3.15 -pad PadChar

Description: The linker gathers sections of code or data from input object files or from extracted
members from library files. As these input sections are located in the output segments, the
alignment requirements of the sections must be taken into account. If the alignment criteria are
not naturally met, padding must be inserted between the end of the last section aready placed in
the segment and the current section being placed. The linker fills these small padding holes with
the pad byte, whose default value is 0. If you want some other pad value you can use this switch.

The pad byte value PadChar must be a ssmple numeric value between 0 and 255, specified in
hex, octal or decimal. For more information refer to Section 3.2.3, Switch Parameters. Y ou may
override any previous - pad switches on the command line or in a command file by providing
another - pad switch to the right of the previous one.

Order Dependent: No.

Default State/Value: The default value of the pad byteisO.

33.16 -q

Description: This switch causes suppression of the linker banner message. This message
provides the name of the linker, the version number, and copyright information. This switch is
primarily intended for use by other tools, such as the compiler, that call the linker as part of their
processing. Motorola recommends that you do not suppress the linker banner, so that version
information is available if you should need to call for technical support.

3-16 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

Order Dependent: No.

Default State/Value: Default is to issue the banner message.

3.3.17 -r

Description: Changes the ELF form of the object file output by the linker to be rel ocatable, which
is suitable as input to a subsequent link. Also allows unresolved symbols to be referenced. In
effect, this causes the linker to do a partial link. The linker accepts only ELF relocatable form
object files or object members of libraries as input for the link. It normally outputs the resultant
output file in ELF executable form. This form cannot be re-input into the linker. If you direct the
linker to produce a relocatable output object using the - r switch, then this object can be input to
the linker in a subsequent link. The effect of this two-step process is to gather as many sections
together from input objects as you can and prelink them into one larger object file or member.
Later, you can link this with other files or members not included in the first partial link.

If afirst partia link references symbols that are not defined in the link, the linker permits this. It
outputs the symbols as referenced but not defined. Partia links are not in a form suitable for S-
record extraction.

Order Dependent: No.

Default State/Value: Linker outputs an executable ELF file by default, not a relocatable one.
step 1. meld -r -0 partial.o startup.o vector.o -1c

The linker combines the sections in startup.o and vector.o into the output object,
./ partial.o. If thereare any unresolved symbolic references, the linker searches| i bc. a for
them, and, if any are defined, it extracts the defining members and includes them in the output
object files. The output object file is in relocatable form. Any symbols which are referenced but
still not defined are output to the relocatable output object as a reference to an undefined symbol.

step 2: neld -o final.o partial.o dsp.o -lc

Later, the user has developed dsp. o, which contains the final code necessary to complete the
application. The linker takes the combined sections from the previous link, which are in
parti al . o, and combines them with those from dsp. o. If there are any unresolved references,
the linker searches the library | i bc. a for any object members which define them. The linker
outputs an executable form object file for this link. There must not be any unresolved symbolic
references after searching the library.

MELDSW/D Rev1 3-17

COMMAND LINE INTERFACE @ MOTOROLA

3.3.18 -seg

Description: This switch directs the linker to provide a listing of the segments and sections in
the output object file.

For each segment the linker lists the name, start address, size, and type. The total size of the
segmentsis also given.

For each section the linker shows the segment that contains the section, the section start address,
size, and type. The linker lists for each output section the name of all of the input sections that
comprise the output section and the name of the input file that each one came from.

If the - seg switch is given with the - LI ST switch, it causes the - LI ST switch to not turn on the
default listing contents. See Section 3.3.10, -LIST ListFile.

Segments are listed in definition order.
Order Dependent: No.
Default State/Value: No listing is produced.

3.319 -sym, -symn, -syma

Description: There are severa switches which cause the linker to list symbol information. They

all produce a similar result with minor differences, so they are described together. When the

linker lists symbol information, it outputs the symbol’s name, value, size, type, and visibility, and
the section where the symbol is defined. For more informatioGlsgeer 5, List File.

The- symswitch is just a short form of thesymm switch. Both switches cause the symbol listing
to be output and be sorted by name using ASCII values in ascending ordessyheeswitch
causes the symbols to be output and sorted by their value in ascending ordersyhthesym

or - syma switch is given with the LI ST switch, then the LI ST switch does not turn on the
default listing contents. Sé&ection 3.3.10, -LIST ListFile.

If -syma and-sym (or - sym) are listed, two symbols listings are output, one sorted by each
method.
Order Dependent: No.

Default State/Value: No listing is produced.

3-18 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

3.3.20 -T TextStart
Description: Allowsyou to set the start address of the default .text segment.

The linker must have segments defined to complete a link. You can define the segments in the
linker definition file (LDF). If you do not, the linker creates default segments for you. For more
information see Section 4.3, Default Segments. One of these default segments is named . t ext .
The default start address for the . t ext segment is 0x200 (hexadecimal). If you want the . t ext
segment to begin at some other specific address, use the - T switch. This allows you to set the
starting address of this. t ext segment to the value givenin Text St art .

This switch is only used to specify the default start address of the . t ext segment. If you define a
segment named . t ext in your LDF, you may use the start parameter as part of the segment
definition to locate the segment. If you define any segments, there is not a default . t ext

segment, and use of this switch causes alink error.

As the default segments . r odat a, . dat a, . bss, and . ot her follow the end of the .t ext
segment, changing the location of the. t ext segment moves these segments al so.

The start address value Text St art must be a numeric value in hex, octal or decimal. Refer to
Section 3.2.3, Switch Parameters. Y ou may override any previous - T switches on the command
line or in acommand file by providing another - T switch to the right of the previous one.

Order Dependent: No.

Default State/Value: Default . t ext segment islocated at 0x200 (hexadecimal).
meld -T Ox1000 startup.o vector.o -lc

The default segment map is used. Because of the use of the- T switch, the text
segment begins at 0x1000. The. r odat a, . dat a, . bss, and . ot her segments are
affected by thisaswell.

3.3.21 -warn WrnCnt

Description: This switch sets the warning message limit. If there are warnings during the link
process, the linker issues warning messages. The linker allows you to set a warning limit. When
the linker reaches its warning limit, it prints out the last warning message and then terminates.

W nCnt specifies the desired warning limit. It must be a numeric value in hex, octal or decimal.
For more information, refer to Section 3.2.3, Switch Parameters. A warning limit of 0 means that
thereis no warning limit, not that O warnings are alowed. The default is no warning limit.

Y ou can specify the warning switch many times; the linker uses the last (rightmost) warning limit
given.

MELDSW/D Rev1 3-19

COMMAND LINE INTERFACE @ MOTOROLA

Order Dependent: No.

Default State/Value: The default is no limit on warning messages.

3.3.22 -weak

Description: This switch causes the linker to convert all global symbols to weak symbols before
output. This can be used to convert global symbols in a needed object file or library member to
weak so that they do not conflict with other symbols in other objects. Weak symbols have global
visibility, but if they conflict with other globals, they are converted to local symbols. All external
references to converted weak symbols that are in the same file or member where the converted
symbol was defined still uses the now local definition.

This switch is not order-dependent, as it affects symbols as they are output, not as they are input
from the included object files or extracted library objects. All of the global symbols that are
included in the link and are output are converted to weak.

This switch isintended to be used in conjunction with the - r switch. If thereis an object file that
is needed but defines a duplicate symbol, you can process it through the linker with the - r and
-weak switches. Thefile is output as a relocatable ELF object file but all of the globa symbols
are converted to weak.

If the object file or member with the conflicting symbol is a member of an object library, extract
it first, then convert it, then replace it with the converted version. When the converted object is
now used, the conflicting global symbol is of type wesak.

Order Dependent: No.
Default State/Value: The default is not to convert global symbols to weak.

Assume object file startup. o defines a global symbol convert. Object file vector. o
externally references symbol fi | t er and convert. Object file dsp. o globally defines symbol
filter and both references and globally defines symbol convert .

step 1. neld -r -0 dspl.o -weak dsp.o

Thiscreatesafiledspl. o that islikedsp. o except that all of the global symbols are
weak.

step 2: nmeld -o project startup.o vector.o dspl.o

Now the reference to symbol convert infilevect or. o isresolved by the definition
instartup. o. Thereferenceto symbol fi |l ter infilevect or. o isresolved by the
definition infiledsp. o. The definition of symbol convert infiledspl. ois
converted to local, and does not conflict with the definition in filest ar t up. Further,
the reference to symbol convert infiledspl. o usesits own definition as intended.

3-20 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

3.3.23 -xref

Description: This switch directs the linker to provide a cross-reference listing of the sections
showing what symbols they define and what symbols they reference. As these are broken out by
section, the linker outputs a section listing showing the composite input sections as well.

For each section, the linker lists symbols in two groups: symbols defined and symbols
referenced. For each group, the linker lists the names and values of the symbols. If either group
(define or referenced symbols) is empty then it isnot listed.

If the - xr ef switch is given with the - LI ST switch, it causes the - LI ST switch to not turn on
the default listing contents. See Section 3.3.10, -LIST ListFile.

Order Dependent: No.

Default State/Value: No listing is produced.

34 COMMAND FILES

A command file is an ASCII file that contains linker commands. The linker processes the
commands in this file as though they were typed on the command line. The linker replaces end-
of-lines (carriage returns) in this file with a space so that a multi-line file looks like along single
line command. Any command can be used in the file including one that starts processing (calls)
other command files.

If the line ends with the charactér, the linker does not replace the end-of-line character with a
space. Instead, it concatenates the next line to the first. For example, if the first line ends with
filenanme.\ and the second line begins witthj , the linker sees the command input as

fil enane. obj.

The linker processes switches, object files, and library files from left to right and then top to
bottom order in the command file. This order determines what switches are in effect for the
processing of object files or object members of library files. This also determines the inclusion
order of object files and object members of libraries.

meld -f file.cnd
Assume the contents bf | e. cnd are:

startup.o
vector.o
-lc

The above example is the same as typing the following on the command line:
mel d startup.o vector.o -lc

MELDSW/D Rev1 3-21

COMMAND LINE INTERFACE @ MOTOROLA

meld -f file.cnd
Assume the contentsof fi | e. cnd are:

start\
up. o
vector.o
-lc

The above example is the same as typing the following on the command line:
nmeld startup.o vector.o -lc
When processing the command file, the linker processes all of the files and switches as though
they were inserted in the command line at the point of the ‘call’ to the command file (where the
-f switch appears). The command file is then processed left to right and from top to bottom.

After all of the command file is processed, additional command processing picks up after the
point of call.

If the call is from the command line, after processing the command file processing resumes with
the command line. If the call is from another command file, processing resumes from the point in
the previous command file after the call.

meld startup.o -f filel.cmd -lc
Assume the contents bf | e1. cnd are:

vector.o -f file2.cnd
dsp.o

and the contents éf | e2. cnd are:
vectrtn.o
The above example is the same as typing the following on the command line:

mel d startup.o vector.o vectrtn.o dsp.o -lc

NOTE

If environment variables, history substitution, globingof ? wild
cards), sets[(]), command substitution or any other shell
replacement feature appears in the command file, the limker

not provide the needed replacement. These shell-specific features
are not supported in linker command file processing.

3-22 Revl1l MELDSW/D

@ MOTOROLA COMMAND LINE INTERFACE

The linker checks for the definition of an environment variable by the name MELDRC. If this
variable is defined, it is interpreted by the linker to be the file name of a command file. The
linker attempts to open this file and treat it as a command file before any of the command lineis
processed. After the file is processed, command processing begins at the start of the command
line. The effect of thisis the same as though the file were named at the start of the command line
using the - f switch.

MEL DRC usage:

nmel d vector.o
MELDRCisdefinedtobeC: / usr/ proj ect/ st andar d. cnd

Thisisthe same as though the following command line were typed, and MEL DRC were
not defined:

meld -f C./usr/project/standard.cnd vector.o

If the environment variable is not set, or it is set to some string that is not alegal file name, or the
file it names cannot be found or opened for read access, the linker does not issue an error. In this
case, the linker continues without automatically opening any command file at startup. If you
define MELDRC to name a read-access file but it is not a command file, you get many command
line error messages.

The startup command file is useful when certain object files, library files, option switches or a
linker definition file (LDF) is used for every link. Instead of retyping this information you can
specify it in acommand file and define MELDRC to point to this file. For example, the project may
have a common memory map defined in an LDF. The MELDRC environment variable can be set
for everyone on the project to the command file that tells the linker to use this LDF.

Remember, dependent switches are processed in the order in which they are encountered even
within nested command files.

nmel d vector.o
MELDRCisdefinedtobeC: / usr/ proj ect/ st andar d. cnd

The contents of fileC: / usr/ proj ect/ st andar d. cnd are:

startup.o

-def C:./usr/project/nmenory. | df

-lc
Thisisthe same as though the following command line were typed and MEL DRC were
not defined:

meld -f C./usr/project/standard.cnd vector.o

AsSC: /usr/ proj ect/standard. cnd isacommand file, this expands as though
the following were typed:

mel d startup.o -def C./usr/project/nmenory.ldf -1c
vector.o

MELDSW/D Rev1 3-23

COMMAND LINE INTERFACE @ MOTOROLA

3-24 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

CHAPTER 4

LINKER DEFINITION FILE

A linker definition file (LDF) isan ASCI|I text file that serves three main purposes:

» It defines segments, which are the major groups of code or data that comprise the
application being linked.

* It defines absolute symbols, which your code can reference as address or data
constants.

» It can turn on checking operations to be performed on the segments you define, and
the sections that the linker assigns to these segments.

This chapter discusses segments and sections, how the linker processes input sections, and the
default segments the linker creates when you do not specify an LDF. The rest of this chapter
discusses the syntax, semantics, and use of an LDF.

41 SEGMENTSAND SECTIONS

A segment is an area of an executable object file containing code or data that is loadable into
physical memory on your target system. A segment contains sections from the input object files
and object members (library file members in object file format) included in the link. Each
segment represents an area of memory that a debugger will load or an S-record generator will
convert to S-records. The linker creates segments in the output object that reflect the memory
layout of the target hardware platform.

Each segment has a unique name. The Motorola S-Record Generator uses segment names to let
you generate S-records for a specific segment or a set of segments. See Appendix C, Motorola S
Record Generator.

A section isanamed areain an object file or object member that may contain code or data. When
you write assembly language code, you can control which sections the assembler creates, and
what code or data goes into them. If your code source is a higher level language, such as C, then
the C compiler creates sections with standard names for you.

The linker does not create sections or section names; it includes them from input object files and

library members. The linker uses a section’s name, along with other specifications, to determine
which segment will contain the section. Within a segment, the linker will collect together all of
the sections with the same name and create one larger section. The linker will not split a section
within or across segments.

MELDSW/D Rev1 4-1

LINKER DEFINITION FILE @ MOTOROLA

411 Reserved Sections

The linker accepts any valid section name, but the Motorola Embedded Assembler (MEAS) is
more restrictive. Section names starting with are reserved names in the assembler. The
assembler does not let you arbitrarily name sections that begin. withhe name of a section
that begins with.”” must be one of the reserved section names:

. text .data . bss
. PPC. EMB. sdat a0 . sdat a . sdat a2
. PPC. EMB. sbssO . sbss . Sbss?2

The assembler lets you create sections with arbitrary names if the names do not begin with *
Reserved sections have special meaning. Some of the meanings are more strictly observed than
others. For example,t ext sections are reserved for executable machine instruction words,
while . dat a sections are reserved for data storage. However, none of the Motorola software
tools restrict usage of these sections, to code or data. Sectiongssithn' their names reserve

space for uninitialized data.

412 Small Data Areas

Sections whose names begin with or . PPC. EMB. s are reserved sections used for small data
areas (SDAs). The linker supports the three SDAs thaPthexrPC Embedded Application
Binary Interface standard defines. (The user’'s manuals for the Motorola Embedded C Compiler
and the Motorola Embedded Assembler also contain information about small data areas.)

The three SDAs are:

 SDA O which consists of the sectionsdat a and. sbss. The SDA base register is
GPR 13.

« SDA2 O which consists of the sectionsdat a2 and. shss2. The SDA2 base
register is GPR 2.

» SDAO O which consists of the section®PC. EMB. sdat a0 and. PPC. EMB. sbssO.
The base address of SDAO always is address 0. Although GPR 0 is the SDAO base
register, this may be misleading. PowerPC processor load and store instructions that
specify offsets from GPR 0 always ignore the value in GPR 0. Instead, such
instructions calculate the offsets from address 0, regardless of GPR 0's value.

Each small data area may contain no more than 65536 bytes. Your code can access data stored in
an SDA via a single load or store instruction, using a signed 16-bit offset from the value in the
SDA’s base register to the data. Similarly, a single instruction can produce the address of data
stored in an SDA. This can reduce the size of your code and increase its execution speed.

4-2 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

The linker assigns the base address for SDA to symbol _SDA BASE_; the linker assigns the base
address for SDA2 to symbol _SDA2 BASE . Accordingly, your startup code must assign the
values of these symbols to GPR 13 and GPR 2, respectively, before your application accesses
datain SDA or SDA2. See Section 4.9, Use of Romcopy Segments.

4.2 ASSIGNING SECTIONSTO SEGMENTS

When the linker assigns sections from input object files and library members to each segment in
the output files, it imposes an ordering within the segment.

First, the linker arranges sections with certain names or types within the segment in this order:
1. sections named . PPC. EMB. sdat a0

2. sections containing initialized data that are not small data area sections
3. sections named . sdat a
4. sections named . sdat a2
5. sections named . PPC. EMB. sbss0
6. sectionsnamed . sbss
7. sectionsnamed . sbhss?2
8. sections containing uninitialized data that are not small data area sections
After the linker arranges sections in this manner, groups 2 and 8, which are the non-small data

areas, are arranged so that all sections with the same name are adjacent to one another. Then the
linker converts all adjacent sections with the same name into one larger section with that name.

The output object file format (ELF) specifies that uninitialized sections are placed at the end of a
segment. If both uninitialized and initialized sections with the same name are in the same
segment, the linker cannot create one larger section. Instead, the linker creates two sections with
that name: one consisting of al of the initialized sections grouped together, and the other
consisting of the uninitialized sections grouped together.

4.3 DEFAULT SEGMENTS

If you do not define any segments in the linker definition file (LDF), the linker defines a set of
default segments. As this segment description likely will not be ideal for your target memory
layout, you should become familiar with the syntax for describing segments, and define your
own.

If you do define any segments yourself, the linker does not define any default segments.

MELDSW/D Rev1 4-3

LINKER DEFINITION FILE @ MOTOROLA

The default segment map is useful when getting started. Y ou can write your application code and
link it together using the default map. This helps you verify that al the symbolic references are
defined somewhere. The linker can produce a listing file that helps determine the size
requirements of your code and data. At this point, you know approximately how much memory
your application requires.

The system architect can then design the memory map as segments in the LDF. The linker can
then use the LDF in subsequent links.

The default segment map is the same asif you supplied the LDF in Figure 4-1 to the linker.

This segnent is used to hold executable code. Note that alignnent
must be 4, and the start address may be different if the user
supplied a start address using the -T switch.
segnment .text start=0x200 align=4 priority=1 protect=r, x
section=(.text);

Segnment contains read-only data. This segnment, and the .text segment
above are assuned to reside in ROM Note that changing the starting
location of the .text segnment will nove this segment al so.
seghent .rodata start=segafter(.text) align=4 priority=1 protect-=r
section=(.rodata, .sdata2);

Segnment contains read-wite data, assumed to be in RAM Usually
this segnent follows the end of the .rodata segnment, but if you use
the -D switch you can start the segnment where you wi sh.
segnent .data start=segafter(.rodata) align=4 priority=1
section=(.data,.sdata,.sbss);

Segnment contains uninitialized data. Note that this segment follows
the .data segnent, so when .data noves, this segnment noves.
segnent .bss start=segafter(.data) align=4 priority=1

section=(. bss, .sbss2);

3+

Segnent contains all other sections that otherwi se do not fit above.
This is a catch-all segnent. Note that it conmes |last, so that
precedi ng segnents will have first grabs at the sections that
bel ong there. Also note: this segnment follows the .bss segnment, so
when .bss noves, this segnent noves.
segnent .other start=segafter(.bss) align=4 priority=1

protect=r,w x section=(*);

O H R H

Figure4-1. Default Segments

4-4 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

You will understand more about the syntax used in the default LDF after you read Section 4.4,
General Linker Definition File Syntax, Section 4.5, Segment Declarations, and Section 4.6,
Symbol Declarations.

44 GENERAL LINKER DEFINITION FILE SYNTAX

44.1 Declarationsand Directives

A linker definition file (LDF) contains a set of segment and symbol declarations, and directives
to the linker. The LDF syntax is free form: Y ou may insert spaces and newlines (carriage-returns,
linefeeds) freely between keywords, numbers, operators and functions. Every declaration or
directive ends with a semi-colon (;). A declaration or directive may span as many lines as you
desire, but you may not put a declaration or directive inside another declaration or directive.

Blank lines are permitted. Anywhere the pound sign (#) appears on aline, the rest of that lineis
ignored as a comment.

The LDF may contain as many as six types of declarations and directives, each starting with a
keyword. These declarations and directives are:

e seg{nent} Declares and defines a segment in the memory layout.

* synbol {define} Declares an absolute symbol and its value. Same as
syn{ defi ne}.

 syn{define} Declares an absolute symbol and its value. Same as

synbol {defi ne}.

» checkov{erlap} Directslinker to check whether segments that lie between this
directive and the next nocheckov{er| ap} directive overlap
each other.

* nocheckov{erl ap} Directs the linker to discontinue overlap checking for the
segments that follow this directive.

* single{section} Directsthelinker to check that every section of any given name
existsin only one segment.

When the syntax shows part of akeyword in braces{}, that part of the keyword is optional. Y ou
must type al of the keyword before the braces, followed by any number of characters from the
optional part. For example, for the segment (seg{nent}) keyword, seg, segm segne,
segnen, and segnent areall valid.

MELDSW/D Rev1 4-5

LINKER DEFINITION FILE @ MOTOROLA

442 Names

No two segments declared in the LDF may have the same name, and no two symbols declared
may have the same name. However, a segment may have the same name as a symbol or section,
and a symbol may have the same name as a segment or section. (The linker does not declare
sections and give them names: their names and contents are defined in input files and libraries.)

A segment name, symbol name, or section name in the LDF must start with one of the characters
inA—Z,a—z,$,. (period), and (underscore). Characters after the first may be any of the start
characters add—9.

The linker is case sensitive when processing segment, symbol, and section names. For example,
the segment nam®&dni is not the same as 6.

443 Literal Numbers

Within declarations you can specify integer values, such as the size of a segment or the value to
assign to a symbol. The simplest way to specify a value is to type a literal number.

