
Order this document
by AN1227/D

Rev. 1.0

Motorola Semiconductor Application Note

AN1227
Using 9346 Series Serial EEPROMs
with 6805 Series Microcontrollers
using

By William G. Grim

Abstract

This application note describes how the HC05 Family of microcontrollers
(MCU) can be used with 93 x 6 series serial electrically erasable
programmable read-only memories (EEPROMs). The MCUs are made
by various manufacturers such as National Semiconductor, SGS
Thompson, Catalyst, and Microchip. This series includes serial
EEPROMs whose base numbers are 9346, 9347, 9356, 9357, 9366,
9367, 32C101, and 33C102. These EEPROMs are based on a loose
standard; however, commands to initiate the basic functions are
identical. This application note also can be helpful using I2C EEPROMs
when they are used in conjunction with the Motorola application note
Interfacing the MC68HC05C5 SIOP to an I 2 C Peripheral (AN1066/D) by
Naji Naufel.
© Motorola, Inc., 1997 AN1227 – Rev.1.0

Application Note
Introduction

Serial EEPROMs have become an inexpensive way to maintain small
amounts of non-volatile data in microcontroller systems during power off.
They commonly come in 1-K (128 x 8), 2-K (256 x 8), and 4-K (512 x 8)
sizes. Unlike flash memory chips, they do not take special voltages, but
on average they do require 4 milliseconds (ms) to execute each word-
write operation.

Several series of serial EEPROMs are available. This application note
describes a method to use 9346 series serial EEPROMs with HC05
Family microcontrollers. The 9346 series uses a serial 3-wire interface.
Along with chip select (CS), the three communications wires are clock
(CLK), data out (DO), and data in (DI).

In this application note, all seven basic 9346 commands are described
in Table 2 and source code is included in Appendix H , Appendix I , and
Appendix J . These seven commands are erase enable (EWEN), erase
disable (EWDS), write (WRITE), erase all (ERAL), write all (WRAL),
erase a memory location (ERASE), and read a memory location
(READ).

Different software algorithms that use serial EEPROMs are included.
The first method uses polling and ordinary input/output (I/O) lines. The
second method uses the serial peripheral interface (SPI) and polls it for
status. The third method also uses the SPI communications port, but
obtains status by using the SPI interrupt.

The first method of polling port pins requires four I/O lines; three of them
can be shared with other peripherals. Three memory locations are also
used. These locations can be shared by other tasks, also. This is a more
appropriate implementation when reading and writing the EEPROM
occurs infrequently or when a low-cost member of the HC05 Family is
used.

The second implementation differs from the first because it uses the SPI
and polls it for status. All of the bit shifting done in software in the first
application is done by the SPI hardware in the second method.
AN1227 – Rev.1.0

2 MOTOROLA

Application Note
Available EEPROM Options
The third implementation uses the SPI and the SPI interrupt to save
processing time during WRITE. This is an appropriate approach when
writing occurs frequently or when the processor cannot be occupied in a
loop for the 4-ms interval required for each byte write.

Because differences exist among vendors, options to look for in 9346
series EEPROMs are described in the following section. The included
source code in Appendix H , Appendix I , and Appendix J contains
assembler switches to handle the various types of 9346 EEPROMs.

This application has been tested with EEPROMs made by Microchip,
National Semiconductor, SGS Thompson, and ICT. The test used an
M68HC05EVM evaluation module with an MC68HC705C8P
C8-resident processor that was assembled using the P&E assembler,
IASM05.

Available EEPROM Options

As of this writing, four base numbers of 9346 series EEPROMs exist
representing four different sizes. Most manufacturers also offer versions
that are autosequencing and autoerase. Packages typically are 8-pin
dual-in-line packages (DIPs) or small outline integrated circuits (SOICs).

The oldest member of the 93 x 6 series is the 9306 EEPROM, which is
not supported by this application note. The 9346 EEPROM has a 1-Kbit
capacity, the 9356 EEPROM has a 2-Kbit capacity, and the 9366
EEPROM has a 4-Kbit capacity. Minor differences exist in the
programming of these EEPROMs. The only direct replacement is a 9366
EEPROM for a 9356 EEPROM.

Older EEPROMs required erasure of each memory location before
rewriting. Those that do not require erasure are autoerase EEPROMs,
which can be programmed more quickly.

EEPROMs are now available in 3-volt versions and are ideal for
applications that require memory retention during battery changes.
Three-volt and 5-volt versions program in the same way.
AN1227 – Rev.1.0

MOTOROLA 3

Application Note
Modes of EEPROM Operation

Serial EEPROMs have two formats and seven basic commands.
EEPROMs can operate in an 8- or 16-bit format. This format is
configured either by connecting the ORG pin to VCC for a 16-bit format
or by connecting the ORG pin to VSS for an 8-bit format. Another option
is to order the EEPROM from the factory preconfigured to the desired
format. In the latter case, the ORG pin is not used.

Table 1 describes the seven EEPROM commands: erase enable
(EWEN), erase disable (EWDS), write (WRITE), erase all (ERAL), write
all (WRAL), erase a memory location (ERASE), and read a memory
location (READ).

If an EEPROM is autosequencing, subsequent bits beyond the
addressed cell will be read as long as the EEPROM is selected and
clocks continue. EWEN, EWDS, and READ have no ready cycle. The
EEPROM is ready for a new command immediately after any of these
commands are executed. WRITE, WRAL, ERASE, and ERAL require
that the EEPROM is opened by an EWEN operation and not
subsequently closed by an EWDS operation. Although writing and
erasing commands are limited by the writing cycle time, the time taken
to read is limited only by microprocessor clock speed or the 1-MHz
maximum EEPROM clock speed.

Table 1. Serial EEPROM Commands

Commands Function Description

EWEN Erase write enable Opens the EEPROM for writing or erasure

EWDS Erase write disable Write protects the EEPROM (power-on default)

WRITE Writes a byte or word
Writes a byte in 8-bit format or word in 16-bit format to a specific
memory location; this takes about 4 ms per word

WRAL Write all
Writes the same byte or word to all EEPROM locations; this
takes about 30 ms.

ERASE Erases a location Erases the addressed memory location; this takes about 4 ms

ERAL Erase all Erases the entire EEPROM; this takes about 15 ms

READ Reads addressed cell Reads the addressed memory location
AN1227 – Rev.1.0

4 MOTOROLA

Application Note
Hardware Description
Hardware Description

Two schematics, Figure 1 and Figure 2 , show the hardware
configurations used to test the attached source code in Appendix H ,
Appendix I , and Appendix J . An MC68HC05EVM was used to test both
designs with an HC705C8P resident processor. Any Motorola MCU or
development system that can execute SPI code or I/O code can be used
to test the design.

Appendix H (POL9346.asm) is used with Figure 2 .

Appendix I and Appendix J (SPIP9346.asm and SPI9346.asm) are
used with Figure 1 .

The switch is for switching the EEPROM between 8- and 16-bit formats.
In actual applications, the switch is replaced by a hard wire jumper to
configure the EEPROM permanently for 8- or 16-bit operation.

In the polling application, ordinary I/O lines are used. Port A bit 0 and port
C bits 5 and 6 are outputs. Port C bit 7 is an input. When port A bit 0 is
low, the other ports are available for other services.

In the SPI application, the SPI is configured as a master. The SPI
handles all communications with the EEPROM. Port A bit 5 handles chip
select. When the EEPROM is not selected, the SPI is available for other
services.

Port A bit 4 is used to keep the SS line in its inactive high state.
AN1227 – Rev.1.0

MOTOROLA 5

Application Note
Source Code Description

The source code in Appendix H , Appendix I , and Appendix J was
developed using the P&E assembler and a Motorola M68HC05EVM with
a C8-resident processor. The EEPROM erased state is $FF. The
software will invert all reads and writes to the EEPROM device. In other
words, when writing $00 to the EEPROM, the software automatically will
invert $00 to $FF before writing to the device.

The maximum clock frequency of the EEPROM is 1 MHz. For HC05 bus
clock frequencies above 2 MHz, the CLOCK, EESEND, and RECEIVE
subroutines that are used need to be adjusted with NOP commands or
the SPI baud rate must be kept below 1 MHz.

Source code was developed to work with 9346 EEPROMs in an 8-bit
configuration and 9346, 9356, and 9366 EEPROMs in the 16-bit
configuration. Source code can handle newer EEPROMs that can erase
the previous data automatically and those that can sequence to the next
EEPROM memory location automatically.