A literal number is an integer value specified as a decimal (base 10), hexadecimal (base 16), or
octal (base 8) number. A decimal number consists of a string of one or more characters from
0—9, where the first character is riatA hexadecimal number consistsOxf or 0X followed by

a string of one or more characters from-9, A—F, anda—f . An octal number consists of
followed by a string of one or more characters foe#7.

444 Segment and Symbol Expressions
Several specifiers in a segment declaration let you type a value as a segment expression. A
segment expression, shown in the syntax &egExpr, may consist of:

* literal numbers.

» the unary operato(g , + (unary plus), and (unary minus).

» the binary operators (addition),- (subtraction)y (multiplication),/ (division), and
%(modulo).

+ the segment functionsegstart (), segend(), segafter(), segsize(), and
segi si ze() . (SeeSection 4.4.5, Segment Functions.)

4-6 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

A synbol def i ne or syndef i ne declaration lets you assign to a symbol the value of a symbol
expression. A symbol expression, shown in the syntax as SynmExpr, may consist of:

e literal numbers.

» the unary operators, the binary operators, and the segment functions of a segment
expression.

» the symbol functions sectstart(), sectend(), sectafter(), sectsize(),
and addr of () . (See Section 4.4.6, Symbol Functions.)

The unary operators work the same as in the C language; e.g., they are right associative. In a
segment expression, the operand of a unary operator is any segment expression; in a symbol
expression, the operand is any symbol expression.

The binary operators work the same as in the C language; e.g., they are left associative. In a
segment expression, the two operands of a binary operator are any segment expressions; in a
symbol expression, the operands are any symbol expressions.

The precedence of operators is the same as in the C language. From highest to lowest
precedence:
1. () operator
2. +and- unary operators
3. *,/,and %operators
4. +and- binary operators
The result of a segment expression or a symbol expression is always an unsigned 32-hit integer.
The linker treats values as unsigned because they generaly represent physical addresses. The
linker behaves as though every operator produces a result that must first be assigned to an
unsigned 32-bit integer in the C language. The linker truncates every expression result before
using it as the operator of the next expression. Therefore, a binary operator always operates on
two 32-bit unsigned integers and produces a truncated 32-bit unsigned integer result.
Example 4.1:
Y ou enter the expression: 3/ (- 1)
Y ou expect the result -3 (OXFFFFFFFD).
Instead, you get 0.

Why? Because the unary operator - operating on 1 produces the unsigned result
OXFFFFFFFF. Then 0x3 divided by OxFFFFFFFF produces a number much less than
1, which the linker truncates to O.

MELDSW/D Rev1 4-7

LINKER DEFINITION FILE @ MOTOROLA

Example 4.2:
5-3-1 resultsin 1. Because - isleft associative, thisisthe sameas (5- 3) - 1.
5-(3-1) resultsin3.
Remember that the result of any expression is an unsigned 32 bit integer, so typing -1 is a
shorthand way of typing Ox FFFFFFFF. Also, the linker does not alow use of unary operators +
or - adjacent to the binary operators+ or - .
Example 4.3:
oxff8 + -1 isnotalowed.
10 - +3 isnot alowed.

445 Segment Functions

A segment function returns information about the size, start address or end address of the
segment whose name is passed as an argument to the function. Segment functions return
unsigned 32-bit integers. The segment functions are:

» segstart (Segnent Nane) — This function returns the starting byte address of the
segment nameSegnent Nane.

» segend(Segnent Nane) — This function returns the byte address of the last byte
contained within the segment nam8egnent Nane. Note that this function is the
same ag$segafter(Segnent Nane) - 1).

» segafter(Segnent Nane) — This function returns the byte address of the first byte
beyond the end of the segment nanSegnent Nane. Note that this function is the
same ag¢segend(Segnent Nanme) + 1).

* segsi ze(Segnent Nane) — This function returns the total size in bytes of the
segment namedSegnent Nane. This is the size of both the initialized and
uninitialized parts.

* segisize(Segnent Nane) — This function returns the size in bytes of the
initialized portion of the segment name&dgnent Nane. The linker places all of the
initialized data at the start of the segment. This function returns the size of that part of
the segment.

Example 4.4

segafter(.text) evaluates to the first byte address after the end of segment
.text.

Be careful not to build descriptions that have cyclic expressions. The linker will not be able to
evaluate such expressions and will terminate with an error.

4-8 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

Example 4.5:
segnent .text start=segafter(.data) (.text);
segnent .data start=segafter(.text) (.data);

This produces acycle. The linker must know the start address of segment. dat a to
evaluate the start address of segment . t ext . The start address of segment . dat a,
however, depends on the start address of segment . t ext .

For more information about cycles and preventing them, see Section 4.10.1, Cyclic Constraints.

Example 4.6:
segnent ranspace start=segafter(ronspace) + 0x100 ...;

This defines a segment named r anspace that begins 0x100 (hexadecimal) bytes after
the end of ther onmspace segment.

4.4.6 Symbol Functions

A symbol function returns information about a section or the value of a symbol. The name of the
section or symbol is passed as an argument to the function. Symbol functions return unsigned 32-
bit integers.

Most of the added functions return information about sections. The sections are referenced by
name. It is possible that several sections may exist with the same name. If this is the case, the
linker will return information about the first section (lowest address) found in the first segment
defined that contains a section with the given name. Note that depending on the definition order
and start address of the segments, this may not result in the lowest address section with the
specified name.

The symbol functions are:

» sectstart(SectionNane) — This function returns the byte address of the start of
the first section found with the nansect i onNane.

» sectend(SectionNane) — This function returns the byte address of the last byte
contained within the first section found with the naseet i onNane. Note that this
is the same assect af t er (Secti onNane) - 1).

» sectafter(SectionNane) — This function returns the byte address of the first
byte after the end of the first section found with the n&ew i onNane. Note that
this is the same dsect end(Secti onNane) + 1).

MELDSW/D Rev1 4-9

LINKER DEFINITION FILE @ MOTOROLA

» sectsize(SectionNane) — This function returns the size of the first section
found with the name&ect i onNane.

* addr{of }(Synbol Nane) — This function returns the value of the symbol named
Synmbol Nane. If the symbol is a label, the return value is an address. If it is an
absolute symbol, the return value is the value of the symbol. The function name is
specified asaddr{of}, which means thatddr, addro, or addrof will be
recognized as the keyword for this function.

45 SEGMENT DECLARATIONS

Segment declarations define segments that the linker creates. The segments describe major
portions of the memory layout. Motorola recommends that you create a separate segment for
each of the following:

» Each non-contiguous area of memory.
» Each differing technology type, such as RAM vs. ROM.

» Special purpose areas, such as regions of RAM that your code needs to initialize at
system boot time.

Most segments will contain code or data that the linker gathers from input sections. The linker
assigns sections from input object files and library members to the segments that you declare.
Which sections go into which segments is under your control.

The syntax of a segment declaration is:
seg{ment} Segnent Nane [typ{e}=TypeSpec]
[start=SegExpr] [size=SegExpr] [end=SegExpr]
[m n{size}=SegExpr] [max{size}=SegExpr]
[align{ment}=AlignNum [prif{ority}=PriorityNun
[pro{tect}=Protect Spec, Protect Spec, . ..]
[[sec{tion}=] (NaneTenpl at e, NaneTenpl ate, ...)]

Each segment declaration must start with the key wergrent , followed by the name of the
segment, followed by any desired or required specifiers, and ending in a semicplon (
Specifiers (keywords followed by followed by parameters) may be in any order. The
declaration may span several lines before you end it with a semicolon.

In the syntaxs is the equals operator. It represents that either the equals-signcplon () or
a colon with an equal sign<£) is required.

When the syntax shows part of a keyword in brg¢eghat part of the keyword is optional. That
is, you must type all of the keyword in front of the braces, followed by any number of characters
from the optional part.

4-10 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

If the keyword or equals operator is in brackets [], typing the keyword or equals operator is
optional. Many specifiers have default values when they are unspecified.

Example 4.7:
seg .text start=0x100 ...;
seghe .text start:=0x100 ...;

segnment .text start:O0x100 ...;

Each of the above segment declarations uses a different style equals operator and
version of the segnent keyword, but they all declare that segment. t ext begins at
0x100 (hexadecimal).

451 Segment Name

No two segments declared in the LDF may have the same segment name (SegmentName). The
rules for naming segments are in Section 4.4.2, Names.

452 Segment Type

typ{ e} =stand{ard}
typ{e}=res{erved}

typ{ e} =ron{copy} (Segrent Nane)

There are three types of segments. The most common is the standard type (t ype=st andar d),
which is the default type. It describes aregion of memory in which the linker is to place sections.
The segment declaration for a standard segment must have asect i on specifier.

A reserved segment (t ype=r eser ved) may or may not have asecti on specifier. A reserved
segment with no sect i on specifier will simply reserve space in memory. If a reserved segment
has asect i on specifier, it will have sections assigned to it. The linker writes those sections to
the output object file, but the output file does not have segment information for the reserved
segment. So aloader, debugger or S-record generator will not extract areserved segment.

A romcopy segment (t ype=r ontopy(Segnent Nane)) does not have sections assigned to it.
Instead, it reserves space for sections assigned to the segment named Segnent Nane.
Segnent Nane is usually a segment located in RAM that contains initialized read/write data.
Segnment Nane is the fina run-time address of the data, but initial values for the data are kept in
the romcopy segment, which isin ROM.

MELDSW/D Rev1 4-11

LINKER DEFINITION FILE @ MOTOROLA

If you declare a romcopy segment, the linker makes the romcopy segment the same size as the
copied segment. All of the symbols defined for the data are located within the RAM segment. At
load time, or S-record extract time, the initial values for the data are copied from the romcopy
segment to the RAM segment.

You should supply system boot code that will copy this segment into the RAM segment. See
Section 4.9, Use of Romcopy Segments, for more information on the use of romcopy segments.
453 Segment Start Address

start=SegExpr

Thest art specifier declares the starting byte address for the segment. Every segment must have
a start address, either explicitly declared or by default. The start address is a segment expression
(SegExpr). See Section 4.4.4, Segment and Symbol Expressions.

If a segment declaration does not have ast art specifier, the default is that the segment begins at
the next byte after the last byte within the segment declared immediately preceding. If the first
segment declared does not have ast art specifier, its start addressis 0.

454 Segment Size

si ze=SegExpr

end=SegExpr

m n{si ze} =SegExpr

max{ si ze} =SegExpr

There are several ways to specify the size or extent of a segment. The simplest way is to not
specify it. In that case, the linker will make the segment large enough to contain all sections
assigned to it, including the padding needed for alignment. Thus, the default size of a segment is
unconstrained.

Each of the size-constraining specifiersin this section requires a segment expression (SegExpr).
See Section 4.4.4, Segment and Symbol Expressions.

The si ze specifier sets the segment’s size in bytes to the value givSadixpr. Only one
si ze specifier is allowed in a segment declaration.

Example 4.8:
segnent .text size=0x100 ...

This sets the segment size to 0x100 (hexadecimal) bytes.

4-12 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

Example 4.9:
segnment .rom size=segsi ze(.data) ...;
This sets the segment size to be the same as the size of the. dat a segment.

The end specifier's SegExpr segment expression specifies the segment’'s end address (the
address of the last byte with the segment). The end address determines the segment’s size, since
size = end - start + 1. You might use this specifier when you know the end address of a memory
region. Only onend specifier is allowed in a segment declaration.

If you use theend specifier when the segment’s start address depends on information about other
segments, the link may fail. For information about why,Ssetton 4.10.1, Cyclic Constraints.

Theni nsi ze specifier lets you set the minimum size of the segment to the value of the segment
expressiorSegExpr . After the linker places sections and adds alignment padding, if the segment
size is less than that given by thiensi ze specifier, the linker increases the segment size to the
value of SegExpr. The default is no minimum size for a segment. Onlyronesi ze specifier

is allowed in a segment declaration.

Themaxsi ze specifier lets you set the maximum size of the segment to the value of the segment
expressionSegExpr. The linker will place sections in the segment until the placement of any
section would cause the segment to exceed the maximum size. Ontyarieze specifier is
allowed in a segment declaration.

The si ze and end specifiers specify the size of the segment. Thasi ze and maxsi ze
specifiers do not set the size, but put constraints on the size. It does not make sense to constrain
the size of something that has a size declared, so you cannotrisesiaze or maxsi ze

specifier with anend or si ze specifier. Also, since thend andsi ze specifiers do the same

thing, you cannot use them both in the same segment declaration. You aamsisee and

maxsi ze in the same segment declaration.

Romcopy segments may not have any specifiers that declare or constrain their sizes. The size of a
romcopy segment is always the size of the segment that it copies.

The linker does not assign a section to a segment until the linker has determined the size
constraints of all segments. Then it places each section into the highest priority segment in which
the section fits (se&ection 4.5.7, Segment Priority). Therefore, before assigning any sections,

the linker must reduce eadegExpr in asi ze, end, mi nsi ze, or naxsi ze specifier to a
numeric value.

If a SegExpr includes a function that references a segment, susbgas ze() , then the linker

must have enough information about the function's segment so that the function can return a
numeric value. Unless the function's segment heisza or end specifier, the linker may not be

able to determine the value of the function. Careless use of functions that reference segments
may keep the linker from completing the link. For more information Seetton 4.10.1, Cyclic
Constraints.

MELDSW/D Rev1 4-13

LINKER DEFINITION FILE @ MOTOROLA

455 Segment Alignment
al i gn{nment}=Ali gnNum

The al i gnment specifier lets you specify a minimum alignment criterion for the segment start
address. Al i gnNumis a literal number (see Section 4.4.3, Literal Numbers) that specifies the
alignment in bytes. A value of 0 or 1 specifies no alignment (or byte alignment). The default for a
segment is no alignment. Only oneal i gnnent specifier is allowed per segment declaration.

A segment’s start address will be a multipleabf gnNumunless a section placed in the segment
requires an alignment stricter (greater) tlm gnNum In that case, the start address will be a
multiple of the strictest alignment required by any section in the segment.
Example 4.10:

segnent .data start=0x404 ...;

The. dat a segment originally has a start address of 0x404. Suppose the strictest
alignment of any section placed in the segment is 8. The linker will adjust the start
address to be 0x408.
Example 4.11:
segnent .text start=0x100 align=4 ...

The. t ext segment originally has a start address of 0x100. Its alignment constraint is
4. Suppose the strictest alignment of any section placed in the segment is 8. The start
address 0x100 is already aligned by 8, so no adjustment is necessary.

Example 4.12:

segnent .other align=8 ...;

The. ot her segment begins after the last segment before it in the LDF. Suppose the
previous segment one ends at 0x42, so théner segment could begin at 0x43. If

no section placed in theot her segment has an alignment requirement greater than 8
bytes, then the linker will adjust the start address to 0x48, a multiple of the alignment
constraint specified.

456 Segment Protection
pro{tect}=Protect Spec, Protect Spec, . ..
Thepr ot ect specifier lets you specify the segment’s read, write, and execute access protections

when it is loaded into memory. By default, a standard segment is readable and writable, a
romcopy segment is readable, and a reserved segment has no protection.

4-14 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

A reserved segment cannot have a pr ot ect specifier; otherwise, only one pr ot ect specifier is
allowed per segment declaration.
NOTE
The Motorola Embedded Debugger does not make use of segment
protection information.
The protect specifier lets you specify a comma-separated list of Pr ot ect Spec protections. The
allowed protections are:
* r{ead} — the segment should have read access when loaded.
* wWrite} — the segment should have write access when loaded.
» ex{ecute} orx{ecut e} — the segment should be executable when loaded.
For ther {ead}, Wit e}, andex{ecut e} orx{ecute} keywords, the bracgg indicate that

you must type the part of the keyword before the braces, and you may also type any or all of the
part inside the braces.

If a segment has write access or execute access, the linker will automatically give it read access.

Example 4.13:

segnhent .text protect W, r,x ...;
segnent .data protect wite, read ...;
segnent vector protect = exec ...;
segnent table protect = wi

segnent . ot her

The. t ext segment is writable, readable, and executable. daea segment is
writable and readable. Thect or andt abl e segments are declared to be
executable and writable, respectively, but the linker also makes them readable.
Finally, the. ot her segment gets the default protections for a standard segment:
readable and writable.

45.7 Segment Priority
pri{ority}=PriorityNum
Thepriority specifier lets you specify a segment’s priorRyi ori t yNumis a literal number

(seeSection 4.4.3, Literal Numbers) between 1 and 65535 that specifies the priority. The default
priority is 1.

MELDSW/D Rev1 4-15

LINKER DEFINITION FILE @ MOTOROLA

When the linker assigns sections from input objects to the segments, it looks for segments that
have enough space for the section and a matching section specifier (see Section 4.5.8, Segment
Sections). If the linker can place the section in more than one segment, the linker uses a priority
number to decide in which segment to place it. Among several candidate segments, the segment
with the highest priority is the one where the linker places the section. The highest priority has
the lowest numeric value. The highest priority is 1, and the lowest is 65535.

Several segments in which the linker can assign the section may tie for highest priority. In that
case, the linker picks the first segment in the order that you defined the segments in the linker
definition file.

A romcopy segment cannot have apri ori ty specifier, since sections are not placed directly in
the segment; otherwise, only onepri ori ty specifier is allowed per segment declaration

458 Segment Sections
{sec{tion}=}(NaneTenpl at e, NaneTenpl ate, . ..)

Thesect i on specifier determines which input sections the linker can place in the segment. The
linker processes each section in turn and attempts to match the section’s name, and sometimes the
name of the input object file or library member containing the section, with each segment’s
secti on specifiers. Only matching sections can be assigned to a segment. The linker assigns
each section to the highest priority segment that has a matching sect i on specifier and enough
space for that section. See Section 4.5.7, Segment Priority.

A segment, other than a romcopy segment, may have more than one secti on specifier. A
standard segment must have at least one secti on specifier. A reserved segment may have
sect i on specifiers, but is not required to, since sections assigned to it will not be loaded into
memory. A romcopy segment may not have asect i on specifier.

A sect i on specifier may start with the keyword sect i on followed by an equals operator. A
section specifier adways has a commaseparated list of one or more NaneTenpl at e
parameters, enclosed in parentheses() .

A NanmeTenpl at e parameter is either a section name template or a module name template. A
section name template is a string that can match the name of one or more input sections. A
module name template is a string that can match the name of one or more input object files or
library members. There must be at least one section name template in every sect i on specifier;
use of module name templatesis optional.

Y ou enclose a module name template in angle brackets <>, which distinguishes it from a section
name template. The angle brackets are a delimiter, so you can run module name templates
together without intervening commas, such as <fil e. o><menber. 0>, and you can run a
modul e name template up against a section name template.

4-16 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

For each input section, the linker looks at al of the segment’s sect i on specifiers to match the
section. The linker tries to match the section’s name with a section name template. If the section’s
name matches, and there are no module name templates, the match succeeds. If there are module
name templates, the match succeeds if the name of the file or library member containing the
section matches a module name template.

Matching is case-sensitive. For example, a section named . dat a does not match a section name
template of . Dat a.

Example 4.14:

segnent .text start=0x100 section=(.text);
segnent .data start=0x200 priority=2 section=(.data);
segnent .data2 (.data, <vector.o>) (ny_data);

The segment . t ext accepts any sections named . t ext from any object file or library
member. The segment . dat a will accept any sections named . dat a, but if they

come from afile or member named vect or . o, they would go in segment . dat a2,
sinceit has the higher priority. (The default segment priority is 1.) The segment

. dat a2 also accepts sections named ny _dat a from any file or member.

Example 4.15:

segnent .data start=0x100 (.data, <vector.o>) (.data, <coeff.o0>)
(.data);

The segment . dat a accepts only sections named . dat a, and it would seem only
from modules named vect or . o or coef f . 0. However, the third sect i on specifier
matches any section named . dat a, without regard to the module name. This renders
thefirst two sect i on specifiers superfluous.

To assist in matching the names of sections, object files, and library members, the linker lets you
use wildcard characters in a section name template or a module name template. A template
containing a wildcard character can match more than one name, as opposed to matching severa
sections, files, or members that have the same name.

There are two wildcard characters. The asterisk (*) character matches O or more characters. That
is, where * appears in a parameter string, any number of characters in a name being matched
against the template string will match the asterisk.. Therefore, this character matches any
arbitrary substring in the section, object file, or library member name.

The second wildcard is the question mark (?). This is matches any one character in a name being
matched against the template string.

MELDSW/D Rev1 4-17

LINKER DEFINITION FILE @ MOTOROLA

Example 4.16:
segnent special start=0x100 (vect*,tab?data);

The first section name template, vect *, allows placement in the segment of any
section whose name starts with the strinect *. This would includevect or,

vect OR, vect or 1, vect, etc. It would not matcWECT. The second section name
templatet ab?dat a, matches any section name that starts with the stratg, 'ends
with the string dat a’, and has any one character in between. This would include
t abldat a, t abxdat a, t ab_dat a, etc. It would not matchabdat a.

If you have sections that you want assigned to a particular output segment, consider naming the
sections according to some convention, such as, beginning all such section names with the string
'vect '. You can then direct them to the intended segment by using a section name template of
vect *. Wildcard matching makes it easy to select out several different names that all follow a
pattern.

You do not always have control over the names of the sections. For example, if your code is in
the C language, then the section names are compiler generated. In such cases, you can isolate the
code or data that you want to treat specially into a source file of its own. After compilation, this
code or data will be in an object file by itself. You can then use a module name template to direct
this code or data to a particular segment. In Example 4.14, the linker places a section named

. dat a from a file or member namegect or. o in a different segment from sections named

. dat a from other files or members.

The linker does not consider the directory or drive containing an object file to be part of the
object file's name when matching against a module name template. The linker does not consider
the name of the library file to be part of the library member's name when matching against a
module name template. You can use the Motorola Archiver to find out the names of a library
file's members, as well as which global symbols are defined in which membefgpiBedix B,

Motorola Archiver.

46 SYMBOL DECLARATIONS
sym{define} Synbol Nanme = SynExpr [Visibility] ;

synbol {defi ne} Synmbol Name = SynExpr [Visibility] ;

The symbol declaration begins with either therdefi ne or synbol defi ne keyword. The
linker defines an absolute symbol nam&dbol Name and assigns to it the value of symbol
expression Syntxpr. The visibility of the symbol, described below, is specified by
Visibility.

4-18 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

The linker definition file lets you define symbols that are not defined by included input object
files and object members. The linker marks these symbols in the ELF output object file as
absolute symbols. Absolute symbols associated with the code or data in any input sections; they
provide symbolic constants.

There are several motivations for defining your own symbol, including:

* They let you complete a link when you have not yet defined some of the symbols.
You may want to temporarily define a symbol referenced by an input section before
you write the code that provides the definition.