To adapt the source code to a particular EEPROM and configuration,
SET the configuration used, SETNOT the others, and assemble.
Table 2 shows how to handle the software switches.

Table 2. Software Switch Options

SWITCH SWITCH OFF (#SETNOT) SWITCH ON (#SET)

9346FORM8 One of the other FORM switches may
be used.

Use with 9346 EEPROMS configured for
bytes of data (ORG pin tied to VSS)

9346FORM16 One of the other FORM switches may
be used.

Use with 9346 EEPROMS configured for
words of data (ORG pin tied to VCC)

9356FORM16 One of the other FORM switches may
be used.

Use with 9356 EEPROMS configured for
words of data (ORG pin tied to VCC)

9366FORM16 One of the other FORM switches may
be used.

Use with 9366 EEPROMS configured for
words of data (ORG pin tied to VCC)

AUTOERASE
The software will erase an EEPROM
location before writing data to it.

The software will NOT erase an EEPROM
location before writing data to it

AUTOSEQ
In block READs, the software sends an
address to the EEPROM for each
address to be read.

In block READs, the software sends an
address to the EEPROM only once for the
first address to be read. The EEPROM
automatically sequences to the next location
to be read.
AN1227 – Rev.1.0

6 MOTOROLA

Application Note
Source Code Description
First Application:
Appendix H I/O
Polling to EEPROM
Application
Source

In the polling application, I/O lines are toggled by software to send the
clocks, chip-selects, and data. Addresses are sent using the EESEND
subroutine. Clocks are sent using a multi-entry CLOCK# routine. The
read routines call a RECEIVE routine. RECEIVE uses the characteristic
of the BRSET command, which copies the bit tested to the carry.

The first routine, WAIT, contains the loop where the microcontroller waits
during writing and erasure until the EEPROM write cycle finishes.

Reading or writing:

1. Load location ee_start with the address where the block will start
in the EEPROM. It is an EEPROM address.

2. Load location mem_start with the address where the block will
start in the HC05 memory space.

3. Load location stor_len with the length in bytes of the block to be
read or written.

4. Call the subroutine READ (or AUTORD) or WRITE.

To execute an ERASE command, perform these steps:

1. Load the accumulator with the address to be erased in the
EEPROM. It is an EEPROM address.

2. Call the ERASE routine jsr ERASE.

To execute a WRAL command, perform the following steps:

1. Load the accumulator with the immediate value to be written to
every byte of the EEPROM.

2. If the EEPROM is configured to read and write words, load the X
register with the least significant byte of the word to be written. The
value in the accumulator will be written to the most significant byte.

3. Call the WRAL routine jsr WRAL.
AN1227 – Rev.1.0

MOTOROLA 7

Application Note
To execute an ERAL command, just call the ERAL routine jsr ERAL.

In the source code printouts in Appendix H , Appendix I , and
Appendix J , calling examples are given under the area labeled START
– Sample calling of routines.

• For reading, start at STARTRD

• For writing, start at STARTWR

• For erasing location 5, start at STARTERSE

• To write a $A5 or $A5C3 to every memory location in the
EEPROM, start at STARTWRL

Second
Application:
Appendix I SPI
Polling to EEPROM
Application
Source

In the SPI polling application, all CLOCK# routines have been eliminated
and replaced with the SPI, which eliminates the need for them. The
RECEIVE routine is merged into the EESEND routine. The WAIT and
EESEND routines are changed to read and write the SPI by polling it for
its condition. Clocks and data are shifted in and out by the special
circuitry of the SPI.

The SPI polling application is used in a manner identical to the preceding
I/O polling application.

Third Application:
Appendix J SPI
to EEPROM
Using Interrupt
Application
Source

In the SPI application, the WAIT routine is eliminated entirely and the
SPI periodically interrupts to check the EEPROM ready status. For
reading, the SPI is polled exactly like the second application. Clocks and
data are shifted in and out by the special circuitry of the SPI.

The SPI interrupt-driven application uses four memory locations. A
WRBLOCK macro has been written to make writing blocks to EEPROM
easier. The reader is left to write macros for the other functions.
AN1227 – Rev.1.0

8 MOTOROLA

Application Note
Source Code Description
To execute a READ or WRITE command, perform these steps:

1. Execute the CK_CLR subroutine, jsr CK_CLR. This will not allow
the READ to proceed until any pending WRITE, WRAL, ERASE,
or ERAL finishes.