* Hardware devices may be memory mapped at locations known at link time. A
symbolic constant allows your code to treat a memory-mapped device as a global
variable.

* You can record the sizes and locations of romcopy segments and uninitialized
segments, so that your system boot code has a symbolic address and range to
reference for boot time initialization.

* You might want to override the linker’s choice of the small data area base addresses,
_SDA BASE_and_SDA2 BASE . SeeSection 4.1.2, Small Data Areas.

* You can establish a symbolic base address of your own private small data area, and
then load the base address in the register of your choice.

In general, the linker considers symbols defined in the linker definition file (LDF) to be defined
at the beginning of the link process. Depending on the visibility of the symbol, another symbol
with the same name as one defined in the LDF might conflict. In this case, the linker will issue an
error message.

4.6.1 Symbol Name

No two symbols declared in the LDF may have the same symbol isymigo(Nane). The rules
for naming segments are $action 4.4.2, Names.

4.6.2 Symbol Expression

The value assigned to the symbol is the value of the symbol expreysiarpr. SeeSection
4.4.4, Segment and Symbol Expressions.

4.6.3 Symbol Visibility

The visibility of the symbol is given by the optionalsi bi I i t y parameter, which can be either
gl obal (the symbol is a global symbol) aeak (the symbol is a weak symbol). If you do not
specify visibility, the default igl obal . For a description of global and weak symbols, see
Section 5.3.4, Detailed Look at the Symbol Listing.

MELDSW/D Rev1 4-19

LINKER DEFINITION FILE @ MOTOROLA

If the symbol is aglobal symboal, it cannot have the same name as any global symbol defined in
any input object file or library member included in the link.

Normally, when a weak symbol has the same name as a globa symbol, the linker still uses the
weak symbol to resolve references within the file or member that defines the symbol. For a weak
symbol defined in the LDF, a global symbol by the same name in any included input object file
or member redefines the symbol for all referencesto it.

If two weak symbols conflict, the linker converts the second one found to a local symbol,
resolving references only in the file or member that defines the second symbol.. The linker
considers symbols declared in the LDF to be defined before it reads any input object files or
members. So a weak LDF symbol causes the linker to convert to local weak symbols with the
same name defined in input object files and members.

Unless you declare symbols with the same names in the LDF, the linker creates the symbols
SDA BASE and _SDA2_BASE . If you declare these symbols in the LDF, the linker uses your
definitions. Relocation instructions that reference an address relative to these two symbols must
still bein range (fit in the data or instruction field that has the reference). See Section 4.1.2, Small
Data Areas.

Example 4.17:
Set SDA bases to the values | have hard-coded in ny boot code
symbol _SDA BASE_ = 0x100;
symbol _SDA2 BASE_ = 0x200;

Change a constant | use in ny code
synbol W per Mot or Del ay = 0x5;

Set the address of a menory-mapped w per notor nodul e
synmbol W per Modul e = 0x400;

47 SINGLE SECTION DIRECTIVE
si ngl e{section};

The linker never splits input sections when it places them in output file segments. Usually, the
linker the linker combines into a single section all input sections with the same name that the
linker places in a single segment. However, the output object file format (ELF) requires the
linker put uninitialized sections at the end of the segment containing them. So if the linker puts
initialized and uninitialized input sections of the same name in a single segment, the linker
creates two sections with that name. Also, you can declare segments in the LDF such that the
linker places sections with the same name in more than one segment.

4-20 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

If it isimportant that all sections of any given name are together, and therefore merged into one
section, then use the singl esecti on directive. Only one si ngl esecti on directive is
necessary, and it may be anywhere in the LDF.

If there isasi ngl esect i on directive, the linker checks that no section name appears in more
than one segment, or more than once in a single segment. In either case, the linker issues a
warning message and continues with the link, unless the warning exceeds the warning limit.

The default isthat the linker does not perform single section checking.

48 SEGMENT OVERLAP CHECKING DIRECTIVES

checkov{erl ap};
nocheckov{erl ap};

If you define your own segments, you are free to design them so that they overlap. You may
decide to do this on purpose. Overlapping segments can help you implement a memory overlay
scheme. The default is that the linker does not check whether segments overlap.

Embedded applications often have ROM areas and RAM areas that cannot overlap. It is often
convenient initially to define one segment for each area. Y ou can determine how much ROM and
RAM you actualy are using by leaving the segment sizes unconstrained and generating a list file
with segment information in it. If you want the linker to alert you when segments overlap, use the
checkover | ap and nocheckover | ap directives.

The checkover | ap directive turns on overlap checking among the segments declared after the
checkover | ap directive and before the next nocheckover | ap directive, or the end of the
LDF. The linker checks each segment between the directives against al, and only, the other
segments between the directives. You can use several checkover | ap and nocheckoverl ap
directivesin the LDF to check for overlaps among various sets of segments

The linker starts processing the LDF with overlap checking turned off (hocheckover | ap).

Example 4.18:
group A
segnent .textl ...;
segnment .text2 ...;

group B
checkoverl ap;

segnent .datal ...;
segnent .data2 ...;

MELDSW/D Rev1 4-21

LINKER DEFINITION FILE @ MOTOROLA

group C
nocheckoverl ap;

segnent .bss ...;

group D

checkoverl ap;

segnent .rodatal ...;
segnent .rodata2 ...;

The linker does not check segmentsin group A for overlap, because the linker turns
off overlap checking by default at the start. The linker checks segmentsin group B for
overlap. Segments. dat al and . dat a2 lie in between overlap being turned on and
overlap being turned off. So the linker checks. dat al against . dat a2.

The linker does not check the segment in group C. The segmentsin group D have
overlap checking turned on again, so the linker checks segment . r odat al against
segment . r odat a2.

4.9 USE OF ROMCOPY SEGMENTS

Embedded applications often contain no non-volatile read/write storage devices, and have only
volatile memory (RAM) and read-only memory (ROM) as storage. Code and read-only data can
be stored ROM, and will be available at power-up (system boot). However, what about
read/write data that has an initial value? Since this data is read/write, it must reside in RAM, but
sinceitisin RAM, it will not contain a deterministic value when you boot the system.

Y ou could write boot code that sets each dataitem in turn, but thisis very inefficient in execution
time and ROM space. A more efficient approach is to place all the initial values for initialized
read/write datain a block of ROM, and, at system boot, copy this block of values into the RAM
area. This approach takes only the space needed to store the initialized values, plus a few
instructions of code to do the block copy.

In this approach, initialized read/write data has two distinct memory areas associated with it. The
initial values are kept in an area in ROM, but your code read and writes the data in the RAM
area. All references to symbols associated with the data, such as read/write variable names, must
resolve to aRAM address.

4-22 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

The linker provides a mechanism to handle initialized read/write data. It is easiest to explain by
describing the stepsto be taken:

1. Placeall of your read/write initialized data in a segment, or set of segments.

Do not place any other datain this segment, unless you want to copy it aswell. These
segments should have the start addressesin RAM that you desire at run time; that is,
after you copy initial values from ROM.

2. For each RAM segment defined in step 1, define a segment in ROM. In the segment’s
t ype specifier, make the typer oncopy and reference one of the corresponding RAM
segments defined in step 1.

3. Define symbolsin the LDF: three for each romcopy segment.

One symbol will contain the start address of the ROM segment, the second, the start
address of the RAM segment that is copied by the ROM segment, and the third, the
size of the ROM segment.

4. Write your startup code, which your application executes before your code references
any of the copied data items.

The startup code will use the values of the symbols defined in step 3 to copy the block
of datain each ROM segment to its corresponding RAM segment. Y ou can use a
common subroutine to do the block copy if you like.

5. Proceed with the link. Extract segments using the Motorola S-record extraction tool,
or load them using the Motorola Embedded Debugger.

The S-record generator extracts, and the debugger loads, romcopy segments and
standard segments. Reserved segments and the segments copied by romcopy segments
are not extracted or loaded.

When you declare a romcopy segment, the linker reserves space in memory at the address of the
romcopy segment. The amount of space reserved is the same as the segment it copies. The linker
does not assign sections directly to a romcopy segment. Instead, the linker assigns sections to the
RAM segment it copies.

The linker resolves any symbols defined in the initialized read/write data regions to their run-
time addresses in RAM. The linker records information in the output object file about the
romcopy segments, their start addresses, and the segments they copy.

In most cases, you will only have one romcopy segment and one initialized data segment that it
copies. You can place initialized data that is read-only in another ROM segment and leave it
there. It does not need to move into RAM, or be part of aromcopy segment.

MELDSW/D Rev1 4-23

LINKER DEFINITION FILE @ MOTOROLA

Example 4.19:
ROM area for code
segnment .text start=0x100 ...;
ronctopy segnment, contains inmage of initialized data
segnent .iromtype=roncopy(.idata);

RAM area for data

segnent .idata start=0x1000 ...;
uninitialized data area
segment .bss type=reserved ...;

synbol s used for rontopy boot code
synbol StartRontopy = segstart(.iron);
synbol StartRanctopy = segstart(.idata);
synbol SizeRontopy = segsize(.iron);

synbols used for initializing .bss segnent to O
synbol StartBSS = segstart(.bss);
synbol Si zeBSS = segsi ze(. bss);

The. i dat a segment contains all of the read/write data sections. The. i r omsegment
isaromcopy segment that copies segment . i dat a. Notice that thereisalso a
segment named . bss to hold uninitialized data. It is often convenient to assume that
all of the uninitialized data space is set to O at the start of the program (system boot-
up). This does not require a copy segment, but thisuninitialized data should bein a
segment of its own to make it easy to initialize.

The. bss segment istyper eser ved to make sure that any extraction tools, such as
an S-record generator or debugger, will not attempt to zero out this area. Y our startup
will zero it at application run time.

The symbols et your code reference the start address of theromcopy segment, start
address of the segment it copies, and the uninitialized segment. Other symbols contain
the size of the romcopy segment and the size of the uninitialized segment. Y ou can
use the symbols to copy datafrom ROM to RAM and to initialize the. bss segment.
If your memory layout changesin the LDF, your boot code will get the new values
when you re-link.

4-24 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

410 TYPICAL LINKER DEFINITION FILE PROBLEMS

The linker provides a great deal of flexibility when defining segments. It allows you to place
segments one after the other, while letting the linker determine the start addresses. It also lets you
create segments that mirror the size of other segments, or have size constraints that you do not
completely specify. The start, end and si ze specifiers in segment declarations let you use
expressions containing functions that return segment size and address information.

This puts a great deal of power in your hands, but can also result in some problems. This section
deals with the problems you may encounter and suggests some remedies. It does this through a
series of examples.

4.10.1 Cyclic Constraints

The linker places sections in segmentsin a two-step process.

1. The linker assigns sections to a segment; that is, the linker selects one segment to
contain each section. At the end of this process, the linker knows what segment a
section is in, but it does not know the section’s address. Because a section’s address
affects how much padding the linker adds, the linker also does not know the size of
any segment at the end of step 1.

A section can sometimes match by name any one of several segments. Because the
linker uses size as one of the constraints for assignment, the linker must know any
upper-bound size constraints on any segment before it can assign any sections.

So if the linker can assign a section to a segment, accordingstecthieon
specifiers, then the segmentisze, end or maxsi ze specifiers must be reducible.
Reducible means that the linker can determine an integer value before step 1 is
complete. If there is aend specifier for a segment, tkear t specifier must also be
reducible in order for the linker to determine the size.

2. The linker places sections at absolute locations within each segment. The start address
of at least one segment that contains sections must be reducible. The linker processes
this segment. After processing the segment, the linker knows all of the attributes of
that segment, including its size and start address.

The linker continues to process in turn each segment in which the linker places
sections. If any of the segments depend on each other’s attributes in any cycle, direct
or indirect, this step cannot complete.

MELDSW/D Rev1 4-25

LINKER DEFINITION FILE @ MOTOROLA

Example 4.20: si ze specifier problem

segnment .text start=0x100 size=segsize(.data) (.text);
segnent .data start=0x200 (.data);

During step 1, if asection named . t ext is processed, the linker will match it to the
. t ext segment. The size of the. t ext segment cannot be determined, since it
depends on the size of the.. dat a segment. The linker prints the error message:

unabl e to reduce end, max or size expression for segnent .text

Example 4.21: Fix to Example 4.20
segnent .text start=0x100 size=segsize(.data) (.text);

segnent .data start=0x200 size=0x50 (.data);

When the linker processes a section named . t ext , the section will match the
segment . t ext . The size of segment . t ext depends on the size of segment . dat a.
Usually, the size of segment . dat a would not be known until step 2. However, in
this case, the size of segment . dat a is absolutely defined, so the size of segment

. t ext isreducible.

Example 4.22: end specifier problem

segnent .text start=0x100 (.text);
segnent .data end=0x500 (.data);

When the linker processes a section named . dat a, the section will match the
segment . dat a. Now the linker must determine if there is enough room. The segment
has an absolute end given, so its size depends on its start address. Since no explicit
start address is given, the start address is the first byte after the end of segment

. t ext . So the linker must know the size of segment . t ext to determine the size of
segment . dat a. The start address of the segment . t ext isdeclared, but itssizeis
unconstrained and depends on the placement of sections. So the size is not known
until the end of step 2 processing. The linker issues the error message:

unabl e to reduce start expression to determ ne size of segnent
.data
Example 4.23: Fix to Example 4.22

segnment .text start=0x100 size=0x100 (.text);
segnent .data end=0x500 (.data);

The size of segment . dat a depends on the start address of the segment. This depends
on the start address and size of segment . t ext , Since segment . dat a follows
segment . t ext . The start and size of segment . t ext are absolutely specified, so the
linker can reduce the size constraint for segment . dat a.

4-26 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

Example 4.24: Start address-size dependency cycle problem

segment .text start=0x0 (.text);
seghent .roncopy type=roncopy(.idata);
segnent .idata (.data);

Thisisatricky example. In step 2, the linker assigns addresses to sections within the
segment. In order to process segment . i dat a, the linker must know the start address
of the segment. Segment . i dat a follows segment . r ontopy, so the start address of
the segment depends on the size and start address of segment . r ontopy.

The size of segment . r ontopy depends on the size of segment . i dat a, but the
linker cannot know that size until segment . i dat a is processed in step 2. Thus, there
isacycle. Thelinker issues the error message:

start address of segment .idata cannot be reduced

Fortunately, it isunlikely that you will declare a segment that holds initialized data (in
RAM) with a start address to follow the segment that copiesit (the romcopy segment
that isin ROM). Since these are two separate devices, they will likely start on fixed
device addresses.

Example 4.25: Fix to Example 4.24

segnent .text start=0x0 (.text);
segnent .ronctopy type=roncopy(.idata);
segnent .idata start=0x1000 (.data);

The linker can processthe. dat a segment in step 2, sinceits start address is reduced.
The sameistrue for segment . t ext . After the linker processes segment . t ext , it
knows the size of the segment, so the start address for segment . r ontopy isalso be
reducible.

4.10.2 No Matching Segment

The linker needs to assign each of the sections in the input object files and library to one of the
output segments. The linker can assign a section to a given segment only if the section matches a
sect i on specifier for a segment.

If the section does not match any of the sect i on specifiers for the defined segments, then the
linker will issue an error message like this one:
unable to match section .text, file vector.o to any segnent,
check segnent defs

If you did not define any segments and are using the default segment map, you will not get this
message. The linker defines the default segment map such that any conceivable section has a
segment.

MELDSW/D Rev1 4-27

LINKER DEFINITION FILE @ MOTOROLA

If a section does not match any segment, look at your segment declarations to see to which
segment you expected the linker to assign the section. Then look at the name templates to see
why that section did not match any of thesect i on specifiers.

If a section matches the sect i on specifiers of a segment, but the linker cannot place the section
there because of the lack of space in the segment, you will get a different error message. See
Section 4.10.3, No Room in Segment.

Example 4.26: no matching segment problem

segnment .text start=0x100 (.text,<filel.o>);
segnent .data (.data);

Assume the linker attempts to assign section . t ext fromvect or . o.

This section does not match any of the segments. It cannot go into the. t ext
segment, because that segment accepts only sections named. t ext from object files
or membersnamedfi | el. o. Thelinker issues the error message:

unable to match section .text, file vector.o to any segnent,
check segnent defs
Example 4.27: Fix to Example 4.26

segnent .text start=0x100 (.text<filel.o><vector.o0>);
segnent .data (.data);

Assume the linker attemptsto assign section . t ext fromvect or. o.

Thelinker will match the. t ext sectiontothe. t ext segment.

4.10.3 No Room in Segment

Asthe linker assigns sections to segments, a section may match the sect i on specifier of asize-
constrained segment. If there is not enough space left in the segment, the linker will not assign
the section, even if the segment is the highest priority matching segment or the only matching
segment.

In order to distinguish this case from not being able to find a matching segment, the linker issues
a separate error message when there is not enough room. This message is similar to the
following:

mat chi ng segnents have no roomfor section .text, file factor.o

4-28 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

If you ask for a segment listing, the linker will list the segments and the sections assigned to
them. The linker will also list the sections that it did not assign a segment because there was no
match, or because of alack of room. For each section that the linker did not assign due to a lack
of space, look in the list file information for the each segment that it matches. Using the start
address and size of the last segment assigned to each matching segment, you can calculate the
gpace left in the segment, which should be smaller than the size of the section you are attempting
to assign.

In some cases, it may appear that there is enough room, yet the linker says there is not.
Remember that the linker must add padding space to meet alignment constraints. This padding is
the reason that the section will not fit. In order to meet alignment criteria, the linker must
consider both the size of the section and the padding that must precede its assignment.

MELD assigns input sections to output segments in a two-phase process. In the first phase, the

linker assigns each section to some segment. The linker ignores the segment’s start address, even
if it is know, and it computes the worst-case padding it needs to add to the segment in order to
align the sections assign to it. This phase is called the assignment phase.

In the second phase, the linker determines each segment’s start address from the segment’'s
start specifier or computed from another segment’s location and size. The linker places each
section assigned to a segment in the segment, in the order that it assigned sections to the segment.
The linker adds padding in front of each section to meet its alignment requirement and computes
the address of each section.

Before assigning a section to a segment in the assignment phase, the linker makes sure that there
is room for both the section and the worst-case number of bytes of padding needed to align the
start of the section.

The linker makes sure that the segment’s start address is a multiple of the strictest (highest)
alignment of any section in the segment. So the linker needs no padding bytes before the first
assigned section. The linker determines the worst-case padding needed for sections assigned after
the first section by using the segment’s running worst-case alignment.

After the linker assigns each section, including the firstytineing wor st-case alignment is the

lesser of the alignment requirement for the section just assigned and the size alignment of that
section. Thesize alignment is the maximum power of two that will evenly divide into the size of

the section.

MELDSW/D Rev1 4-29

LINKER DEFINITION FILE @ MOTOROLA

Example 4.28: Computation of running wor st-case alignment

Thelinker has just assigned section . dat a fromfilef act or . o to segment . dat a.
The section’s alignment requirement is 8 bytes, and its size is 6 bytes.

When linker assigns the section, the linker assumes padding was necessary to meet
the alignment requirement of the section. This requirement is 8 bytes. The size
alignment of the section is 2 bytes. (This is the largest power of 2 that will evenly
divide the section’s size of 6 bytes.) The minimum of these two values is 2 bytes, so
the new running worst-case alignment is 2 bytes.

The worst-case number of bytes of padding needed is:

» the section’s alignment requirement minus the segment’s running worst-case
alignment, or

» zero, if the running worst-case alignment is greater than the alignment requirement.

The actual number of bytes of padding needed may be fewer than the worst-case assumed by the
linker during the assignment phase.

Example 4.29:

The previous section assignment left the segment with a running worst-case alignment
of 2 bytes. The linker now needs to assign a section that has an alignment requirement
of 4 bytes and a size of 16 bytes. The linker assumes that it needs 2 bytes of padding
for this section (4 bytes - 2 bytes), so the segment must have at least 18 bytes left. The
segment’s new running worst-case alignment is 4 bytes (the lesser of 4 bytes and 16
bytes).

Example 4.30:

The segmentdat a has 10 bytes left. The last section assigned to it has a size of 4

and an alignment requirement of 4 bytes. The sectiant s matches this segment

and does not match any other. It has an alignment requirement of 8 bytes and a size of
8 bytes. An error message from the linker tells us that the linker cannot assign this
section to this segment because there is not enough room.

When the linker generates the list file, the last section in segrmiené begins at

address 0x64. Since its size is 4 bytes, the next available address is 0x68. This address
is a multiple of 8, so the linker should not require padding to assign seatiens.

So why won't the section fit, since it is only 8 bytes, and there are 10 left?

4-30 Revl1l MELDSW/D

@ MOTOROLA LINKER DEFINITION FILE

The linker does not know the actual start address of segment . dat a during the
assignment phase. The next available address in segment . dat a could have been an
address other 0x68 that is not a multiple of 8. The last section assigned has an
alignment requirement of 4 bytes. The alignment of the segment after padding and
before the linker places thislast section must be at least 4 bytes. The size of the last
section is al'so 4 bytes, so the running worst-case alignment after the linker assigned
thislast section is 4 bytes.

When the linker attempts to assign section const s, the running worst-case alignment
is4 bytes. Up to 4 bytes of padding might be required in front of this section.
Therefore, there must be 8 bytes for the section plus 4 bytes padding, or 12 bytes | eft
in the segment, before the linker can assign this section.

The linker orders al sections with the same name together in a single list before assignment.
After placement, it combines all of the like-named sections that are contiguous in the same
segment into one larger section. It is likely that al of the sections that have a given name will
have the same alignment requirements and a size that is modulo the alignment requirements.

If the above is true, as the linker assigns the like-named sections in turn to the same segment, it
does not need to add padding after it assigns the first one. The running worst-case alignment will
be the same as the required alignment for each of the like-named sections assigned after the first.

MELDSW/D Rev1 4-31

LINKER DEFINITION FILE @ MOTOROLA

4-32 Revl1l MELDSW/D

@ MOTOROLA LIST FILE

CHAPTERS

LIST FILE

5.1 INTRODUCTION

Thelist file isarecord of what goes into the output file generated by the linker. Specifically, the
list file shows information regarding segments generated, sections, and symbols. The list file
does not show the actual data in a given section or segment. To view that, you must use an
object/executable file reader of some sort, e.g., adumper or a debugger.

The list file is divided into three types of listings. segment, section, and symbol. Y ou can direct
MELD to generate a list file and determine which listings it contains by using the listing
switches: - LI ST, - seg, - sym - sym, - syma, and - xr ef .

The segment listing lists the segments defined in the output file. If the listing is requested, it
appearsfirst in thelist file. It shows various segment attributes such as where each segment starts
in memory and how large it is. The linker will suppress O size segments. For more information on
the segment listing, see Section 5.3.2, Detailed Look at the Segment Listing.