2. Load location ee_start with the address where the block will start
in EEPROM. It is an EEPROM address.

3. Load location mem_start with the address where the block will
start in the HC05 memory space.

4. Load location stor_len with the length in bytes of the block to be
read or written.

5. Call the READ, AUTORD, or WRITE subroutine.

To execute an ERASE command, perform these steps:

1. Execute the CK_CLR subroutine, jsr CK_CLR . This will not allow
the READ to proceed until any pending WRITE, WRAL, ERASE,
or ERAL finishes.

2. Load location ee_start with the address where the block to be
erased will start in EEPROM. It is an EEPROM address.

3. Load location stor_len with the length in bytes of the block to be
erased.

4. Call the ERASE routine jsr ERASE.

To execute a WRAL command, perform these steps:

1. Load the accumulator with the immediate value to be written to
every byte of the EEPROM. If the EEPROM is configured to read
and write words, the value in the accumulator will be written to the
more significant byte.

2. Execute the CK_CLR subroutine, jsr CK_CLR. This subroutine will
not allow the WRAL to proceed until any pending WRITE, WRAL,
ERASE, or ERAL finishes.

3. Call the WRAL routine jsr WRAL.
AN1227 – Rev.1.0

MOTOROLA 9

Application Note
To execute an ERAL command, perform these steps:

1. Execute the CK_CLR subroutine, jsr CK_CLR. This will not allow
the WRAL to proceed until any pending WRITE, WRAL, ERASE,
or ERAL finishes.

2. Call the ERAL routine jsr ERAL.

In the source code printouts in Appendix H , Appendix I , and
Appendix J , calling examples are given under the area labeled START

– Sample calling of routines .

• For reading, start at STARTRD.

• For writing, start at STARTWR.

• For erasing locations 5, 6, and 7, start at STARTERSE.

• To write a $A5 or $A5C3 to every memory location in the
EEPROM, start at STARTWRL.

Common Problems

The most common EEPROM problem is that it will not be accessible
after writing or erasing.

This list describes additional EEPROM problems:

1. Not erasing an EEPROM that does not have the autoerase
feature. Most EEPROMs now have autoerase; however, some
older designs do not have this feature. SETNOT the autoerase
switch and re-assemble.

2. Interference in the WRITE command by another task, such as a
task that shares the SPI or I/O lines. For the EEPROM to respond
properly to a command, that command must be received in the
correct order of bits. Delays are allowable, but stray bits are not.
AN1227 – Rev.1.0

10 MOTOROLA

Application Note
Common Problems
3. Not having the correct assembler switches set, such as
programming a 9346 EEPROM as a 9356 EEPROM. A 9346
EEPROM requires a different number of clocks than the 9356 and
9366 EEPROMs. Form 8 and form 16 configurations take different
numbers of clocks, also. If the number is not right, the EEPROM
will not come ready.

4. Some EEPROMs have a ready-disable mode triggered by writing
a high to the DI line when selected. Avoid this operation.

5. Some EEPROMs, such as the SGS Thompson version of the
EEPROMs, do not support ERASE or ERAL. Because these
EEPROMs are autoerase, this function is never needed. Any
attempt to write an ERASE or ERAL command to these
EEPROMs will cause them to not come ready.

6. After a WRITE, ERAL, or WRAL instruction is sent, an inquiry of
status is required. This is done merely by reselecting the
EEPROM. The software does this in the WAIT routine.

Another problem is caused by interrupts. Interrupt problems are
described in the following list:

1. Interrupts can change memory locations during block writes. The
result can be an inconsistent collection of values saved to
EEPROM. When the values are read back, the HC05 program
may crash. Be careful with interrupts, especially during write
operations. EEPROMs can take up to 15 ms to write a large block
of data, a long time on a microcontroller scale.