The section listing, if requested, is next in the list file. It lists the sections defined in the output
file, as well as which segment each section is within. For each output section, it shows
information such as what input sections from what source files were combined to create it, what
symbols are defined in it, and what symbols are referenced in it. Output sections of size 0 are
suppressed. For more information on the section listing, see Section 5.3.3, Detailed Look at the
Section Listing.

The symbol listing, if requested, is last. It lists all symbols in the output file, with their values,
sizes, and sections. For more information on the symbol listing, see Section 5.3.4, Detailed Look
at the Symbol Listing.

52 LIST FILE COMMAND LINE SWITCHES

The command line listing switches, which cause a list file to be generated and determine its
contentsare: - LI ST, - seg, - sym - symn, - syma, and - xr ef .

MELDSW/D Rev1 5-1

LIST FILE @ MOTOROLA

521 The-LIST Switch

The - LI ST switch specifies the name of the list file and sets default list switches. The - LI ST
switch takes a single argument, the name of the list file to be generated.

If no other listing switch appears on the command line or in command files, then the - LI ST
switch will set default listing contents. The default list file contents for the - LI ST switch are:

« segment listing and section listing, asif - seg is specified

« symboal listing, asif - symm is specified

» Symbol cross-referencesin the section listing, asif - xr ef is specified
If the - LI ST switch appears on the command line or in command files with one or more of the

other listing switches, then - LI ST only names the list file; the other switches determine what
goesinto thefile (- LI ST will not set the default listing contents).

If - LI ST does not appear on the command line or in command files, but one or more of the other
list file switches does, then the list file will be named | i nker . | st, and will have the contents
specified by the listing switches provided.

The - LI ST switch can appear multiple times on the command line or in command files.
However, if it appears more than once, the linker still only generates one list file. This file is
named according to the last - LI ST switch.

If the file specified by the - LI ST switch exists, the linker will overwrite it. Care must be taken
not to follow the - LI ST switch with an object or library file name. The linker could overwrite
thisfilewith alist file.

Example5.1:

meld -o main -def linker.ldf startup.o main.o -LIST main.l st
Thisgeneratesalist filenamed mai n. | st. Filemai n. | st will contain a segment
listing, a section listing, a symbol listing, and symbol cross-referencesin the section
listing.
Example5.2:
meld -o main -def linker.ldf startup.o main.o -seg -xref
-LI'ST mainl.lst -LIST main2.|st

This produces alist file named mai n2. | st that contains a segment listing, a section
listing, and symbol cross-references within the section listing, but no symbol listing.
Since- seg and - xr ef were specified, the defaults for the- LI ST switch were not
turned on. The- LI ST switch is used only to name thelist file.

5-2 Revl1l MELDSW/D

@ MOTOROLA LIST FILE

Example5.3:
meld -o main -def linker.ldf startup.o main.o -sym -xref

Thisproduces alist filenamed | i nker . | st that contains a section listing with
symbol cross-references, and a symbol listing that is sorted by name.

5.2.2 The-seg Switch

The - seg switch directs the linker to include in the list file the segment and section listings.
Multiple - seg switches can appear on the command line or in command files; they have no
additional effect beyond the first - seg.
Example 5.4

neld -o main -def linker.ldf startup.o nmain.o -seg

Thisproduces alist filenamed | i nker . | st with asegment listing and a section
listing, without symbol cross-references. Thelist file for this exampleisin Figure 5-1.

*** Segment Listing ***

Segnment Nanme Start Init_Size Total _Si ze Prot Type

. text 0x20000 0x90 0x90 RW STD

st ack 0x40000 0xO 0x40000 RW RESERVED
Total Init Size: 0x90
Total Size: 0x90

*** Section Listing ***

Section: .text Segment: . text

[start: 0x20000 size: 0x8C type: init index: 1]
conmposite section Location Source File

. text 0x20000 mai n. o

.text 0x20008 startup.o

Section: .sdata2 Segnent: .text

[start: 0x20090 size: 0xO0 type: init index: 4]
conmposite section Location Source File

. sdat a2 0x20090 mai n. o

Figure5-1. List Filewith -seg Switch

MELDSW/D Rev1 5-3

LIST FILE @ MOTOROLA

For more information on the listing generated by the- seg switch, see Section 5.3.2, Detailed
Look at the Segment Listing.

5.23 The-xref Switch

The - xr ef switch directs MELD to list the symbol cross-references. Thisis a section by section
listing of the symbols defined in each section and the symbols referenced in each section. Since
the listings are by section, they appear with the section listings. If you do not request a section
listing but ask for a cross-reference, the linker gives you a section listing anyway.

Multiple - xr ef switches can appear on the command line; they have no additional effect beyond
thefirst - xr ef .
Example5.5:

meld -o main -def linker.ldf startup.o main.o -xref

Thisproducesalist filenamed | i nker . | st with section listings that have symbol
cross-references. Thelist file for this exampleisin Figure 5-2.

*** Section Listing ***

Section: .text Segment: . text

[start: 0x20000 si ze: 0x8C type: init index: 1]
conmposite section Location Source File

. text 0x20000 mai n. o

.text 0x20008 startup.o

synbol s defi ned:

. text 0x20000 main 0x20000
__start 0x20008

synbol s referenced:

_SDA BASE _SDA2_BASE _

mai n

Section: .sdata2 Segnent: . text

[start: 0x20090 size: 0xO0 type: init index: 4]
conposite section Location Source File

. sdat a2 0x20090 mai n. o

synbol s defi ned:
. sdat a2 0x20090

Figure5-2. List Filewith -xref Switch

5-4 Revl1l MELDSW/D

@ MOTOROLA LIST FILE

For more information on the listing generated by the - xr ef switch, see Section 5.3.3, Detailed
Look at the Section Listing.

524 The-sym, -symn, -syma Switches

The-sym - sym, and - syma switches all direct the linker to generate a symbol listing in the list
file. Note that - symand - symm are aliases for each other; they have identical functionality.

The - symand - symm switches direct the linker to generate a symbol listing that is alphabetically
sorted by name, in ascending ASCII character order. More than one - symor - symrm can appear
on the command line; however, any additional -symor - symm switches will have no additional
effect beyond the first one.

The- syma switch directs the linker to generate a symbol listing that is sorted by ascending
symbol value. More than one- syna can appear on the command line; however, any additional -
syma switches will have no additional effect beyond the first one.

If - syma appears on the command line along with - symor - symn, then the linker generates two
symbol listingsin thelist file; the first is sorted by name, and the second by symbol value.
Example 5.6:

meld -o main -def linker.ldf startup.o nmain.o -sym

Thisproduces alist filenamed | i nker . | st with asymbol listing that is sorted by
name. Thelist file for thisexampleisin Figure 5-3.

*** Synmbol Listing (sorted by nane) ***

Synbol Nane Val ue Size Type Vis Section
.data 0x40000 0x0O SECT LOCL 5

. sdat a 0x40000 0x0O SECT LOCL 6

. sdat a2 0x20090 0x0 SECT LOCL 4

. text 0x20000 0x90 SECT LOCL 1
_SDA2_BASE _ 0x0 0x0O NONE GLOB ABSCL
_SDA BASE 0x0 0x0 NONE GLOB ABSCL
__start 0x20008 0x0O DATA GOB 1

mai n 0x20000 0x0O DATA GOB 1

mai n. c 0x0 0x0 NONE LOCL ABSOL

Figure5.3. List Filewith -symn Switch

MELDSW/D Rev1 5-5

LIST FILE @ MOTOROLA

For more information on the listing generated by the - symor - symm switch, see Section 5.3.4,
Detailed Look at the Symbol Listing.

Example5.7:

meld -o main -def linker.ldf startup.o main.o -syna

Thisproduces alist filenamed | i nker . | st with asymbol listing that is sorted by
value. Thelist file for this exampleisin Figure 5-4.

*** Synmbol Listing (sorted by value) ***

Val ue Synbol Nane Si ze Type Vis Section
0x0 mai n. c 0x0 NONE LOCL ABSOL
0x0 _SDA BASE 0x0 NONE G.OB ABSCL
0x0 _SDA2_BASE _ 0x0 NONE G.OB ABSCL
0x20000 .text 0x90 SECT LOCL 1
0x20000 main 0x0 DATA GOB 1
0x20008 _ start 0x0 DATA GO 1
0x20090 . sdata2 0x0 SECT LOCL 4
Ox3FFFC _startup.udata 0x0 NONE G.OB ABSCL
0x40000 . data 0x0 SECT LOCL 5
0x40000 . sdata 0x0 SECT LOCL 6

Figure5-4. List Filewith -syma Switch

For more information on the listing generated by the - syma switch, see Section 5.3.4, Detailed
Look at the Symbol Listing.
Example 5.8

nmeld -o main -def linker.ldf startup.o main.o -syma -sym

Thisproduces alist filenamed | i nker . | st with two symbol listings: one sorted by
name and one sorted by value. The example listing is not shown, but is essentially the
same as the listings in Figure 5.3 and Figure 5.4 concatenated.

5.3 DETAILED LIST FILE CONTENTS

5.3.1 List File Structure and Pagination

The list file has three types of listings: a segment listing, a section listing, and a symbol listing. A
cross-reference listing is really a section listing with additional information. A section listing is
always output with a segment listing.

5-6 Revl1l MELDSW/D

@ MOTOROLA LIST FILE

The list file is paginated. At the top of each page is a header naming the version of MELD that
generated it, the name of the target file, and the page number. Each different type of listing
begins on a new page.

5.3.2 Detailed Look at the Segment Listing

The segment listing lists the segments contained in the output file and information about those
segments. The segment listing, if one is present, is at the beginning of the list file. At most one
segment listing will appear in alist file.

The main body of the segment listing is alist of the segments the linker has generated, with one
line of information per segment. At the start of the list is a header line describing the type of
information listed.

As an example:

Segment Nane Start Init_Size Total _Size Prot Type
. text 0x20000 0x90 0x90 RW STD

There are six fields:
e Segnent Nane O Thisisthe name of the segment.
e Start [Thisisthe start address of the segment, in hexadecimal.

* |Init_Size O Thisisthe number of bytesin the segment’sinitialized data space, in
hexadecimal. This initialized data exists in the output object file and is extracted by
the loader or debugger. Initialized datais always at the start of the segment.

e Total _Size [This is the number of bytes in the segment, including both
initialized and uninitialized data, in hexadecimal. The difference between
Total _Size and Init_Size is the number of bytes of uninitiaized data
Uninitialized datais always at the end of the segment, after any initialized data.

* Prot[This is the access protection flags set for the segment. Three flags are
possible: R means the segment is readable (has read access), Wmeans the segment as
writable (has write access), X means the segment as executable (has execute access).

The default for a standard segment or a reserved segment isRW meaning the segment
is readable and writable. A romcopy segment never has access protection flags set.

Thisfield istypically used by loaders. An embedded application will likely ignore
these flags; that is, there will be no memory-access protection provided. If memory-
access protection is used, it will likely be setup by the startup code and not affected by
any tools which extract the segments from the executable.

MELDSW/D Rev1 5-7

LIST FILE @ MOTOROLA

* Type 0O Thisisthetype of segment. A standard segment is shown as STD, areserved
segment as RESERVED, and a romcopy segment as ROMCOPY. For information on
segment types, see Section 4.5.2, Segment Type.

In Figure 5-1, thest ack segment is areserved segment with no sections assigned to
it. It could have been declared a standard segment, but, if it had, aloader or debugger
might attempt to initialize it to zero. By declaring the space reserved, this will not
occur.

The main body of the segment listing contains two lines for romcopy segments. The
second tells what segment is copied by theromcopy segment. For example, if . i dat a
isaromcopy of . dat a, its segment listing lines might look like this:

Segnent Name Start Init_Size Total _Size Prot Type
.idata 0x20130 0x30 0x30 R ROMCOPY
(segnent .data is romcopy of segnent .data)
After the main segment by segment information in the segment listing, there are two lines that
look likethis:
Total Init Size: 0x160
Total Size: 0x160

The first line shows the sum of the I nit _Si ze values for all of the segments. The second line
shows the sum of the Tot al _Si ze valuesfor al of the segments. When summing the sizes, the
linker does not include reserved segments, since they are not output. The linker does include
romcopy segments, since they occupy space in ROM, just like the segments in RAM that they

copy.

5.3.3 Detailed Look at the Section Listing

The section listing provides information about each of the sections that is output. The sections
are listed in the order that they are defined in the segments. If a section list is present, it follows
the segment listing. If there is no segment list, then the section listing comesfirst.

The cross-reference listing contains information about symbols and is listed section by section. A
cross-reference will be present in the section listing only if a cross-reference is requested. Asking
for a cross-reference will automatically cause a section listing to occur.

Figure 5-6 is an excerpt from a section listing, with cross-reference information shown.

5-8 Revl1l MELDSW/D

@ MOTOROLA LIST FILE

Section: .text Segnent: . text
[start: 0x20000 size: 0x130 type: init index: 1]

conposite section Location Source File
.text 0x20000 startup.o

. text 0x20088 factorial.o
. text 0x20110 fact.o

synbol s defi ned:

. text 0x20000 fact | oop 0x20124
fact _end 0x20134 __start 0x20000
mai n 0x20088 f act 0x20110

synbol s referenced:

_SDA BASE _SDA2_BASE _
mai n factorials
f act

Figure 5-5. Section Listing Excer pt

NOTE

Section listings do not contain information about special sections
that only a loader or debugger would care about. For instance,
symbol table sections, string table sections, debug information and
relocation sections are not shown.

For example, these sections, if declared, would be in shown in a
section listing: . text, .data, ny__data, and . bss. Even if
they are declared, these sections would not be: .syntab,
.strtab,and. debug.

Each section listed contains three kinds of information: section information, composite section
information, and a symbol cross-reference.

5.3.3.1 Section Information

The section listing starts with information that describes various attributes of the section, such as
its name, start address, size and type. Here is an example of section information:

Section: .text Segment: . text
[start: 0x20000 size: 0x130 type: init i ndex: 1]

MELDSW/D Rev1 5-9

LIST FILE

@ MOTOROLA

Thefields of the section information are;

Secti on O Thisisthe section’s name.

Segnent [This gives the name of the segment that contains the section. Segment
and section names may use the same names without conflict.

start [0 Thisisthe start address of the section, in hexadecimal.
si ze [0 Thisisnumber of bytes contained in the section, in hexadecimal.

type O Thisis the section’s type. Sections that contain code or data to initialize the
sections are initialized sections. These sections have type i nit. Other sections
contain no data in the executable and are used to reserve space for variables that need
no initial values. These sections have typeuni ni t .

i ndex O This is the section’s index in the output file's section header table. The
symbol listing tells you which section the symbol is defined in by specifying the
section index.

5.3.3.2 Composite Section Information

The linker combines input object sections with the same name into a larger section, where
possible. The composite section information tells which sections, from which input object files or
libraries members, were combined to form the output section. This is the composite section
information from Figure 5-5:

conposite section Locati on Source File
.text 0x20000 startup.o

. text 0x20088 factorial.o
. text 0x20110 fact.o

There are three fields per line in the composite section information:

5-10

conposite section [0 This is the name of the input sections which were
combined into the output section.

Locati on OO Thisis the memory address, in hexadecimal, where the input object
section is assigned in the output file.

Source File O Thisis name of the input object file or library member that the
input section came from. For a library member, this field will be the name of the
library, followed by the name of the object member in the library.

Revl1l MELDSW/D

@ MOTOROLA LIST FILE

5.3.3.3 Symbol Cross-Reference

The symbol cross-reference information lists the symbols that are defined or referenced in a
given section. The cross-reference information appears in the section listing only if the - xr ef
flag is present, or by default if - LI ST and no other listing flags are present. (See Section 5.2.1,
The -LIST Switch.) Figure 5-6 shows the cross-reference information from Figure 5-5 for the
. t ext section.

synbol s defi ned:

. text 0x20000 fact | oop 0x20124
fact _end 0x20134 start 0x20000
mai n 0x20088 fact 0x20110

synbol s referenced:

_SDA BASE _SDA2_BASE _
mai n factorials
f act

Figure5-6. Symbol Cross Reference

There are two parts to the symbol cross-reference information: synbol s defined and
synbol s ref erenced. If there are no symbols defined in the section, the synbol s defi ned
header is suppressed; if there are no symbols referenced, the synbol s ref er enced header is
suppressed. The contents of the two parts are:

* synbol s defined O Thislists the symbols defined in the section, along with their
address values, in hexadecimal.

* synbols referenced O This lists the symbols that are referenced (used) in the
section. Note that a symbol defined in a section may also be referenced in the section.
When the value (address) of a referenced symbol is determined, code or data that
references the symbol must be adjusted to reflect the new value.

5.34 Detailed Look at the Symbol Listing

The symbol listing shows the names of the symbols in the executable file, along with other
relevant data. The symbol listing, if present, is at the end of the list file. Symboal listings may be
listed by symbol name in ascending alphabetical order or by symbol value listed in ascending
numerical order. There may be two symbol listings, sorted each way.

The symbol listing will show section names, since these are symbols in the executable. It will

show the debugging sections. The listing will filter out the symbols in debugging sections, since
these are often extremely numerous.

MELDSW/D Rev1 5-11

LIST FILE

@ MOTOROLA

Figure 5-7 is an example symbol listing, showing both of the sort orderings.

*** Synmbol Listing (sorted by nane) ***
Synbol Nane Val ue Si ze Type Vis Section
.data 0x40000 0x2C SECT LOCL 5
. debug 0x0 0x128 SECT LOCL 7
. sdat a 0x40030 0xO SECT LOCL 6
. sdat a2 0x20130 0xO SECT LOCL 4
. text 0x20000 0x130 SECT LOCL 1
_SDA2_BASE _ 0x0 0x0 NONE G.OB ABSOL
_SDA BASE 0x0 0x0 NONE G.OB ABSOL
__start 0x20000 0xO DATA GOB 1
_startup. udata 0x4002C 0x0 NONE G.OB ABSCL
fact 0x20108 0xO0 DATA GOB 1
fact | oop 0x2011C 0x0 DATA LOCL 1
factorials 0x40000 0OxO DATA GOB 5
mai n 0x20088 0x0 DATA GOB 1
*** Synmbol Listing (sorted by value) ***
Val ue Synbol Nane Size Type Vis Section
0x0 . debug 0x128 SECT LoCcL 7
0x0 .line Ox4E SECT LOCL 8
0x0 _SDA BASE 0x0 NONE GLOB ABSCOL
0x0 _SDA2_BASE_ 0x0 NONE GLOB ABSOL
0x20000 .text 0x130 SECT LOCL 1
0x20000 _ start 0x0 DATA amB 1
0x20088 mai n 0x0 DATA aoB 1
0x20108 fact 0x0 DATA amB 1
0x2011C fact _| oop 0x0 DATA LOCL 1
0x20130 .sdata2 0x0 SECT LOCL 4
0x40000 .data 0x2C SECT LOCL 5
0x40000 factorials 0x0 DATA GoB 5
0x4002C _startup.udata 0x0 NONE G.OB ABSOL
0x40030 .sdata 0x0 SECT LOCL 6
Figure 5-7. Symbol Listing
5-12 Revl MELDSW/D

@ MOTOROLA LIST FILE

In either sort ordering, for each symbol the listing shows these fields: Synbol Nane, Val ue,
Si ze, Type, Vi s and Sect i on. The order of the fields changes dightly depending on the sort
order of thelisting. Thefields are:

Synmbol Nane

Val ue

Si ze

Type

MELDSW/D Rev1

Thisisthe symbol’s name.
Thisisthe symbol’ s address value or absolute value, in hexadecimal.

In most cases, the value is the address where the symbol is defined. For
instance, in Figure 5-7 the value of f act is x20108 — this is its address.

In some cases, the symbol is not defined inside a section. It has a value
which may or may not represent an address. This is called an absolute
value. For instance, the value okt art up. udat a is 0x0. This symbol

was defined in the linker definition file.

In other cases, the value is not used, and is generally 0. For instance, the
value of section symboldebug (which is never mapped into memory) is
0x0.

This is the size of the thing the symbol describes. The size is O if the
symbol object does not have a size, or the language tools either do not
know or do not state the size of the object. For instance, code labels do not
have sizes. Some symbols, such as section symbols, always have sizes.

This is the type of the symbol. Most symbols, for example labels such as
f act , are symbols of typPATA. This is true whether the label is a code or
data label. Section symbols are given a typSEZET. Absolute symbols

are typeNONE. Debug symbols are also typioNE, but these are filtered

out of the listing.

This is the visibility of a symbol. There are three possible values ELF
provides: local (shown asOCL), weak (shown as\EAK), and global
(shown as3.0BL).

A symbol's visibility determines whether the symbol can be accessed by its
name from outside the object module (object file or library member) that

contains its definition. In order for an object module to reference a symbol

by name that is defined in another object module, that symbol must be
global or weak.

For executable files, visibility is usually irrelevant, since all of the objects
are already combined into one, and no one should be referencing symbols
outside. (Dynamically loaded executable files are an exception.)

For input object modules, and partial re-link output object files (using the
-r command-line switch), this value is relevant.

5-13

LIST FILE

@ MOTOROLA

5-14

Secti on

Local symbols, such as fact | oop in Figure 5-7, are only accessible
within the object module where in they are defined. There can be multiple
local symbols of the same name in different object modules. Their names
will not conflict.

Globa symbols, such asf act , can be referenced by object modules other
than the ones in which they are defined. Only one globa symbol of any
particular name can be defined in al of the object modules you link
together.

Like global symbols, weak symbols can be referenced from object
modules other than the ones in which they are defined. Unlike global
symbols, there can be multiple weak symbols with same name, or weak
symbols with the same names as global symbols. The linker encounters
another weak or global symbol by the same name as one that has aready
been defined, the linker will convert that weak symbol to alocal symbol.

If a global symbol is defined after a weak one with the same name has
been defined, then the linker will use the global symbol as the symbol with
global visibility and convert the previously-defined weak symbol to local.

When a weak symbol is converted to local, al references to that symbol

name inside the object module where the weak symbol is defined will refer

to the weak symbol’s definition. References outside the object module will
continue to use the pre-existing weak or global definition.

A listing of a weak symbol would look like this:
0x20000 mai n 0x0 DATA WEAK 1

This is the index of the section where the symbol is defined. Most symbols
of type DATA or SECT are defined and contained in some section defined
in the output file. For instance, from Figures 5-5 and Baét is defined

in a section whose index is 1, which is sectioext . Some symbols have

a section number ofABSOL, which really is not a section index. This
means that the symbol as an absolute value. For example, the symbol
_startup. udat a is defined in the linker definition file.