2. A similar but potentially more damaging problem is the one
created by powering down during a write cycle. A designer might
have shipped a product only to find that this problem occurs on
rare occasions. This problem can be more easily solved than the
interrupt problem cited above by making two copies, each with an
age tag. This task may seem wasteful, but it will ensure that at
least one usable copy will be available for the next power-up, if the
other copy was in the process of updating.
AN1227 – Rev.1.0

MOTOROLA 11

Application Note
Figure 1. SPI to EEPROM Connection

Figure 2. I/O Lines to EEPROM Schematic

R1

8

6

1

2

3

4

CHIP SELECT

CLOCK

DI

CS

CLK

DI

DO

93 X 6

VCC

ORG/NC

VSS

PORTA. 5

4.7 k

DO
5

16

8

SCK

MOSI

MISO

 GND

PORTA. 4

SS

VCC

93 X 6 EEPROM SERIES

MCU
OR DEVELOPMENT
SYSTEM

MCU

8

6

1

2

3

4

CHIP SELECT

CLOCK

DI

CS

CLK

DI

DO

93 X 6

VCC

ORG/NC

VSS

PORTA. 0

DO
5

16

8

PORTC. 5

PORTC. 6

PORTC. 7

 GND

OR DEVELOPMENT
SYSTEM

VCC

93 X 6 EEPROM SERIES
AN1227 – Rev.1.0

12 MOTOROLA

Application Note
Appendix A — READ Application Flowchart
Appendix A — READ Application Flowchart

RETURN

SET UP PORTS

WRITE PROTECT
 THE EEPROM

YES

NO

STOR_LEN = 0

STOR_LEN
DECREMENT

SEND READ
 COMMAND

110

 SEND
ADDRESS

EE_START
INCREMENT

CLOCK IN 8 BITS

READ THE
8 BITS AS THEY

COME IN

SUEEP

EWDS

RECEIVE

STORE THE 8 BITS
AS A BYTE IN
MEM_START

INCREMENT
MEM_START

IF ASSEMBLED

WITH A FORM 16

SWITCH, READ AND

STORE ANOTHER BYTE

READ
AN1227 – Rev.1.0

MOTOROLA 13

Application Note
Appendix B — Application Calling Reading or Writing Flowchart

STARTD / STARTWR

CALL READ OR WRITE

END

LOAD EEPROM START ADDRESS

INTO LOCATION EE_START

LOAD STARTING ADDRESS OF 6805

 RAM INTO LOCATION MEM_START

LOAD LENGTH OF BLOCK IN BYTES

FOR READING OR WRITING INTO

 LOCATION STOR_LEN. 1 READS 1 BYTE,

0 READS NO BYTES
AN1227 – Rev.1.0

14 MOTOROLA

Application Note
Appendix C — I/O and SPI Polling Application Flowchart
 Appendix C — I/O and SPI Polling Application Flowchart

RETURN

 SET UP

ENABLE

WRITING

YES

NO
STOR_LEN = 0

STOR_LEN
DECREMENT

SEND WRITE
COMMAND

110

CALCULATE RAM

ADDRESS IN PLACE X

IF COMPILED AS

FORM 16, CLOCK OUT

THE NEXT BYTE AND

DECREMENT STOR_LEN

 PORTS

 SUEEP

WRITE

EWEN

 SEND PREVIOUSLY
 CALCULATED
 EEPROM

 ADDRESS

IF ASSEMBLED
IN FORM 16,

MAKE STOR_LEN
AN ODD NUMBER

CLOCK AND

ROTATE THE DATA

OUT OF THE 6805
PORT INTO THE

INCREMENT MEM_START

AND EE_START

?

EEPROM DI PORT
AN1227 – Rev.1.0

MOTOROLA 15

Application Note
Appendix D — SPI Interrupt WRITE Application Flowchart

SUSPI

GET 1 BYTE IF

CLEAR THE
MOVE TO PROGRAM

 (SET UP WITH SPI)

FOR POLLING

WRITE

EXECUTE
SENDADR #3

RTSEWDS

RTS

YES

NO

DESELECT THEN RESELECT THE EEPROM

RESET THE SPI INTERRUPT

ALL DONE
WRITING

?

FORM 8 OR
2 BYTES IF FORM 16

AND SEND THEM
OUT THE SPI

SET THE
MOVE TO PROGRAM

ON WR FLAGS
AN1227 – Rev.1.0

16 MOTOROLA

Application Note
Appendix E — SPI Interrupt ERASE Application Flowchart
Appendix E — SPI Interrupt ERASE Application Flowchart

CLEAR THE
MOVE TO PROGRAM

FLAG

ERASE

EXECUTE
SENDADR #3

RTS

RTS

YES

NO

DESELECT THEN RESELECT THE EEPROM

RESET THE SPI FOR SLOW SPEED

ALL DONE
ERASING

?