Other symbols may have section indexCcofMM This means the symbol is

a common symbol, defining an uninitialized common area to be created by
the linker in the. bss section. When a symbol is common, the value
shown is the alignment requirement for the common area to be created.

The linker converts a common symbol to a global symbol at the start of an
area reserved in abss section that is big enough for the common
symbol’s size. Therefore, you will not see common symbols in the symbol
table unless you have done a partial link (using -thecommand-line
switch). A common symbol listing looks like this:

0x8 comm area 0x40 NONE G.OCB COW

Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

APPENDIX A

LINKER ERROR MESSAGES

This appendix lists linker error messages. If a message has an associated file, that file’'s name
precedes the error message. If an error occurs in the linker definition file (LDF), the appropriate line
number precedes the error message. For library (archive) file members, the linker shows the library
member name and the library name.

Note the three types of error messages:

e Warnings. The linker issues a warning message if it finds a condition that might
indicate something wrong. The linker continues the link process, creating an output
file.

» Errors: The linker issues an error message if it finds a problem severe enough to
prevent creation of an output file. Most such problems are errors in command-line
specifications or linker definition file (LDF) segment/symbol definitiohter issuing
such an error message, the linker tries to continue processing input files, checking for
any additional problems.

» Fatal Errors. The linker issues a fatal error message if it finds a problem severe
enough to stop the link process immediately. An example is an incorrect or
unrecognizable object file.

NOTE:

If afatal error message indicates a corrupted or unusable library
file or object file, check whether the file was created with a tool
that produces System V file formats. For example, the archiver
tools that come packaged with many operating systems do not
produce archive files that MELD accepts. Use the MAR archiver
instead.

attenpt to divide by zero in definition file synbol synbol
Error: A divisor in an expression given as the value for symbol symbol resolved to
zero. Edit the LDF to fix the expression.

attenpt to divide by zero in segnent segment

Error: A divisor in an expression given as a specifier value for segment segment
resolved to zero. Edit the LDF to fix the expression.

MELDSW/D Rev1 A-1

LINKER ERROR MESSAGES @ MOTOROLA

attenpt to extract string fromnon-string section

Fatal Error: Internal fileinformation isincorrect: areference to an areathat should
have contained strings (such as section or symbol names) failed. Probable cause: a
corrupted object file or anon-ELF file.

bad string table offset address : nenber-header-nanme-field in archive

Fatal Error: Thevauein alibrary member header’s name field isincorrect. The
value is neither the member name nor the offset to the member name in the library’s
archive string table. Probable cause: a corrupted archive file or an invalid archive file

type.

cannot use -T or -D switch when defining segnents via def file

Error: You specified a T or - D switch to set the start address of the defauixt or

. dat a segment. You also supplied an LDF that contains segment definitions, so the
linker did not create the default segments. To specify the start addresses of LDF
segments, use thla art specifier, not theT or - D switch.

command file filenane is not a valid file nane

Error: The command-linef switch specified an invalid file name. Provide a valid
file name.

corrupt or illegal format for object file

Fatal Error: Unsuccessful attempt to read an ELF section header, symbol, relocation
entry, or other such item from an object file. Probable cause: a corrupted object file or
a non-ELF file.

corrupt or illegal format for object file header
Fatal Error: Unsuccessful attempt to read the ELF header of an object file. Probable
cause: a corrupted object file or a non-ELF file.

could not find library filenane

Error: The command-linel switch specified an inappropriate string for a library file
name. (To construct the library file name, the linker bracketed the string between the
prefix| i b and the extensiona. But the linker could not find a file of this name in

the current directory or in any directory in the library path list.) Specify a different
string for the- | switch or use theL switch to provide the name of the directory

(path) where the linker can find the file.

deferred rel ocation synbol synmbol not out put

Error: An error occurred inside the linker while it was writing the executable output
file. Refer this problem to Motorola software support.

A-2 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

duplicate gl obal definition of synbol symbol

Error: Two or more of the object files or library members linked together, or the LDF
and one or more files or members, define the symbol as a globally visible symbol. The
second definition generates this error message. The linker does not tell you the first
place that defines the symbol. Remove al but one global definition of the symbol.

duplicate synbol definition for synbol

Error: The LDF contains two symbol declarations for the name symbol. Edit the LDF:
eliminate one of the declarations or rename the symbol in one of the declarations.

dupl i cate synbol synbol

Warning: Code defines the specified symbol multiple times, as permitted by the- dup
switch. (Without the - dup switch, the linker would consider multiple symbol
definitions an error.)

end address is less than start address for segnent segnment
Error: Segment segment has an end address that is less than its start address. Fix this
inthe LDF.

end specifier not allowed with size, nmaxsize or mnsize

Error: You cannot use the end specifier with thesi ze, maxsi ze or m nsi ze
specifier. Asthe end specifier [imits the segment size, using another size-limiting
specifier is redundant or contradictory. Edit the LDF to remove one of the specifiers.

entry synbol synbol not defined

Error: Thelinker cannot find symbol, the symbol specified as the entry point for the
output file. Such a symbol must be defined and globally visible. If the symbol is
defined in alibrary member, the linker will only extract that member if some object
file or member in the link refers to a symbol defined in that library member. The
default entry symbol is__start.

If you do not want an entry symbol in your output object, use the- noent switch.
Otherwise, make sure that the entry label is defined, has global visibility, and is
included in the linked object files or library members.

expected a positive or 0 nunber following the -error switch
Error: The- err or switch lacksits O or positive-number parameter value. Provide
this value, in hexadecimal, decimal, or octal format.

expected a positive or 0 nunber following the -warn swtch

Error: The - war n switch lacksits O or positive-number parameter value. Provide this
value, in hexadecimal, decimal, or octal format.

MELDSW/D Rev1 A-3

LINKER ERROR MESSAGES @ MOTOROLA

expected at | east one section nane tenplate between ’ ()’
Error: No section nametemplateisin thesect i on specifier. Edit the LDF to add at
least one section name templ ate.

expected a ';’ to term nate synbol declaration
Error: A symbol declaration lacksits semicolon (;) terminator. Edit the LDF to add a
semicolon.

expected closing > to follow <
Error: A module name template string (inasect i on specifier) begins with an open
angle (<), but lacks a close angle (>). Edit the LDF: end the string with a close angle.

expected command file nane after -f switch
Error: The-f switch lacksits command filename parameter value. Provide avalid
command filename after the switch.

expected directive to termnate with '’
Error: A checkover| ap, nocheckover | ap or si ngl esect i on directive lacks its
semicolon (;) terminator. Edit the LDF to add a semicolon.

expected either ;' or synbol visibility followed by ';’
Error: The symbol expression in asymbol declaration lacks either its semicolon (;)
terminator or its optional symbol-visibility value. Edit the LDF to add a semicolon or
insert asymbol visibility value.

expected entry label to follow -ent switch
Error: The - ent switch lacksits symbol-name parameter value. Provide avalid entry
label (symbol name) after the switch.

expected expression after unary sign
Error: A minussign (-) lacksavalid expression. Edit the LDF: provide avalid
expression after the minus sign.

expected integer for alignment val ue
Error: Thevaluegivenfor anal i gnnent specifier isnot a hexadecimal, octal, or
decimal number, 0 to 65535. Edit the LDF: specify avalue in this range.

expected integer for priority value

Error: Thevaluegiven for apri ori ty specifier is not a hexadecimal, octal, or
decimal number, 1 to 65535. Edit the LDF: specify avaluein this range.

A-4 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

expected list file nane after the -LIST switch

Error: The- LI ST switch lacksitslist filename parameter value. Provide avalid
filename after the switch. (If you name afile that already exists, the linker will
overwrite thefile)

expected matching ')’

Error: While parsing an expression, the linker found a sub-expression that begins
with an open parenthesis[(] but lacks aclose parenthesis[)]. Edit the LDF to add
the close parenthesis.

expect ed nodul e nane tenpl ate between <>

Error: Inasect i on specifier, angles (<>) do not enclose a module name templ ate.
Edit the LDF: insert a module name templ ate between the angles.
expected nanme of linker definition file follow ng -def swtch
Error: The parameter value for the - def switch is not the name of alinker definition
file. Provide avalid LDF name as the parameter value.
expected nunber after pad swtch
Error: The - pad switch lacks its pad-byte parameter value. Provide this numeric
value (not an expression) after the switch, in hexadecimal, decimal, or octal format.
expect ed nunber, expression or '(' expression ')’

Error: During expression processing, the linker expected one of these values: a
simple number, avalid sub-expression, or a sub-expression in parentheses. Edit the
LDF: add one of these values.

expected output file name to follow -0 switch

Error: The - o switch lacks its parameter value: the name of the output object file.
Provide avalid filename after the switch. Alternatively, remove the switch: the linker
will use the default filea. out inthe current directory.
expected path specifier following -L switch
Error: The - L switch lacksits parameter value: the name of a directory (path) to add
to the end of the library path list. Provide avalid path name after the switch.
expected rontopy(<segnent name>)

Error: A segment is declared as typeromcopy, but ther ontopy keyword lacks its
parameter value: a segment name, in parentheses. Edit the LDF to correct the syntax.

MELDSW/D Rev1 A-5

LINKER ERROR MESSAGES @ MOTOROLA

expected section or nodul e name tenplate in section specifier
Error: Thesect i on specifier of a segment declaration lacks its parameter value:
either a section name template or a module name template. Edit the LDF: provide an
appropriate template.
expect ed segnment nane
Error: Thesegnent keyword lacksits parameter value: the name of the segment.
Edit the LDF: provide an appropriate segment name.
expect ed synbol nane after syndefine or synbol defi ne keyword
Error: Thesyndef i ne or synbol def i ne keyword lacksits argument: avalid
symbol name. Edit the LDF: provide the symbol-name argument.
expected type of segnent
Error: A t ype specifier in asegment declaration has an incorrect type parameter
value. Edit the LDF: provide avalid parameter value.
expected valid expression inside ()
Error: During expression processing, the linker found parentheses| ()] that do not
enclose avalid sub-expression. Edit the LDF: insert avalid sub-expression or remove
the parentheses.
expected valid segnment type
Error: The value of a segment'ype specifier is not valid. Edit the LDF to provide
one of the valid valuest andar d, r eser ved orr ontopy.
expected value for start address of .data segnent
Error: The- D switch lacks its parameter value. Provide this numeric value (not an
expression) after the switch, in hexadecimal, decimal, or octal format.
expected value for start address of .text segnent
Error: The- T switch lacks its parameter value. Provide this numeric value (not an
expression) after the switch, in hexadecimal, decimal, or octal format.
expected weak or global for visibility in synbol declaration

Error: The symbol visibility value (at the end of the symbol declaration) is not valid.
Edit the LDF to provide one of the valid valuesak orgl obal .

A-6 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

expected wite, read, or execute for protection
Error: Thepr ot ect specifier valueis not valid. Edit the LDF to provide one of thea
valid values: r ead, wri t e or execut e. Alternatively, provide alist of these values,
separating values with commas.

expected "= or ':’ after keyword keyword
Error: No appropriate operator (=, : , or : =) follows the specified keyword. Edit the
LDF to insert one of these operators.

expected ;' to term nate segnent declaration
Error: A segment declaration lacks its semicolon (;) terminator. Edit the LDF to add
asemicolon.

expected ' (<section name>)’ follow ng keyword keyword
Error: The keyword keyword lacks its argument: a section name, enclosed in
parentheses. Edit the LDF: provide the section-name argument.

expected ' (<segnent name>)’ follow ng keyword keyword
Error: The keyword keyword lacks its argument: a segment name, enclosed in
parentheses. Edit the LDF: provide the segment-name argument.

expected ' (<synbol nane>)’ follow ng addrof keyword
Error: Theaddr of keyword lacks its argument: a symbol name, enclosed in
parentheses. Edit the LDF: provide the symbol-name argument.

extraneous conma i n section specifier
Warning: A sect i on specifier in an LDF segment declaration contains an
inappropriate comma before the final close parenthesis[)].

file name filenane is not valid
Error: The filename value specified with the - o switch is not valid. Provide avalid
filename.

first symbol not undef in ELF object file

Fatal Error: Thefirst symbol in an ELF object file was not the undefined symbol
required by the ELF format. Probable cause: a corrupted object file or anonELF file.

MELDSW/D Rev1 A-7

LINKER ERROR MESSAGES @ MOTOROLA

i nconsi stent object types, nust be all hosted or enbedded

Error: Object files do not have the same embedded flag setting, so the linker does not
know whether the application is hosted or embedded. Make sure that all object files
are consistent: all must have their embedded flags set, or all must have their
embedded flags cleared.

i ncorrect processor type for object file

Error: The linker processes only object files for the PowerPC processor family. (ELF
files have flags that indicate the processor family they support.) Provide an object file
generated by EABI-conforming tools.

invalid bit field replacenent : synbol synbol addend: addend synbo
[of fset]: symbol Val ue rel oc type: relocation

Error: Thelinker could not perform the bit-field-replacement relocation operation on
symbol symbol as the addend value is outside its parameters. The high 16 bits of
addend must specify a bit position between 0 and 31, the low 16 bits of addend must
be alength value between 1 and 32, and the sum of the high 16 bits and the low 16
bits must not exceed 32.

Other values of this message may help you find the problem:

» of fset isorisnotin this message, according to the relocation type:

— if of fset is not in this message, synbol Val ue is the value of symbol
symbol.

— if of fset isin this message, synbol Val ue is the relative offset of the
relocation.

* rel ocati onisthetype of relocation operation.

The PowerPC Embedded Application Binary Interface and SystemV Application
Binary Interface Power PC Processor Supplement have information about relocation

types.

i nvalid command |ine syntax

Error: Thelinker found something on the command line (or in acommand file) that
isnot afile name or a switch. Edit the command line (or the command file) to correct
this.

invalid command switch '-swtch

Error: Thelinker found something on the command line (or in acommand file) that
starts with a hyphen, but is not avalid switch. Change thisitem to avalid switch or
removeit.

A-8 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

nval id ELF object file format

Error: Thelinker found afile that should be an ELF object file but is not. Provide an
ELF object file.

nval id expression in specifier specifier

Error: The specifier specifier does not have avalid segment expression. Edit the LDF
to correct the expression.

nval i d expression in synbol declaration

Error: In the symbol declaration, the value expression of the symbol isnot valid. Edit
the LDF to correct the expression.

nval i d expression inside ()

Error: During expression processing, the linker found parentheses|[()] that do not
enclose avalid sub-expression. Edit the LDF: insert avalid sub-expression or remove
the parentheses.

nvalid linker definition file command

Error: An LDF line beginswith an invalid keyword. Edit the LDF to provide one of
the valid declaration or directive keywords: segnent , synbol def i ne, syndef i ne,
si ngl esecti on, checkoverl ap, or nocheckover | ap.

nval i d nodul e nane tenpl ate nodul e

Error: The module name template (enclosed in angles) of asect i on specifier isnot
valid. Edit the LDF: provide avalid template. The template may include the* or ?
wildcard characters.

nvalid path specifier following -L switch

Error: The - L switch parameter value is not avalid directory (path) name. Provide a
valid path name after the switch.

list file filenane is not a valid file nane
Error: Thefilename valueis not avalid file name. Provide avalid file name.

MELDSW/D Rev1 A-9

LINKER ERROR MESSAGES @ MOTOROLA

low 2 bits nust be zero : synbol synbol addend: addend synmbol [offset]:
synbol Val ue rel oc type: relocation

Error: Thelinker could not perform the relocation operation on symbol symbol as the
operation produced an address that is not word-aligned (that is, the least significant
two bits are not both zero). Such a relocation operation usually specifies the target
addresses of a PowerPC processor branch instruction. Look for a section (created
from your source code) that does not have the correct alignment requirements. Check
the definition of symbol symbol to confirm that it is at least word aligned.

Other values of this message may help you find the alignment problem:
» of fset isorisnotin this message, according to the relocation type:

— if of fset is not in this message, symbol Val ue is the vaue of symbol
symbol.

— if of fset isin this message, synbol Val ue is the relative offset of the
relocation.

e addendisavaueadded to synbol Val ue.
» rel ocati onisthetype of relocation operation.

The Power PC Embedded Application Binary Interface and SystemV Application
Binary Interface Power PC Processor Supplement have information about relocation

types.

mat chi ng segnents have no room for section section, file object-file

Error: Aninput section matchesthe sect i on specifiers of one or more segments, but
none of the segments has room for the section. Edit the segment declarationsin the
LDF to make room for the section.

maxsi ze specifier not allowed with size or end specifier

Error: You cannot use the maxsi ze specifier with thesi ze or end specifier. Asthe
maxsi ze specifier limits the segment size, using another size-limiting specifier is
redundant or contradictory. Edit the LDF to remove one of the specifiers.

m n size of segment segnent has cyclic dependency on other segnents

Error: Them nsi ze specifier of segment segment includes an expression that
depends on some attribute of another segment. But that attribute eventually depends
on the size of this segment. Edit the LDF to break this unresolvable cyclic
dependency. (Paragraph 4.10.1 explains such cyclic constraints.)

A-10 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

m nsi ze specifier not allowed with size or end specifier

Error: You cannot use the i nsi ze specifier with thesi ze or end specifier. Asthe
m nsi ze specifier [imits the segment size, using another size-limiting specifier is
redundant or contradictory. Edit the LDF to remove one of the specifiers.

nodul e name tenpl ate exceeds max | ength of /ength

Error: A module name template (in asect i on specifier) exceeds the maximum
length allowed. Edit the LDF to shorten the template.

mul tiple sections named section exi st

Warning: Inresponseto asi ngl esect i on directive, the linker checked for
identically named sections in output file segments: multiple sections have the name
section. Check the LDF to determine why thesect i on specifiers do not create a
single section. Also check whether some input sections named section are initialized
sections and others are uninitialized.

nunber string too large to be represented internally : nunber-string

Fatal Error: The linker interprets string number-string to be a number, but the value
istoo large for the internal limitations of the linker.
nunber string too long : nunber-string

Fatal Error: String number-string istoo long.

object file contains unsupported relocation section type

Error: Thelinker does not accept relocation information from sections of type
SHT_REL ininput object files or library members. If you are using only Motorola
tools (which support and generate EABI-conforming object files), call Motorola
software support. For information on this section type, see System V Application
Binary Interface.

object file does not have a synbol table
Fatal Error: The linker cannot resolve symbol addresses because the input object file
does not include a symbol table.

object file not correct version or fornat

Error: Aninput object file does not have the correct version or format. Make sure that
thefileisan ELF file, generated by compatible tools.

MELDSW/D Rev1 A-11

LINKER ERROR MESSAGES @ MOTOROLA

object file not in relocatable form

Error: Aninput object fileisin executable form (which the linker generates), but the
file should be in relocatable form (which a compiler or assembler generates). Make
sure that you are linking only input files generated by EABI-compliant tools.

of fset string-table-offset is outside string table, size
string-table-size library

Fatal Error: Thefield value for alibrary member header nameis an invalid offset to
the member’s name in the library archive string table. Probable cause: a corrupted
archivefile or an invalid archivefile type.

only integer nunbers all owed
Error: Thelinker found a poorly-formed numeric value, such as1E- 05. Edit the LDF
to correct the value.

only one specifier specifier per segnent allowed
Error: A segment declaration contains more than one specifier specifier. Edit the
LDF: remove al but one of these specifiers.

only one linker definition file allowed
Error: Multiple - def switches specified multiple linker definition files. Merge these
filesinto one, or remove all but one - def switch.

pad byte mnmust be between 0 and 255
Error: The parameter value for the - pad switch is not a number, 0 to 255. Specify a
value in thisrange.

par amet er exceeded nmax |l ength permtted

Fatal Error: A command-line parameter istoo long.

priority specifier not allowed for rontopy segnents

Error: A romcopy segment (which cannot have assigned sections) improperly has a
priority specifier. Edit the LDF to removethepri ori t y specifier, or change the

segment type.
protect specifier not allowed for reserved segnents

Error: A reserved segment (which is not loaded into memory) improperly has a
pr ot ect specifier. Edit the LDF to remove thepr ot ect specifier, or change the

segment type.

A-12 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

quoted string in options file does not have endi ng quote

Error: The string begins with a double quote, but lacks an ending quote (or the ending
guote ison adifferent line). Use beginning and ending double quotes on the same
line.

rel ocation overflow : synbol synbol addend: addend synmbol [offset]:
synbol Val ue rel oc type: relocation

Error: Thelinker could not perform the relocation operation on symbol symbol as the
result does not fit in the intended code or datafield. Look in the source for the
specified object file or library member, and correct any references to symbol symbol.
To determine the field size, you may need to check your PowerPC processor reference
manual for information on the PowerPC processor instruction set.

Other values of this message may help you find the alignment problem:
» of fset isorisnot inthis message, according to the relocation type:

— if of fset is not in this message, synbol Val ue is the value of symbol
symbol.

— if of fset isin this message, synbol Val ue is the relative offset of the
relocation.

* addendisavaueadded to synbol Val ue.
* rel ocationisthetype of relocation operation.

The PowerPC Embedded Application Binary Interface and SystemV Application
Binary Interface Power PC Processor Supplement have information about relocation

types.

rel ocation relocation virtual address address does not neet alignnment
requirenents
Warning: Aninstruction or datafield to be relocated at address address does not meet
the alignment requirements of the relocation relocation type. Check Power PC
Embedded Application Binary Interface or SystemV Application Binary Interface
Power PC Processor Supplement to find the relocation type’s alignment requirement.
Generate a list file to find which section, from which source file, is at address
address. Confirm the word alignment of all code sections in that source file.
Similarly, confirm that all data fields are aligned by the amount of their length (the
maximum amount is 4 bytes).

rontopy segnent segnent has section specifier(s)

Error: The romcopy segment segment (which cannot have assigned sections),
improperly has aect i on specifier. Edit the LDF to remove thect i on specifier,
or change the segment type.