SUSPI
(SET UP SPI

FOR POLLING)

NO

FIRST
PASS

?

AND INTERRUPT OPERATION

EWEN
YES

SET THE

MOVE TO PROGRAM
FLAG AND RESET

THE WR FLAG
AN1227 – Rev.1.0

MOTOROLA 17

Application Note
Appendix F — SPI Interrupt Application Flowcharts

EWDS

RTS

SENDADR #4

DESELECT EEPROM

EWEN

RTS

SEND ADR #5

ERAL

RTS

SENDADR #1

DESELECT EEPROM

DESELECT THEN
RESELECT THE

EEPROM

RESET THE SPI FOR
SLOW SPEED AND

INTERRUPT OPERATION

WRAL

RTS

SENDADR #0

DESELECT THEN
RESELECT THE

EEPROM

RESET THE SPI FOR
SLOW SPEED AND

INTERRUPT OPERATION

STORE THE BYTE OR
WORD TO BE WRITTEN

TO EEPROM

SEND THE BYTE
OR WORD TO BE

WRITTEN TO EEPROM
AN1227 – Rev.1.0

18 MOTOROLA

Application Note
Appendix F — SPI Interrupt Application Flowcharts
SCALE X

SENDADR #X

RTS

IS X
GREATER

THAN 6
?

AS A POINTER

IN CMDLEN

SELECT EEPROM

IS RUN
ADDRESS

TO BE SENT
?

RTS

SEND THE

FIRST COMMAND
POINTED TO

IN CMOIST

DECREMENT

EE_START

USE EE_START

WITH BYTE 2 OF
COMMAND AND SEND

RTS

SEND THE
2-BYTE COMMAND

FROM COMMAND
LIST CMOIST

NOTE:
EEPROM IS

STILL SELECTED

NOTE:
EEPROM IS

STILL SELECTED

YES
AN1227 – Rev.1.0

MOTOROLA 19

Application Note
CK_CLR

RTS

IS
EEPROM

SELECTED
?

IS
SPI

ENABLED
?

RTS

RESET
SPI

INTERRUPT

CLI

NO

YES

NO

YES

LOOP UNTIL
EEPROM IS
DESELECTED

BY INTERRUPT
HANDLER
AN1227 – Rev.1.0

20 MOTOROLA

Application Note
Appendix G — SPI Interrupt Handler INTERRUPT Application Flowchart
Appendix G — SPI Interrupt Handler INTERRUPT Application Flowchart

SPI

IS
EEPROM

SELECTED
?

READ
SPI INPUT
TO SEE IF

READY

RELOAD
SPI

WITH 0

YES

NOT

YES

RTI

DO DEFAULT
SPI

ROUTINE

RESEND

WRITE

DESELECT
EEPROM

MORE

TO PROGRAM

?

ERASE

OR WRITE

?

RTI

RTI

RTI

RESEND

ERASE

RELOAD
SPI

WITH 0

SET UP
ALTERNATE

SPI
FUNCTION

SEND FIRST
DATA OF THAT

FUNCTION

READY

NO

READY

NO

YES

ERASE

WRITE
AN1227 – Rev.1.0

MOTOROLA 21

Application Note
Appendix H — I/O Polling to EEPROM Application Source

RAM EQU $50 ; Ram space starts at $50
ROM EQU $100 ; program space starts at $0100
VECTORS EQU $1ff4 ; Reset+ interrupt vectors start at $1ff4

**
* Eeprom type and configuration switches
*
#SETNOT 9346FORM8 ; 9346 eeprom, 1 byte format.
#SETNOT 9346FORM16 ; 9346, 2 byte word format.
#SETNOT 9356FORM16 ; 9356, 2 byte word format.
#SETNOT 9366FORM16 ; 9366, 2 byte word format.

#SET AUTOERASE ; For eeproms that do not need to
; erase before writing.

#SET AUTOSEQ ; For eeproms that automatically
; sequence to the next cell when
; being read.