MELDSW/D Rev1 A-13

LINKER ERROR MESSAGES @ MOTOROLA

roncopy segnent segnentl is copy of unprocessed segnent segnent 2

Error: The segmentl romcopy segment is a copy of the segment2 segment, which
contains a problem. (A previous error message reported the problem in the segment2
segment.) The linker cannot process the segment1 segment until you correct the
problem in the segment2 segment.

sdata base needs to address too large a range of range

Error: Sections. sdat a and . sbss (which form asmall data area) are too large or
too far apart for the linker to set the base pointer, SDA BASE . (The linker must
establish _SDA BASE_ so that its valueis within asigned 16-bit offset of every byte
in the small data area.) If the data in these sections requires more than 64K bytes,
reduce the data. Otherwise, edit the LDF to bring the sections closer together. The
range value is the total span (in bytes) of the sections.

sdat a2 base needs to address too |arge a range of range

Error: Sections. sdat a2 and . shss2 (which form asmall data area) are too large or
too far apart for the linker to set the base pointer, SDA2_BASE . (The linker must
establish _SDA2 BASE so that its value iswithin asigned 16-bit offset of every byte
in the small data area.) If the data in these sections requires more than 64K bytes,
reduce the data. Otherwise, edit the LDF to bring the sections closer together. The
range value is the total span (in bytes) of the sections.

sectafter(section) references non-existent section

Error: Thesect af t er keyword' ssection argument does not specify an existing
section. Link in an object file that contains this section. Alternatively, edit the LDF to
correct this argument value.

sectend(section) references non-existent section

Error: Thesect end keyword' s argument does not specify an existing section. Link
in an object file that contains this section. Alternatively, edit the LDF to correct this
argument value.

section nane tenpl ate exceeds nax |length of [ength
Error: A section name template (in asect i on specifier) exceeds the maximum
length alowed. Edit the LDF to shorten the template.

section specifiers nust be inside ' ()’

Error: Parentheses do not enclose the section and module templates of thesect i on
specifier. Edit the LDF to add the parentheses.

A-14 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

sectsi ze(section) references non-exi stent section

Error: Thesect si ze keyword' s section argument does not specify an existing
section. Link in an object file that contains this section. Alternatively, edit the LDF to
correct this argument value.

sectstart(section) references non-existent section

Error: Thesect st art keyword's argument does not specify an existing section.
Link in an object file that contains this section. Alternatively, edit the LDF to correct
this argument value.

segafter(segnent) references non-exi stent segnent
Error: Thesegaf t er keyword's argument does not specify an existing segment. Edit
the LDF to declare segment segment or correct the argument value.

segend(segnent) references non-existent segment
Error: Thesegend keyword' s argument does not specify an existing segment. Edit
the LDF to declare segment segment or correct the argument value.

segi si ze(segnent) references non-exi stent segnent
Error: Thesegi si ze keyword' s argument does not specify an existing segment. Edit
the LDF to declare segment segment or correct the argument value.

segnent name segnent not uni que
Error: Two segment declarations specify the name segment. Edit the LDF to remove
or rename one of the segments. (Note that a segment name can duplicate a section or
symbol name.)

segnment segnent end address | ess than the start address
Error: Segment segment has an end address that is less than its start address. Fix this
inthe LDF.

segnment segnent has min size nminsize > max size of nmaxsize

Error: Them nsi ze specifier value of segment segment exceeds the maxsi ze
specifier value. Edit the LDF: change either value to correct this problem, or remove
one of the specifiers.

segnent segnent has nore than one rontopy reference

Error: Multiple romcopy segments improperly copy segment segment. Edit the LDF
so that at most one romcopy segment copies segment segment.

MELDSW/D Rev1 A-15

LINKER ERROR MESSAGES @ MOTOROLA

segnent segnent is a rontopy of itself
Error: Romcopy segment segment improperly copiesitself. Edit the LDF so that
segment segment instead copies a standard segment.

segnent segnent is rontopy of nonexistent segnent copied-segnent
Error: Romcopy segment segment copies a non-existing segment. Edit the LDF so
that segment segment copies an existing standard segment.

segnent segnent is ronctopy of segnent copied-segnent which is not a

standard segment
Error: Romcopy segment segment copies a segment of the wrong type. Edit the LDF
so that segment segment copies a standard segment.

segnent segnent nust have at | east one section specifier
Error: Segment segment is a standard segment but lacks any sect i on specifier. Edit
the LDF: either add asect i on specifier or change the segment type.

segnents segnent1 and segnent2 overl ap
Error: Doing overlap checking, the linker found overlapping segments segment1 and
segment2. Edit the LDF so that the segments do not overlap.

segsi ze(segnent) references non-exi stent segnent
Error: Thesegsi ze keyword's argument does not specify an existing segment. Edit
the LDF to declare segment segment or correct the argument value.

segstart (segnent) references non-exi stent segnent
Error: Thesegst art keyword s argument does not specify an existing segment. In
the LDF, either define the segment or correct the argument value.

size, end, mnsize or maxsize not allowed for rontopy segnment segnent
Error: Romcopy segment segment improperly hasasi ze, end, ni nsi ze, or
maxsi ze specifier. Edit the LDF to remove the specifier.

size, end, or naxsize expression for segnent segnment cannot be reduced

Error: Thelinker could not reduce to an integer value thesi ze, end or naxsi ze
specifier expression for segment segment, probably because of acycle. Edit the LDF
to break this unresolvable cyclic dependency. (Paragraph 4.10.1 explains such cyclic
constraints.)

A-16 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

size expression has cycle in definition file synbol synbol

Error: The value expression for symbol symbol has a cycle that involvesthesi ze
function. Thissi ze function refers to the size of one segment, which depends on an
attribute of another segment. But that attribute eventually depends on the size of this
segment. Edit the LDF to break thisunresolvable cyclic dependency. (Paragraph
4.10.1 explains such cyclic constraints.)

size specifier not allowed wth end specifier

Error: The LDF improperly usesthesi ze specifier with the end specifier. Thisis
redundant or contradictory. Edit the LDF to remove one of the specifiers.

size specifier not allowed with maxsize or mnsize specifier

Error: The LDF improperly usesthesi ze specifier with ami nsi ze or maxsi ze
specifier. Thisis redundant or contradictory. Edit the LDF to remove one of the
specifiers.

start address of segnment segnent cannot be reduced

Error: Thelinker could not reduce to an integer value the start address of segment
segment. This probably is because of a cycle involving a second segment for which
the linker cannot resolve the start address, the second segment being the argument of
some function. Edit the LDF to break this unresolvable cyclic dependency. (Paragraph
4.10.1 explains such cyclic constraints.)

start expression has cycle in definition file synbol synbol

Error: The value expression for symbol symbol has a cycle that involves the

segst art function. Thissegst art function refersto the start of one segment,
which depends on some attribute of another segment. But that attribute eventually
depends on the start of this segment. Edit the LDF to break this unresolvable cyclic
dependency. (Paragraph 4.10.1 explains such cyclic constraints.)

start expression has cycle in segnent segnent

Error: Thest art specifier value expression for segment segment has a cycle that
involvesthesegst art function. Thissegst art function refersto the start of one
segment, which depends on some attribute of another segment. But that attribute
eventually depends on the start of this segment. Edit the LDF to break this
unresolvable cyclic dependency. (Paragraph 4.10.1 explains such cyclic constraints.)

string table referenced but not found in library

Fatal Error: Thefield value for alibrary member header name is an offset to the
member’ s name in the library archive string table, but the linker cannot find astring
table. Probable cause: a corrupted archive file or an invalid archive file type.

MELDSW/D Rev1 A-17

LINKER ERROR MESSAGES @ MOTOROLA

switch swtch expected space before paraneter

Error: Linker switch switch lacks the required space before its parameter value. Insert
a space between the switch and the value.

synbol not contained in a section : synbol synbol addend: addend synbol
[of fset]: symbol Val ue rel oc type: relocation

Error: Thelinker could not perform a relocation operation on the start of the section
that contains symbol symbol, because the symbol is absolute (that is, no section
contains symbol symbol). Look in the source for this object file or library member and
correct any references to the symbol.

Other values of this message may help you find the problem:
» of fset isorisnot inthis message, according to the relocation type:

— if of fset is not in this message, synbol Val ue is the value of symbol
symbol.

— if of fset isin this message, synbol Val ue is the relative offset of the
relocation.

* addendisavaueadded to synbol Val ue.
* rel ocati onisthetype of relocation operation.

The PowerPC Embedded Application Binary Interface and SystemV Application
Binary Interface Power PC Processor Supplement have information about relocation

types.

A-18 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

synbol not in snmall data area : synbol synbol addend: addend synbol
[of fset]: synbol Val ue rel oc type: relocation

Error: Thelinker could not perform the relocation operation on symbol symbol, as no
small data area contains the symbol. Look in the source for this object file or library
member and correct any references to the symbol.

Other values of this message may help you find the problem:
» of fset isorisnot inthis message, according to the relocation type:

— if of fset is not in this message, synbol Val ue is the value of symbol
symbol.

— if of fset isin this message, synbol Val ue is the relative offset of the
relocation.

* addendisavaueadded to synbol Val ue.
* rel ocati onisthetype of relocation operation.

The PowerPC Embedded Application Binary Interface and SystemV Application
Binary Interface Power PC Processor Supplement have information about relocation

types.
synbol string too long : string

Fatal Error: String string istoo long to be a symbol name.

synbol symbol truncated in library

Warning: An object-file or library-member symbol has a very long name. Internal
limitations force the linker to truncate this name. Accordingly, comparisons or
searches that use this symbol name may yield incorrect results.

there were no object files presented for |inking

Error: You provided only library filesto the linker. Provide at |east one object file.

truncating library nmenber nanme nmenber in library

Warning: A library (archive) file member has a very long name. Internal limitations
force the linker to truncate this name. Accordingly, comparisons or searches that use
this member name may yield incorrect results.

unabl e to access section jndex

Fatal Error: The index entry in the object file symbol table specifies a section that
contains a symbol, but no section header table entry corresponds toindex. Probable
cause: a corrupted symbol table or anon-ELF file.

MELDSW/D Rev1 A-19

LINKER ERROR MESSAGES @ MOTOROLA

unabl e to access synbol /ndex
Fatal Error: No symbol seemsto have the symbol-table-index valueindex. Probable
cause: a corrupted relocation operation or anon-ELF file.

unable to allocate additional nenory
Fatal Error: The linker cannot obtain more system memory space. Probable cause:
full file system or hard disk.

unable to allocate nenory for section references

Fatal Error: The linker cannot obtain more system memory space for constructing
section content tables. Probable cause: full file system or hard disk.

unable to append Iib to search path, too |ong

Fatal Error: A -1 switch specified alibrary; a- L switch specified alibrary path list.
But the linker could not construct afull file name from these items, as their combined
length exceeds internal limitations of the linker.

unable to convert library nmenber size fromlibrary

Fatal Error: Thesizefield of alibrary member header does not specify a decimal
integer. Probable cause: a corrupted archive file or an invalid archive file type.

unable to find synbol table

Fatal Error: The output file’'s section header table lacks an entry for a symbol table.
Probable cause: a corrupted object file.

unable to identify file as object or library file

Error: An item on the command line (or in a command file) does not seem to be a
switch or switch parameter. Accordingly, the item should be the name of an ELF
object file or a library (archive) file, but this does not seem to be correct. Check the
spelling and syntax of all items in the command line; if the item is a filename, make
sure that the file is an object or library file.

unable to match section section, file object to any segnent, check
segnment defs

Error: The linker could not assign sectisgttion to a segment, as no segment had a
matchingsect i on specifier. Edit the LDF so that a section specifier matches section
section (and its file or member).

unable to open command file filenane

Error: The linker could not open the specified command file. Checkldmame
spelling; make sure that the file exists and that it has at least read access.

A-20 Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

unable to open file, check name, paths, and perm ssions

Error: Thelinker cannot open an input object or library file. The file may not exist in
the specified directory, the file may not have the correct permissions, or the file may
be too short to be an object or library file. Make sure the file exists and has the correct
permissions.

unable to open linker definition file
Error: The- def switch specified an LDF that the linker cannot open. Make sure the
file exists and has the correct permissions.

unable to open listing file

Error: Thelinker cannot open the listing file for writing. Make sure that the file
exists, that the linker can overwrite the file, that the file name isvalid, that the linker
can create the file, and that the file system is not full.

unabl e to open output object file
Fatal Error: The linker could not open the output file. Probable cause: file or
directory permission violation.

unabl e to read nenber header fromlibrary
Fatal Error: The linker could not read header information from alibrary (archive)
file. Probable cause: a corrupted archive file or an invalid archive file type.

unable to read object file

Fatal Error: The linker cannot read from an output file opened previously.

unable to read output object file
Fatal Error: The linker cannot read ELF format information from an output file
opened previously.
unable to read string table in library
Fatal Error: The linker could not read the library file string table information.
Probable cause: a corrupted archive file or an invalid archive file type.
unable to read synbol table count fromlibrary
Fatal Error: The linker could not read the symbol table entry count in the library file
symbol table. Probable cause: a corrupted archive file or an invalid archive file type.
unable to read synbol table nenber offset fromlibrary

Fatal Error: The linker could not read a member’s offset in the library file symbol
table. Probable cause: a corrupted archive file or an invalid archive file type.

MELDSW/D Rev1 A-21

LINKER ERROR MESSAGES @ MOTOROLA

unabl e

unabl e

unabl e

unabl e

unabl e

unabl e

unabl e

unabl e

A-22

to read synbol table string

Fatal Error: The linker could not read a symbol table name in the library file symbol
table. Probable cause: a corrupted archive file or an invalid archive file type.

to reduce absol ute synbol synbol

Error: Thelinker could not reduce the value expression for symbol symbol. The
expression probably has a cycle involving a function whose argument is a segment, a
section or another symbol. Edit the LDF to correct the expression or remove the cycle.
(Paragraph 4.10.1 explains such cyclic constraints.)

to reduce end, naxsize or size expression for segnent segment

Error: Segment segment contains an end, maxsi ze, or si ze specifier, but the linker
could not reduce the specifier’s value expression to an integer value. The expression
probably has a cycle involving a function whose argument is another segment whose
start address or size cannot be reduced. Edit the LDF to remove the cycle. (Paragraph
4.10.1 explains such cyclic constraints.)

to reduce start expression to determ ne size of segnment segnent

Error: Segment segment has st art and end specifiers, but the linker could not
reduce both specifiers’ value expressionsto integer values. Either expression probably
has a cycle involving a function whose argument is another segment whose start
address or size cannot be reduced. Edit the LDF to remove the cycle. (Paragraph
4.10.1 explains such cyclic constraints.)

to reopen file

Fatal Error: The linker cannot re-open a command file (to resume processing
command information) after processing command information from a different
command file.

to wite to object file
Fatal Error: The linker cannot write relocation symbols to the output file. Probable
cause: full file system.

to wite to output file
Fatal Error: The linker cannot write the ELF header, symbol-table entries, or other
such entries of the output file. Probable cause: full file system.

to wite to output object file

Fatal Error: The linker cannot write ELF format information to the output file.
Probable cause: full file system.

Revl1l MELDSW/D

@ MOTOROLA LINKER ERROR MESSAGES

unrecogni zed segnent option

Error: In asegment declaration an expression is out of place, akeyword is not
correct, or there is some other incorrect syntax. Edit the LDF to correct the segment
declaration.

unresol ved synbol : synbol

Error: At least one object file or library member referenced symbol symbol, but the
linker could not find the symbol’ s definition. Include in the link the object file or
library member that defines the symbol.

unsupported relocation type: type

Fatal Error: The linker did not recognize the type value of an object-file or library-
member relocation operation. For more information about relocation types, see the
Power PC Embedded Application Binary Interface or System V Application Binary
Interface Power PC Processor Supplement.

unsupported inplicit rel ocations

Fatal Error: Object-file or library-member sections of type SHT_REL contain implicit
relocation instructions, which the linker does not accept. (For more information about
section type SHT_REL, see the System V Application Binary Interface.) If you are
using only Motorolatools (which support and generate EABI-conforming object
files), call Motorola software support.

MELDSW/D Rev1 A-23

LINKER ERROR MESSAGES @ MOTOROLA

A-24 Revl1l MELDSW/D

@ MOTOROLA MOTOROLA ARCHIVER

APPENDIX B

MOTOROLA ARCHIVER

The Motorola Archiver (MAR) creates and maintains archive (library) files containing groups of
files. These archive files conform to the System V Release 4 archive file format.

Although the archiver can combine files of any format into archives, a typical use is creating
libraries of relocatable ELF object files. The Motorola Link Editor (MELD) or another linker can
efficiently search through such alibrary to resolve external symbol differences. For example, you
might use the archiver to create a library of input/output routines. Each time you used the linker
to build an executable file you would be able to link the same archive file, instead of linking
specific input/output routines.

An archive file has a global symbol table, which the archiver updates each time you change the
content or order of member files. The linker uses this table to search for symbol definitions
efficiently, even if it makes multiple passes of the archivefile.

B.1 COMMAND SYNTAX

The MAR command syntax is either:

mar [-]action [nodifiers] [position] [archive]l [nmenber ...]

where:

- An optiona leading hyphen, which the archiver permits for users already
familiar with typical UNIX-style commands.

action Oneaction valuefrom Table B-1: delete, replace, move, and so forth.

nodi fiers Optiona vaues from Table B-2; these values modify the archiver action.
Y ou need not use spaces to separate modifier values.

position Name of a member file, used with a, b, or i modifier values to specify
where amember file should be inserted or moved.

archi ve Name of the archivefile.

nmember Name of afile to be made a member file of the archive, or the name of an
existing member file to be modified.

MELDSW/D Rev1 B-1

MOTOROLA ARCHIVER

@ MOTOROLA

or

mar -f option_file

where

option_file

Name of afile whose contents are of the syntax:

[-]action][nodifiers] [position] [archive]l [nmenber ...]

Options in the file may be separated by spaces, tabs, or the ends of lines.
Names of files (posi ti on, archi ve, and nenber) may be enclosed in

double quotes ().

(For an on-screen summary of archiver command syntax, enter the archiver command without
any parameter values.)

The archiver returns the value 0 when it successfully carries out an archiver action. A non-zero
return value indicates an error.

TableB-1. Archiver Action Values

Action Effect Comments

d Deletes specified nenber files
from ar chi ve.

r Replaces specified member files If the command line lacks any a, b, or i modifier,
in archi ve. adds any new nenber files to the end of ar chi ve.
If any member files are new, If the command creates ar chi ve, prints an archive-
adds them to archi ve in created message to st dout unless the command
command-line order. line includes the ¢ option.
Creates ar chi ve if it does not If menber files of the command line have the same
already exist. base name, the archiver adds multiple menber files

of identical names to ar chi ve.
o} Quickly appends specified If the command creates ar chi ve, prints archive-

nmenber files to archi vein
command-line order; does not
check whether nenber files
already exist in ar chi ve. Creates
ar chi ve if it does not already
exist.

created message to st dout unless the command
line includes the ¢ option.

If menber files of the command line have the same
base name, the archiver adds multiple menber files
of identical names to ar chi ve. Similarly, if menber
files of the command line duplicate names of
menber files already in ar chi ve, ar chi ve can
end up with multiple nenber files of identical names.

Prints table of contents for each
specified nenber file, to st dout .
Menmber names appear in their
order in ar chi ve.

If the command line lacks any nenber names, prints
table of contents for all menber files of ar chi ve.

B-2

Revl1l MELDSW/D

@ MOTOROLA

MOTOROLA ARCHIVER

TableB-1. Archiver Action Values (Continued)

newer.

ar chi ve only if the corresponding disk file is

Action Effect Comments
S Prints ar chi ve file’s global This action value must be upper case.
symbol table to st dout .
Symbol names appear in their
order in archi ve.
p Prints contents for each specified | If the command line lacks any nenber names, prints
menber file, to st dout . Contents | contents for all nenber files of ar chi ve.
appear in their order in ar chi ve.
m Moves specified nenber files to a | If the command line lacks a, b, or i maodifier, moves
new location in ar chi ve; moved | specified nenber files to the end of ar chi ve.
menber files keep their same .) o
relative order. Specified menber files must already exist in
archive.
X Extracts specified menmber files If the command line lacks any nenmber names,
from ar chi ve. extracts all nenber s of ar chi ve.
Writes such files to the current Creates extracted files as new, with user as owner.
directory, leaving them But if directory already had a previous file of a
unchanged in ar chi ve. nmenber file’s name and permissions allow, the
archiver retains the previous file's owner and group
attributes, overwriting its contents with nenber ’s.
Vv Prints MAR version information to | This action value must be upper case.
stdout .
TableB-2. Archiver Modifier Values
Modifier Effect Comments
u With the r action, replaces a nenber file of Has no effect with actions other

thanr.

a position

file.

With the maction, moves specified existing
member files after the posi ti on file.

With the r action, (1) replaces specified existing
menber files without moving them, and (2) adds
specified new nenber files after the posi ti on

Requires posi ti on argument,
which must be an existing
menber name of ar chi ve.

Has no effect with actions other
than morr .

MELDSW/D Rev1

B-3

MOTOROLA ARCHIVER

@ MOTOROLA

Table B-2. Archiver Modifier Values (Continued)

Modifier

Effect

Comments

b position

With the maction, moves specified existing
member files before the posi ti on file.

With the r action, (1) replaces specified existing
menber files without moving them, and (2) adds
specified new nenber files before the posi tion
file.

Requires posi ti on argument,
which must be an existing
menber name of ar chi ve.

Has no effect with actions other
than morr .

The i option is identical.

i position

With the maction, moves specified existing
member files before the posi ti on file.

With the r action, (1) replaces specified existing
menber files without moving them, and (2) adds
specified new nenber files before the posi tion
file.

Requires posi ti on argument,
which must be an existing
menber name of ar chi ve.

Has no effect with actions other
than morr .

The b option is identical.

o} With the x action, sets modification times of User must be owner or super
extracted nember files to times when nmenber user of extracted members. Has
files were added to ar chi ve. no effect with actions other than

X.

v With the d, r, q, m or x action, gives file-by-file Prints to st dout d-member
description of the operation progress. for each member deleted,

i } i r-member for each member
With th.et action, prints the table of content; as replaced, a-member for each
follows: each membe_r name on a separate Ilpe, member added, g-member for
preceded b_y permissions, user |q _anq group id each member quickly replaced,
numbers, size in bytes, and modification time. m-member for each member
With the S action, prints symbols on separate moved, and x-member for each
lines, with offset number of bytes from the start of | Member extracted.
the menmber defining the symbol and the defining | 155 1o effect with the V action.
member's name.

With the p action, adds a header to the contents
printing of each member. a newline, the member
name in angles, and two more newlines.
c With the r or g action, suppresses any archive- Has no effect with actions other

created message

thanr orq.

Revl1l MELDSW/D

@ MOTOROLA MOTOROLA ARCHIVER

Table B-2. Archiver Modifier Values (Continued)

Modifier Effect Comments

S With thet , S, p, or x action, regenerates hidden Has no effect with other actions.
symbol-table nenber file of ar chi ve.

I With the d, r, g, or maction, uses the current Has no effect with the V action.
working directory (instead of default) to create a Has no effect with the t , S, p, or
temporary working file. x action, if the command lacks

the s option.

Does the same thing with the t , S, p, or x action,
if the command also includes the s option.

B.2 MAR TEMPORARY FILES

During operation, the archiver creates temporary files for interim calculations and value storage.
If you have defined the environment variable TMPDI R, the archiver tries to create such temporary
filesin the directory that TMPDI R specifies. If you have not defined TMPDI R, the archiver tries to
create itstemporary filesin directory / t np.

If you wish the archiver to create its temporary files in the current working directory, you may
usethel modifier, which overridesthe/ t np directory and any path that TMPDI R specifies.

B.3 ARCHIVE EXAMPLES

Example 1: Create a new archive (I i bt hi ng. a) by quickly appending four files, giving afile-
by-file description of the progress:

$ mar -qv libthing.a file3.o file2.0 filel.o file4.o0
mar: created libthing.a

g- file3d.o
qg- file2.0
g- filel.o
qg- filed.o

Example 2: Show the expanded table of contents for archivefilel i bt hi ng. a:
$ mar -tv libthing.a
Fr'w-rwr-- 227 /1 1024 Aug 01 17:00 1995 file3.
r'w-rwr-- 227 /1 512 Aug 01 17:00 1995 fil e2.
r'w-rwr-- 227 /1 2048 Aug 01 17:00 1995 filel.
rw-rwr-- 227 /1 2048 Aug 01 17:00 1995 fil e4.

MELDSW/D Rev1 B-5

MOTOROLA ARCHIVER @ MOTOROLA

Example3: Movefile2. oandfil e3. 0 betweenfilel.oandfil e4. o (notethatfiled.o
isthe posi t i on value). Then show the table of contents for the modified archive file, to verify
thatfil e2. oandfil e3. o maintained their order in Example 2.

$ mar -nvb filed.o libthing.a file2.0 file3.0
m- file3.0

m- file2.0

$ mar -t libthing.a

filel.o
file3.0
file2.0
filed.o0

Example 4: Movefil e3. o0 betweenfile2. 0 andfil e4. o, then show the table of contents

for

the modified archivefile, to verify that files are in numerical order:
$ mar -nva file2. o0 libthing.a file3.o0

m- file3.0

$ mar -t libthing.a

filel.o
file2.0
file3.0
filed.o

Example 5: Replacefile2.0 andfil e4. o, add a new filefil e0. o before fil el. o, then
show the updated table of contents:

B-6

$ mar -rvb filel.o libthing.a fileO0.o filed4.0 file2.0
r - file2. 0o

r - filed.o

a- fileO0.o

$ mar -t libthing.a

fileO.o
filel.o
file2.0
file3.0
filed.o
Revl1l MELDSW/D

@ MOTOROLA MOTOROLA S-RECORD GENERATOR

APPENDIX C

MOTOROLA SSRECORD GENERATOR

The Motorola S-Record Generator (MSREC) converts ELF-format rel ocatable object filesto S
records. text strings in a specia ASCIl format, suitable for RS-232 transmission. You can
download S-records to PROM programmers or download them directly to a target device for
execution. Section C.5 describes the structure of S-record files.

The S-record generator also can generate S-records from non-ELF files, for reliable transfer of
programs between different types of computer systems.

C.1 COMMAND SYNTAX

The simple representation of MSREC command syntax is.
nerec [[option paranmeter]...] input file
where:
option Anoptionvaue, from Table C-1.
paraneter A parameter value from Table C-1.

input_file Thename of the object fileto be converted.

But actual msr ec commands are more detailed than this simple syntax may suggest, because:
* Most options require a parameter value of a specific type.
» Certain options must not have any parameter value.
* The- nemoption requires two parameter values.
» The- n option may contain multiplen and r parameter values, asin-n nrrrn.
* Youmay usejust thefirst letter of most options.

Table C-1 explains such information with regard to all option and parameter values. (For a screen
summary of these options, enter thensr ec command with no option or parameter values.)

MELDSW/D Rev1 C-1

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

Accordingly, a compl ete representation of the command syntax is:

nsrec [-e[ntry] address| synbol]
[-seg| +seg segnent]
[-sec| +sec section]
[-i[ignore]]
[-C control _filé€]
[-0 output _file_base]
[-S1] -S2| -S3]
[-1[ine] nunber]
[-b[ase] address]
[-r[eloc] offset]
[-s[um]
[-p[ad] pattern
[-nfem address: address]
[-c[om "string']
[-Wait] nunber]
[-n (n]r)...]
[-hlelp]]
[-a[uiet]]
[-vler]]
[-dw (8] 16] 32)]
[-dm (8| 16] 32| 64)]
[-dd nunber]
[-ds nunber]
[-f] input_file

Should an nsrec command include the same option multiple times, the S-record generator
ignores all but the last. For example, in the command nsrec -S3 -Sl1 a. out, the Srecord
generator ignores the - S3 option, but follows the - S1 option (limiting output for data records to
type S1 S-records). Another such example is the - o option, which specifies the base name for
output files: the nsr ec command could have many - o options, but only the last would take
effect.

But these syntax errors will cause the S-record generator to abort, without generating any output
files:
e Two or more- c optionsin an nsr ec command.

* An nsrec command that includes - seg or +seg options, and also - sec or +sec
options.

» Two or moreinput files.

C-2 Revl1l MELDSW/D

@ MOTOROLA

MOTOROLA S-RECORD GENERATOR

Table C-1. S-Record Generator Options

Option Effect Parameter Comments

-entry Specifies the entry point | addr ess O the address A loader or other such
(that is, the address of value for the termination program that later
the instruction to which record’s address field. May processes S-records uses
control will be passed). be in octal, decimal, or the entry-point value.

The S-record generator hexadecimal format. An ,
assigns this value to the | optional k or K suffix makes | |f the parameter value is a
address field of the the address value a multiple | Symbol, but the symbol is
termination S-record. of decimal 1024. not found (or if the binding
or type information is bad)
the termination record’s
address field receives the
synmbol U a member ofthe | .1e0.
ELF symbol table of the input
ELF file. Must be of global or | If the command does not
weak binding; must be of include this option, the
type object, function, or address field of the
section. The address field of | termination record receives
the termination S-record the e_entry value of the
receives the address that ELF file header.
corresponds to the symbol.

-seg Excludes from S-record | segnent 0 name of an Cannot be used with
generation the specified | ELF-file segment. - sec or +sec options.
segment.

Use a separate - seg
option for each segment
you exclude.

+seg Includes for S-record segnent 0 name of an Cannot be used with
generation the specified | ELF-file segment that has -sec or +sec options.
segment. non-zero memory size,

particularly one not of type Use a separate +seg

PT LOAD. option for each segment

- you include.

If the command does not
include this option, the S-
record generator considers
all type PT_LOAD
segments of non-zero
memory size for S-record
generation.

-sec Excludes from S-record | section 0 name of an Cannot be used with
generation the specified | ELF-file section, such as -seg or +seg options.
section. .text or. data.

Use a separate - sec
option for each section you
exclude.

MELDSW/D Rev1

C-3

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

Table C-1. S-Record Generator Options (continued)

Option Effect Parameter Comments
+sec Include for S-record secti on 0 name of an Cannot be used with
generation the specified | ELF-file section, such as - seg or +seg options.
section. .text or. dat a, that has

non-zero memory size and | US€ @ separate +sec
the SHF_ALLOC attribute | OPtion for each section you
flag, particularly if its type is | Include.

not SHT_PROGBITS. If the command includes at

least one +sec option, the
S-record generator
considers for S-record
generation all type
SHT_PROGBITS sections
that have the SHF_ALLOC
attribute flag and non-zero
memory size.

-ignore | Limits consideration for None. If the command does not
S-record generation to include this option, the S-
segments or sections record generator considers
specifically included via for S-record generation all
+seg or +sec options. type PT_LOAD segments

of non-zero memory size,
or (if the command
includes any - sec or
+sec options), all type
SHT_PROGBITS sections
of non-zero memory size
that have the SHF_ALLOC
attribute flag set.

-C Specifies the control file. | control _fil e O name of | Ifthe command does not
a control file. include this option, the S-
record generator considers
only options specifically

(Section C.4 gives more
information about control

files.) part of the msr ec
command line.
This option must be upper
case.

-0 Specifies the base name | out put_fil e _base [If the command does not
for all output files, so that | base filename for S-record include this option, all
output files do not go to | output files. generated S-records go to
the standard output. the standard output.

(Section C.6 gives more
information about output
files.)

C-4 Revl1l MELDSW/D

@ MOTOROLA

MOTOROLA S-RECORD GENERATOR

Table C-1. S-Record Generator Options (continued)

Option Effect Parameter Comments

- S1, Limits the output for data | None. If the command does not
records to the specified include this option, the S-

- S2, S-record type. record generator outputs

or the smallest S-record type

that can accommodate the

- S3 data’s addresses.

-line Overrides the default nunber [0 integer value, in If the command does not
maximum number of decimal range 140 254. May | include this option,
printable characters be in octal, decimal, or MSREC sets 80 as the
allowed in an S-record. hexadecimal format. An default maximum.

optional k or K suffix makes
the value a multiple of
decimal 1024.

- base Specifies an alternate addr ess [0 the address Can cause address values
base memory address. value for the alternate base | to wrap around the end of
Uses this address value | memory address. May be in | the 32-bit address space.
in the S-record that has | octal, decimal, or
the lowest starting hexadecimal format. An If the command does not
address, adjusting all optional k or K suffix makes | include this option, S-
other S-record address | the address value a multiple | F€cords will contain
fields appropriately. of decimal 1024. address values derived

from ELF input file
segment start addresses
(or section start addresses
if the command includes
+sec or - sec options).

-reloc Specifies an offset from | of fset 00 - or+ Can cause address values
the base memory character, with an integer to wrap around the end of
address. The S-record value (in octal, decimal, or the 32-bit address space.
generator adds this hexadecimal format). An
offset (as a 2's optional k or K suffix makes | The base memory address
complement 32-bit the address value a multiple | IS the address-field value
number) to the base of decimal 1024. of the S-record that
memory address, corrgsponds to the
adjusting other S-record beginning of the segment
address fields (or section) that has the
accordingly. lowest starting address.

If the command does not
include this option, S-
record address fields will
reflect segment/section
start addresses of the ELF
input file, or values
specified by the - base
option.

MELDSW/D Rev1

C-5

MOTOROLA S-RECORD GENERATOR

@ MOTOROLA

Table C-1. S-Record Generator Options (continued)

Option Effect Parameter Comments

-sum Sends to standard None. Overrides the -quiet option.
output each output file's
data checksum. If the command does not
(Checksum is a one-byte include this option, the S-
hexadecimal value: the record generator silently
least significant byte of calculates checksums and
the 1's complement of writes them into the S-
the byte-value sum of all records.
data fields of all S1, S2,
and S3 S-records.)

- pad Activates a padding pat t er n 0 Value for one The - base, -rel oc, and
character for S-record byte, specified as an octal, - memoptions can modify
output. For all undefined | decimal, or hexadecimal the low-high address
input-file addresses in integer, or specified as one range.
the low-high address printable ASCII character.
range, the S-record !f the com_mand_ does not
generator produces S- include this option, the S-
records with the pattern record generator does no
value in the data field. padding.

-mem Specifies alternate address: address O the A colon must separate the
lowest and highest alternate address values. two address values. These
addresses to be May be in octal, decimal, or | addresses override input-
considered for S-record | hexadecimal format. file default lowest and
generation. Optional k or K suffixes highest addresses (which

make the address values the - base and-rel oc
multiples of decimal 1024. options can modify).
The S-record generator
considers for S-record
generation only data within
the specified address
range.

-com Puts the specified string | string O printable ASCII Double quotes must
value in the data field of | text. enclose string value.
all type SO S-records.

If the command does not
include this option, the
data field of all type SO S-
records has the value
input_file.

C-6

Revl1l MELDSW/D

@ MOTOROLA

MOTOROLA S-RECORD GENERATOR

Table C-1. S-Record Generator Options (continued)

Option Effect Parameter Comments

-wai t Directs the S-record nunber [0 integer value, in | This option is meaningless
generator to wait the octal, decimal, or if the - 0 option directs
specified number of hexadecimal format. An output to a file other than
seconds between the optional k or K suffix makes | the standard output.
output of one S-record the value a multiple of
and the next S-record (to | decimal 1024. If the command does not
the standard output). include this option, S-

records go to the standard
output as fast as they are
generated.

-n Specifies alternative end | n O line-feed character. This option can have
sequences for) multiple parameter values,
successive output S- r U carriage-return for such an option as
records. character. -n nnrrn.

If the command does not
have this option, each S-
record (line of output) ends
with a line-feed (OxA)
character.

-hel p Prints a summary of None. Prints summary only to the
options allowed. standard output.

- qui et Suppresses all warning None.
messages.

-ver Prints version and None. Prints information only to
copyright information. the standard output.

- dw Specifies device width in | 8, 16, or 32. Parameter value must not
number of bits. exceed the - dm option

value; the default value is
32.

This option is valid only if
the command also
includes the - o option.

-dm Specifies memory bus 8, 16, 32, or 64 Parameter value must
width in number of bits. equal or exceed the - dw

option value; the default
value is 32.

This option is valid only if
the command also
includes the - o option.

MELDSW/D Rev1

C-7

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

Table C-1. S-Record Generator Options (continued)

Option Effect Parameter Comments
-dd Specifies device depth nunber [0 integer value, in | This option is valid only if
upper limit (number of octal, decimal, or the command also
virtual sets or sets of hexadecimal format. An includes the - 0 and - ds
output files). optional k or K suffix makes | options. If the command
the value a multiple of includes the - ds option,
decimal 1024. the default depth value is

26 (for levels all 2);
otherwise, the default
depth value is 1.

-ds Specifies size of nunber [integer value, in | This option is valid only if
individual device or octal, decimal, or the command also
output file, in bytes. hexadecimal format. An includes the - o option.

optional k or K suffix makes | The default size is
the value a multiple of unlimited.
decimal 1024.

Specifying a small device
size for a large input file
can force the creation of
multiple sets of output files.

-f Optional input file None. Precedes the mandatory
designator input-file value of the
command.

C.2 SEGMENTSAND SECTIONS

There are two ways to consider the contents of an ELF-format file:

* A collection of segments (each of which consists of sections). This perception fits
with the executable (or loader) view of the ELF file.

» A collection of sections. This perception fits with the linker view of the ELF file.

The S-record generator’s default behavior is to generate S-records for all Icagaietgs of an

ELF executable input file. The S-record generator can exercise finer control over embedded
PowerPC ELF files produced by the Motorola Embedded C Compiler, as these files can associate
a name or label with each segment. Theg option lets you exclude, by name, specific loadable
segments from S-record generation. (Use a sepasatgoption for each segment you exclude.)
The+seg option lets you include for S-record generation segments of non-zero memory size not
marked loadable. (Use a separadeg option for each such segment you include.)

For absolute control, you can use thegnor e option, which tells the S-record generator to
generate S-records only for segments you specifyseg options.

C-8 Revl1l MELDSW/D

@ MOTOROLA MOTOROLA S-RECORD GENERATOR

Alternatively, the S-record generator can generate S-records from the sections of the ELF
executable input file. For this behavior, you must use the - sec or +sec options in the nsr ec
command line. Either option triggers a section default arrangement: the S-record generator
generates S-records for al loadable sections of type SHT PROGBITS. To exclude specific
loadable sections, use the - sec option. (Use a separate - sec option for each section you
exclude.) To specificaly include sections of either type SHT _PROGBITS or SHT_NOBITS, use
the +sec option. (Use a separate +sec option for each section you include.) In compiled
programs, the . text and . data sections will be of type SHT _PROGBITS, and the . bss
section will be of type SHT_NOBITS.

Using the- i gnor e option excludes all sections but those you include via+sec options.

C.3 ROMCOPY SEGMENTS

The S-record generator supports the romcopy feature of embedded PowerPC ELF executable
files. This feature lets you maintain an image of RAM data in device ROM. A romcopy segment
contains duplicate data of a RAM segment. But the romcopy segment also contains directions
that its duplicate data be loaded at a different, non-RAM, address in device memory.

RAM data must reside in writeable memory, as it typicaly includes variable values that the
program can change during execution. An example of such RAM data is the initialized data

(. dat a) of a compiled C program. Correct execution is possible only if the variables in the
program’s. dat a area have been initialized to known values before execution begins. In a
working embedded system, part of system initialization would be copying such known values
from their romcopy addresses to the appropriate RAM addresses.

Note the two common stages for developing embedded system code that will reside in ROM:

1. During early development, you repeatedly download system data and text to RAM,
instead of programming them into ROM. This facilitates and speeds iterations of the
code-test-debug cycle, and makes it easy to patch code in memory.

2. When codeisfinished or almost finished, you program the code into EPROMs and
install it into the embedded target system.

Also note that romcopy segments are marked as loadable, but RAM segments are not. The S-
record generator’s default behavior, when generating S-records from segments, is to include
segments marked loadable. This means that the S-record generator generates S-records for the
romcopy segments, but not for the RAM segments that contain the same data.

MELDSW/D Rev1 C-9

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

Accordingly, the two ways to download data of RAM segments correspond to the code-
development stages.

1. During early development, use the +seg option to specify the RAM segments. (The
segments must not have memory size zero.) The S-record generator generates S
records for the RAM segments just as it generates S-records for the ROM segments.
Downloading writes both the RAM S-records and the ROM S-records to system
RAM.

This download initializes . dat a variables to the proper startup values; these values
are ready for the downloaded program when its execution begins. The program can
change these values as appropriate. To restore the original startup RAM values,
download the RAM S-records again.

2. When code is finished or almost finished, duplicate the RAM-segment data in
romcopy segments. The S-record generator generates S-records for the romcopy
segments, as they are marked loadable. Y ou can download the S-records for both the
. text (instructions) and romcopy segments to a device programmer, for burning into
an EPROM. Startup code must copy the romcopy-segment data to the appropriate
RAM locations before you execute the program. Each time you execute the program,
the startup initialization routines copy the startup values from device ROM to system
RAM.

(The Embedded Tools Getting Started Guide includes an example of startup code that
copies romcopy-segment datato the. dat a area.)

This second method also is appropriate when downloading into target-system RAM
for debug. In this situation, the startup code copies the romcopy-segment data from
one location in system RAM to a second location in system RAM. (The second
location is the one appropriate for the startup RAM values.) This allows you to test
and debug the startup code in RAM before you program it into EPROM. Additionally,
this method reinitializes variables whenever you restart the downloaded program,
without requiring another download.

C.4 CONTROL FILE FORMAT

A control file is an ASCII text file that consists of nsr ec-command options and parameter
values. Specifying the control file in your msr ec command, via the - C option, has the same
effect as including the individual options and parameter values in the nsrec command. A
control file helps you avoid typing mistakes for msr ec commands that have many options and
parameter values. A control file savestime if you will enter a sequence of nsr ec commands that
share many identical options and parameter values.

C-10 Revl1l MELDSW/D

@ MOTOROLA MOTOROLA S-RECORD GENERATOR

Use your standard text editor to write a control file. The text can be any of the nsr ec-command
options and parameter values, except the - C option.

* Spaces must separate options from each other and from their parameter values, just as
in the nsr ec command. The new-line and carriage-return characters can serve as
spaces, in thisregard.

* The input filename and the output base filename may be enclosed in double quotes
(")

* You cannot nest command files. (This is why you cannot include the - C option in
command files.)

* The # character starts a comment string, which continues until a new-line, carriage-
return, or end-of-file character. The S-record generator does not include the comment
or the # character in its command stream of options and parameter values.

* The control file should not contain shell variables, functions, or aliases. As no shell
program evaluates control-file text, the S-record generator would try to use such
variables, functions, or aliases as command options or parameter values.

For example, suppose that control filet est 1 contains this sequence:

-e 0x1000 #entry point set to 0x1000
+sec theta #i ncl ude section theta
-sec iota #excl ude section iota
-line 100 #set S-record |l ength

-S3 #use only S3 S-records

a. out #the ELF input file

If so, entering the command

msrec -C testl

has the same effect as entering the command

msrec -e 0x1000 +sec theta -sec iota -line 100 -S3 a. out

C.5 SRECORD FORMAT

An S-record file consists of a sequence of formatted ASCII-character strings. each such string is
an S-record. Thereis no significance to the order of S-records within an S-record file, except that
the last record must be of type S7, S8, or S9.

S-records are strings of five fields: type, count, address, data, and checksum. Each byte of binary
data is encoded as a two-character hexadecimal number: the first character represents the high-
order four bits of the byte, and the second character represents the low-order four bits.

MELDSW/D Rev1 C-11

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

The diagram below shows the general format of an S-record. Table C-2 shows the composition
of each field; Table C-3 lists the types of S-records.

Type Count Address |Code/data |Checksum

Table C-2. S-Record Field Composition

Printable
Field Characters Contents

Type 2 S-record type: SO, S1, S2, S3, S7, S8, or S9.

Count 2 Number of remaining character pairs in the S-record.

Address 4,6,0r8 The 2-, 3-, or 4-byte address at which the data field is to be loaded in
memory.

Code/data 0O n From O to n bytes of executable code, memory-oadable data, or
descriptive information.

Checksum 2 The least significant byte of the one’s complement of the sum of
values represented by the character pairs making up the count,
address, and code/data fields.

A line feed usualy ends each S-record. Should you need additional or different S-record
terminators, use the - nn or - nr command option. Alternatively, your transmitting program may
be able to specify terminators.

C-12 Revl1l MELDSW/D

@ MOTOROLA MOTOROLA S-RECORD GENERATOR

Table C-3. S-Record Types

Hexadecimal
Type Type Description
SO 0x5330 Header record. The address field normally is filled with zeros.
(first byte: 0x53, The code/data field contains a description of the following block

second byte:0x30) | of S-records.

S1 0x5331 Data record. The address field contains a 2-byte address. The
code/data field contains memory-loadable data.

S2 0x5332 Data record. The address field contains a 3-byte address. The
code/data field contains memory-loadable data.

S3 0x5333 Data record. The address field contains a 4-byte address. The
code/data field contains memory-loadable data.

S7 0x5337 Termination record. The address field contains a 4-byte
address, which can signal an entry point (that is, the address of
the instruction to which control is to be passed). There is no
code/data field.

S8 0x5338 Termination record. The address field contains a 3-byte
address, which can signal an entry point (that is, the address of
the instruction to which control is to be passed). There is no
code/data field.

S9 0x5339 Termination record. The address field contains a 2-byte
address, which can signal an entry point (that is, the address of
the instruction to which control is to be passed). There is no
code/data field.

There is only one termination record for each block of S-records. Normally, there is only one
header record, although multiple header records are possible.

This example shows atypica S-record file:
S00600004844521B
S1130000285F245F2212226A000424290008237C2A
511300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC

MELDSW/D Rev1 C-13

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

Thisfile consists of one SO record, four S1 records, and one S9 record.

The explanation of the SO record is.

S0 Typeindicator SO, indicating a header record.

06 Hexadecimal 06, indicating that six character pairs (or ASCII bytes)
follow.

00 00 Four-character, 2-byte address field; zeros.

48 44 52 ASCII H, D, and R are "HDR."

1B Checksum of the SO record.

The explanation of thefirst S1 record is:

S1 Type indicator S1, indicating a code/data record to be loaded at a 2-byte
address.

13 Hexadecimal 13, indicating that 19 character pairs follow. These pairs
represent a 2-byte address, 16 bytes of binary data, and a 1-byte checksum.

00 00 Four-character, 2-byte address field containing hexadecimal address

0x0000: the loading address for the data that follows.
28 5F 24 5F 22 12 22 6A 00 04 24 29 00 08 23 7C
The character pairs representing the actual binary data.
2A Checksum of the S1 record.
Similarly, the second and third S1 records contain 0x13 (19) character pairs; these records end

with checksums 13 and 52, respectively. The fourth S1 record contains 0x07 character pairs and
has a checksum of 92.

The explanation of the SO record is.

S9 Typeindicator S9, indicating a termination record.

03 Hexadecimal 03, indicating that three character pairs follow.
00 00 Four-character, 2-byte address field; zeros.

FC Checksum of the S9 record.

C-14 Revl1l MELDSW/D

@ MOTOROLA MOTOROLA S-RECORD GENERATOR

C.6 MSREC OUTPUT FILES

The S-record generator’s default behavior is to send all the S-records it generates to the standard
output. If yournmsrec command specifies an output base filename, via theption, the S-

record generator uses the base filename, after removing any file extension, to construct the output
file name. If there is only one output file, it writes the S-records to the base filename with the
extension. nx appended. For example, if yomsrec command includes the expression

-0 ../ al pha. ext, the S-record generator sends all valid output to fifeal pha. mx.

You can download this output file directly to target memory. Alternatively, you can download
this output file to a device programmer for programming an EPROM device, a flash-memory
device, or other such device.

Some embedded target hardware holds program code in an array of EPROM devices or in other
multiple programmable memory devices, so you may need to divide the output S-records among
the devices. Accordingly, you can have the S-record generator generate multiple output files,
each of which contains part of the total program code. Each output file corresponds to one
programmable memory device; you can download each output file, in turn, to the device
programmer.

Use the command optiorsim (memory bus width); dw (device width)- ds (device size), and

- dd (device depth) to control the number and content of S-records written to each output file.
Use these same options to generate multiple output files, to be mapped to multiple programmable
devices.

When hardware design dictates that each access to the EPROM address range must get
information simultaneously from multiple devices, use-the and- dw options. An access to

the first address within the EPROM address range actually accesses the first location of multiple
devices.

For example, many systems use two byte-wide EPROM devices for 16-bit memory accesses. For
each fetch of a 16-bit instruction, the processor reads the one byte of each EPROM device. One
device supplies the upper byte of the instruction, and the other device supplies the lower byte of
the instruction. For such a situation, yosrr ec command should specify an 8-bit device width

(-dw 8) and a 16-bit memory bus width dm 16): the S-record generator automatically
programs the upper bytes of instructions into one output file and the lower bytes of instructions
into a second output file.

Another common design practice, when one EPROM device is too small to contain all the code,
is having two consecutively addressed EPROM devices for the code. In this situation, your
msr ec command should include thals option to specify the device size. This way, the S-
record generator knows to write any overflow from the first device to a second output file, for
programming to the second device.

MELDSW/D Rev1 C-15

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

Multiple output files share the same base filename, but have digit-letter extensions that make the
files unique. For example, if your msr ec command includes the expressions - o bet a, - dw 8,
-dm 32, and -ds 16K, the S-record generator sends valid output to files bet a. 1a, bet a. 2a,
bet a. 3a, bet a. 4a, beta. 1b, bet a. 2b, bet a. 3b, bet a. 4b, and so forth. Figure C-1
represents such files for an input file of 300 kilobytes. (Section C.7.1 explains this calculation in
more detail.)

~0000D00000Buswidth(32bits)D 0 O00O0O0OO0O -

Device width

<0 (8 bits)J -

beta.la beta.2a beta.3a beta.4a
beta.1b beta.2b beta.3b beta.4b
beta.1c beta.2c beta.3c beta.4c
beta.1d beta.2d beta.3d beta.4d
beta.le beta.2e beta.3e beta.4e

Figure C-1. Beta Example Output Files

Beyond determining the number of output files, the - dw and - dmoptions affect the arrangement
of contents. For example, suppose that your nsrec command includes the expressions - o
gamma, -dw 16, and - dm 64. The S-record generator assigns output bytes O, 1, 8, 9, and so
forth to file gamma. 1a; bytes 2, 3, 10, 11, and so forth to file ganma. 2a; bytes 4, 5, 12, 13, and
so forth to file gamma. 3a; and bytes 6, 7, 14, 15, and so forth to file gamma. 4a. Figure C-2
shows this byte assignment. (Section C.7.2 explains this calculation in more detail.)

C-16 Revl1l MELDSW/D

@ MOTOROLA MOTOROLA S-RECORD GENERATOR

~0000000D0O0000000Buswidth(64bits)D OO OO0DOOO0OOODOOODOO -

Device width

00 (16 bits)0 O -

gamma.la gamma.2a gamma.3a gamma.4a
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
(gamma.1b) (gamma.2b) (gamma.3b) (gamma.4b)

Figure C-2. Gamma Example Byte Assignment

For another example, suppose that your msr ec command includes the expressions - o del t a,
-dw 32, and - dm 64. The S-record generator assigns output bytes 0, 1, 2, 3, 8, 9, 10, 11, and so
forthtofiledel t a. 1a; and bytes 4, 5, 6, 7, 12, 13, 14, 15, and so forth to filedel t a. 2a. Figure
C-3 shows this byte assignment. (Section C.7.3 explains this calculation in more detail .)

~0000000D00000000Buswidth(64bits)D OO DOODOOOODOOODOO -

~0 00 O Device width (32 bits)J O 0 O -

delta.la delta.2a
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
(delta.1b) (delta.2b)

Figure C-3. Delta Example Byte Assignment

MELDSW/D Rev1 C-17

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

A third example shows the effect of the - dd (device depth) option. Suppose that your nsr ec
command includes the expressions - o epsil on, -dw 16, -dd 3, and -ds 512K. (The - dm
option defaults to the value 32.) The S-record generator generates the six output files that Figure
C-4 shows. The - dd option value 3 limits the depth of output files, so that there cannot be files
epsi | on. 1d, epsi | on. 2d, epsi | on. 1e, epsi | on. 2e, or so forth.

000 0Bus width (32 bits)D 00 O —

Device width
<0 (16 bits)d -
epsilon.la epsilon.2a
epsilon.1b epsilon.2b
epsilon.1c epsilon.2c

Figure C-4. Epsilon Example Output Files

C.7 OUTPUT FILE CALCULATIONS

Section C.6 showed how the S-record generator outputs a matrix of files. Each row consists of 1,
2, 4, or 8 files: the quotient of the bus width (dm) divided by the device width (dw). The size of
the input file and the device size (ds) determine the number of rows (the depth), although the
device depth (- dd) option can limit that depth.
The formulafor the maximum number of rowsis:

i nput bytes / ((dm/ dw) ds)

in which the symbol / indicates rounded-up integer division.

C.7.1 Beta Example

The beta example had option values -dm 32, -dw 8, -ds 16K, and input file size 300
kilobytes. The maximum number of rowsis:

300K / ((32 / 8) 16K)
300K / (4 x 16K)
300K / 64K

4.68, rounded up to 5

Accordingly, the maximum number of rows for this exampleis 5, which Figure C-1 shows.

C-18 Revl1l MELDSW/D

@ MOTOROLA MOTOROLA S-RECORD GENERATOR

But suppose that the target system had only four rows of four 16K x 8-bit memory devices: you
would have included the - dd 4 command option. An input file of 300 kilobytes would not have
fit into four rows of output files. The S-record generation would have faled; the S-record
generator would have issued the message, Output file depth cannot exceed the range A-D.

C.7.2 Gamma Example

The gamma example showed byte assignments for output files. To understand byte assignments,
assume that one row of memory devices holds words, which consist of subwords. Each word is
as wide as the memory bus (dm); each subword is as wide as the device width (dw). Each
subword can consist of 1, 2, or 4 bytes. The S-record generator assigns byte n to an output-file
column, according to this formula:

1+ ((n div bytes per subword) % (dm/ dw))

in which the symbol di v indicates truncating integer division, the symbol %indicates modulus
(remainder) division, and the symbol / indicates rounded-up integer division.

The gamma example had option values - dm 64, and - dw 16. The 16-bit dw value means that
each subword consists of 2 bytes. To find the column position of byte 14, we use the formula
above:

1+ ((14 div 2) % (64 / 16)

1+ (7 %4)
1+ 3
= 4

And Figure C-2 shows that the S-record generator assigned byte 14 to fileganma. 4a.

C.7.3 Delta Example

The delta example also showed byte assignments for output files. This example had option
values - dm 64, and - dw 32. The 32-bit dw value means that each subword consists of 4 bytes.
To find the column position of byte 14, we use the formula:

1 + ((n div bytes per subword) % (dm/ dw))
in which the symbol di v indicates truncating integer division, the symbol %indicates modulus
(remainder) division, and the symbol / indicates rounded-up integer division.
1+ ((14 div 4) % (64 | 32)
1+ (3 %2)
1+1
=2

And Figure C-3 shows that the S-record generator assigned byte 14 to filedel t a. 2a.

MELDSW/D Rev1 C-19

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

C.8 ZETA EXAMPLE

For this final example, assume that your nsr ec command includes the expressions +seg . dat a
+seg .text -i -0 zeta -dw 8 -ds 0x50. Also assume that your input file consists of a
320-byte (0x140-byte) . data segment linked at OxO and a 376-byte (0x178-byte) . t ext

segment linked at 0x200. These input bytes cover the address range Ox0 O Ox377. Figure C-5
represents this input file.

Address Contents

1 .data

2 segment

13E

13F

140

141

(undefined)

1FE

1FF

200

210 text

segment

376

377

Figure C-5. Zeta Example Input File

Figure C-6 represents the S-record generator output files. Each row of output files consists of
dm / dwfiles: asthe default - dmvalue is 32, this number is 32 / 8 = 4 files. Each row covers
4* 0x50 = 320 (0x140) bytes.

C-20 Revl1l MELDSW/D

@ MOTOROLA

MOTOROLA S-RECORD GENERATOR

zeta.la zeta.2a zeta.3a zeta.4a
.data O .data 1l .data 2 .data 3
4 5 6 7
8 9 10 11 .data
segment
0x140
7D 134 7D 135 7D 136 7D 137 bytes
7E 138 7E 139 7E 13A 7E 13B
7F .data 13C 7F .data 13D 7F .data 13E 7F .data 13F
zeta.lb zeta.2b zeta.3b zeta.4b
0 0 0 0
1 1 1 1
(undefined)
2F 2F 2F 2F
30 .text 200 30 text 201 30 text 202 30 text 203
31 204 31 205 31 206 31 207 text
segment
0x80
7E 278 7E 279 7E 27A 7E 27B bytes
7F text 27C 7F text 27D 7F text 27E 7F text 27F
zeta.lc zeta.2c zeta.3c zeta.4c
0 .text 280 0 text 281 0 .text 282 0 .text 283
1 284 1 285 1 286 1 287 text
segment
3C 370 3C 371 3C 372 3C 373 0xE8
3D text 374 3D .text 375 3D .text 376 3D text 377 bytes
3E 3E 3E 3E
(undefined)
7F 7F 7F 7F

MELDSW/D Rev1

Figure C-6. Zeta Example Output File

C-21

MOTOROLA S-RECORD GENERATOR @ MOTOROLA

The first row (files zet a. 1a, zet a. 2a, zet a. 3a, and zet a. 4a) covers the address range
0x0 O Ox13F. Each file contains 320 / 4 = 80 (0x50) bytes. The . dat a segment fits perfectly
into thisrow of files.

The second row (files zet a. 1b, zet a. 2b, zet a. 3b, and zet a. 4b) covers the address range

O0x140 [0 Ox27F. The starting address for the . t ext segment, 0x200, is in the middle of this
range. Accordingly, only part of the second row’s range holdsct bytes: 0x2000 0x27F,
which is Ox27F - 0x200 + 1 = 128 (0x80) bytes long. Each file in this row holds 128 / 4 = 32
(0Ox20) bytes. (The S-record generator does not generate S-records for the rande Qx4

as no input file contents were defined for the range.)

The rest of the t ext segment fits into the third row (fileet a. 1c, zet a. 2c, zet a. 3¢, and
zet a. 4c). Each file has Ox3Et ext bytes.

C-22 Revl1l MELDSW/D

@ MOTOROLA

INDEX

INDEX

Archiver:

command syntax: B-1[1 B-5

examples: B-5, B-6

temporary files: B-5
-caps command switch: 3-7
Case sensitivity (command switch processing): 3-4
Command files: 3-21 0 3-23
Command files (command file interface): 3-3
Command line examples: 2-2 [0 2-8

Command line interface;

command files; 3-3

input files: 3-2

linker definition file:3-3

output object file: 3-3, 3-4
Command line switches, list file: 5-1 0 5-6
Command switches: 3-6 0 3-21

Command switch processing:
case sengitivity: 3-4
order: 3-4, 3-5
parameters. 3-5, 3-6

Command syntax:
archiver: B-1 0 B-5
S-record generator: C-1 0 C-7

Contents, list file: 5-6 [0 5-14

Control file format, S-record generator: C-10, C-11
Conventions, manual: 1-2

-D DataStart command switch: 3-8

Declarations, segment: 4-10 [0 4-18

-def DefFile command switch: 3-7

MELDSW/D Rev1

index-1

INDEX @ MOTOROLA

Directive, single section: 4-20, 4-21
-dup command switch: 3-7, 3-8
-ent EntryLabel command switch: 3-9
-error ErrCnt command switch: 3-9, 3-10
Error messages: A-1 0 A-23
Examples:

archiver: B-5, B-6

command line: 2-2 0 2-8

S-record generator: C-16 [0 C-22

-f CommandFilel command switch: 3-10
Files, command: 3-21 [3-23

Format, S-record: C-11 0 C-14

Input files (command file interface): 3-2
Introduction: 1-1, 1-2

-L Directory command switch: 3-12, 3-13
-| LibKey command switch: 3-10 0 3-12

Linker definition file:
romcopy segments. 4-22 [1 4-24
segment declarations. 4-10 [0 4-18
segments and sections: 4-1 0 4-5
segment overlap checking directives: 4-21, 4-22
single section directive: 4-20, 4-21
symbol declarations: 4-18 [0 4-20
syntax: 4-50 4-10
typical problems: 4-25 [0 4-31

Linker:
definition file (command file interface): 3-3
error messages: A-1 00 A-23
using: 2-1 0 2-8

List file:
command line switches: 5-1 [0 5-6
contents: 5-6 J 5-14

-LIST ListFile command switch: 3-13, 5-2, 5-3

index-2 Revl1l MELDSW/D

@ MOTOROLA

INDEX

Manual conventions: 1-2
-nocaps command switch: 3-14
-nodup command switch: 3-14, 3-15
-noent{ry} command switch: 3-15
-0 OutFile command switch: 3-16
Object file, output (command file interface): 3-3, 3-4
Operation, linker: 2-1, 2-2
Output files, S-record generator: C-150 C-19
Output object file (command file interface): 3-3, 3-4
Overlap checking directives, segment: 4-21, 4-22
-pad PadChar command switch: 3-16
Pagination, list file: 5-6, 5-7
Parameters (command switch processing) 3-5, 3-6
Problems, typical (linker definition file): 4-25 [0 4-31
-g command switch: 3-16, 3-17
-r command switch: 3-17
References: 1-2
Requirements, user: 1-1
Romcopy segments:

linker definition file: 4-22 [1 4-24

S-record generator: C-9, C-10
Section listing: 5-8 0 5-11
-seg switch: 5-3, 5-4

Segment:
declarations: 4-10 0 4-18

listing: 5-7, 5-8

overlap checking directives: 4-21, 4-22
Segments and sections:

linker definition file: 4-1 0 4-5

S-record generator: C-8, C-9

Single section directive: 4-20, 4-21

MELDSW/D Rev1

index-3

INDEX @ MOTOROLA

S-record generator:
command syntax: C-1 0 C-7
control fileformat: C-10, C-11
output files: C-15 00 C-19
romcopy segments: C-9, C-10
segments and sections: C-8, C-9
S-record format: C-11 0 C-14
zetaexample: C-200 C-22

Structure, list file: 5-6, 5-7

Symbol:
declarations: 4-18 0 4-20
listing: 5-11 0 5-14

Syntax:
linker definition file: 4-50 4-10
S-record generator: C-1 0 C-7

Switches, command: 3-6 0 3-21

Switch processing: 3-4 0 3-6

-sym command switch: 3-18, 5-5, 5-6

-syma command switch: 3-18, 5-5, 5-6

-symn command switch: 3-18, 5-5, 5-6

-T TextSart command switch: 3-19

Temporary files, archiver: B-5

Typical problems, linker definition file: 4-25 0 4-31
User requirements: 1-1

Using thelinker: 2-1 00 2-8
command line examples: 2-2 [0 2-8
operation: 2-1, 2-2

-warn WrnCnt command switch: 3-19, 3-20
-weak command switch: 3-20
-xref command switch: 3-21, 5-4, 5-5

index-4 Revl1l MELDSW/D

	EMBEDDED LINK EDITOR (MELD) USER’S MANUAL
	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 USER AND SYSTEM REQUIREMENTS
	1.2 MANUAL CONVENTIONS
	Table 1-1. Manual Conventions

	1.3 REFERENCES

	CHAPTER 2 USING THE LINKER
	2.1 LINKER OPERATION
	2.2 COMMAND LINE EXAMPLES

	CHAPTER 3 COMMAND LINE INTERFACE
	3.1 INTRODUCTION
	3.1.1 Input Object and Library Files
	3.1.2 Linker Definition File
	3.1.3 Command Files
	3.1.4 Output Object File

	3.2 COMMAND SWITCH PROCESSING
	3.2.1 Case Sensitivity
	3.2.2 Switch Processing Order
	3.2.3 Switch Parameters

	3.3 COMMAND SWITCHES
	3.3.1 -caps
	3.3.2 -def DefFile
	3.3.3 -dup
	3.3.4 -D DataStart
	3.3.5 -ent EntryLabel
	3.3.6 -error ErrCnt
	3.3.7 -f CommandFile
	3.3.8 -l LibKey
	3.3.9 -L Directory
	3.3.10 -LIST ListFile
	3.3.11 -nocaps
	3.3.12 -nodup
	3.3.13 -noent{ry}
	3.3.14 -o OutFile
	3.3.15 -pad PadChar
	3.3.16 -q
	3.3.17 -r
	3.3.18 -seg
	3.3.19 -sym, -symn, -syma
	3.3.20 -T TextStart
	3.3.21 -warn WrnCnt
	3.3.22 -weak
	3.3.23 -xref

	3.4 COMMAND FILES

	CHAPTER 4 LINKER DEFINITION FILE
	4.1 SEGMENTS AND SECTIONS
	4.1.1 Reserved Sections
	4.1.2 Small Data Areas

	4.2 ASSIGNING SECTIONS TO SEGMENTS
	4.3 DEFAULT SEGMENTS
	Figure 4-1. Default Segments

	4.4 GENERAL LINKER DEFINITION FILE SYNTAX
	4.4.1 Declarations and Directives
	4.4.2 Names
	4.4.3 Literal Numbers
	4.4.4 Segment and Symbol Expressions
	4.4.5 Segment Functions
	4.4.6 Symbol Functions

	4.5 SEGMENT DECLARATIONS
	4.5.1 Segment Name
	4.5.2 Segment Type
	4.5.3 Segment Start Address
	4.5.4 Segment Size
	4.5.5 Segment Alignment
	4.5.6 Segment Protection
	4.5.7 Segment Priority
	4.5.8 Segment Sections

	4.6 SYMBOL DECLARATIONS
	4.6.1 Symbol Name
	4.6.2 Symbol Expression
	4.6.3 Symbol Visibility

	4.7 SINGLE SECTION DIRECTIVE
	4.8 SEGMENT OVERLAP CHECKING DIRECTIVES
	4.9 USE OF ROMCOPY SEGMENTS
	4.10 TYPICAL LINKER DEFINITION FILE PROBLEMS
	4.10.1 Cyclic Constraints
	4.10.2 No Matching Segment
	4.10.3 No Room in Segment

	CHAPTER 5 LIST FILE
	5.1 INTRODUCTION
	5.2 LIST FILE COMMAND LINE SWITCHES
	5.2.1 The -LIST Switch
	5.2.2 The -seg Switch
	Figure 5-1. List File with -seg Switch

	5.2.3 The -xref Switch
	Figure 5-2. List File with -xref Switch

	5.2.4 The -sym, -symn, -syma Switches
	Figure 5.3. List File with -symn Switch
	Figure 5-4. List File with -syma Switch

	5.3 DETAILED LIST FILE CONTENTS
	5.3.1 List File Structure and Pagination
	5.3.2 Detailed Look at the Segment Listing
	5.3.3 Detailed Look at the Section Listing
	Figure 5-5. Section Listing Excerpt
	5.3.3.1 Section Information
	5.3.3.2 Composite Section Information
	5.3.3.3 Symbol Cross-Reference
	Figure 5-6. Symbol Cross Reference

	5.3.4 Detailed Look at the Symbol Listing
	Figure 5-7. Symbol Listing

	APPENDIX A LINKER ERROR MESSAGES
	APPENDIX B MOTOROLA ARCHIVER
	B.1 COMMAND SYNTAX
	Table B-1. Archiver Action Values
	Table B-2. Archiver Modifier Values

	B.2 MAR TEMPORARY FILES
	B.3 ARCHIVE EXAMPLES

	APPENDIX C MOTOROLA S-RECORD GENERATOR
	C.1 COMMAND SYNTAX
	Table C-1. S-Record Generator Options

	C.2 SEGMENTS AND SECTIONS
	C.3 ROMCOPY SEGMENTS
	C.4 CONTROL FILE FORMAT
	C.5 S-RECORD FORMAT
	Table C-2. S-Record Field Composition
	Table C-3. S-Record Types

	C.6 MSREC OUTPUT FILES
	Figure C-1. Beta Example Output Files
	Figure C-2. Gamma Example Byte Assignment
	Figure C-3. Delta Example Byte Assignment
	Figure C-4. Epsilon Example Output Files

	C.7 OUTPUT FILE CALCULATIONS
	C.7.1 Beta Example
	C.7.2 Gamma Example
	C.7.3 Delta Example

	C.8 ZETA EXAMPLE
	Figure C-5. Zeta Example Input File
	Figure C-6. Zeta Example Output File

	INDEX