*
**
*
* RAM - variables
*
*
*

ORG RAM

ee_addr ds 1 ; eeprom address stored here.
mem_addr ds 1 ; Block index stored here.
block_to_go ds 1 ; Block length stored here.

data ds $ad ; Rest of data space is data to be stored.

*
* PROGRAM
*
* The main subroutines are READ, EWEN, EWDS,
* WRITE, WRAL, ERASE, and ERAL. SLACK, WAIT,
* CLOCK, and SHUFFLE support
* these.
*
* Port locations follow.
*
*

DIPORT EQU 2 ; Eeprom "DI."
DILINE EQU 6 ; portc.6, an output line.

DOPORT EQU 2 ; Eeprom "DO."
DOLINE EQU 7 ; portc.7, an input line.
AN1227 – Rev.1.0

22 MOTOROLA

Application Note
Appendix H — I/O Polling to EEPROM Application Source
CLKPORT EQU 2 ; Eeprom CLocK.
CLKLINE EQU 5 ; portc.5, an output line.

CSPORT EQU 0 ; Eeprom Chip Select.
CSLINE EQU 0 ; porta.0, an output line.

ORG ROM

***;
* WAIT - This routine delays the next command
* to the eeprom until the most recent
* write or erase has finished.
* If in a write or erase
* cycle the routine loops. One
* write or erase takes 4
* milliseconds.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - nothing
*
WAIT:

bset CSLINE,CSPORT ; Select.

brclr DOLINE,DOPORT,$; Loop here until eeprom ready.
bclr CSLINE,CSPORT ; De-select.
rts

***;
* CLOCK# - clock data in to or out of the eeprom
* using the # number of clocks.
* "D_CARE" is used to handle the
* 'don't care' clocks required of
* some commands. It is conditionally
* defined. The required number of
* 'don't care' clocks is a function of
* eeprom type and form.
* INPUTS - none
* OUTPUTS - none
* DESTROYS - nothing
*

CLOCK6: ; Clocks six clocks to the eeprom.
#IF 9366FORM16
D_CARE: ; 9366 Form 16 uses 6 don't care bits.
#ENDIF

#IF 9356FORM16
D_CARE: ; 9356 Form 16 uses 6 don't care

; bits.
#ENDIF

bset CLKLINE,CLKPORT ; Active clock.
bclr CLKLINE,CLKPORT ; Inactive clock.
AN1227 – Rev.1.0

MOTOROLA 23

Application Note
#IF 9346FORM8
D_CARE: ; 9346 Form 8 uses 5 don't care

; bits.
#ENDIF

CLOCK5: ; Clocks five clocks to the eeprom.
bset CLKLINE,CLKPORT ; Active clock.
bclr CLKLINE,CLKPORT ; Inactive clock.

#IF 9346FORM16
D_CARE: ; 9346 Form 16 uses 4 don't care

; bits.
#ENDIF

CLOCK4: ; Clocks four clocks to the eeprom.
bset CLKLINE,CLKPORT ; Active clock.
bclr CLKLINE,CLKPORT ; Inactive clock.

CLOCK3:
; Clocks three clocks to the eeprom.

bset CLKLINE,CLKPORT ; Active clock.
bclr CLKLINE,CLKPORT ; Inactive clock.

CLOCK2: ; Clocks two clocks to the eeprom.
bset CLKLINE,CLKPORT ; Active clock.
bclr CLKLINE,CLKPORT ; Inactive clock.

CLOCK: ; Clocks one clock to the eeprom.
bset CLKLINE,CLKPORT ; Active clock.
bclr CLKLINE,CLKPORT ; Inactive clock.
rts

***;
* EESEND - sends the complement of the carry
* to the eeprom and rotates the
* accumulator left through the carry.
*
* INPUTS - accumulator
* OUTPUTS - accumulator left rotated through
* carry, and one bit to the Eeprom.
* DESTROYS - nothing
*
EESEND:

bcc OPU1 ; If carry clear jump to set.
bclr DILINE,DIPORT ; If carry set clear the output to

 ; eeprom.
bra OPU0

OPU1:
bset DILINE,DIPORT ; Clear carry means set output to ;ee-

prom.
OPU0: ; Clock the complement of the carry

; eeprom.
bset CLKLINE,CLKPORT ; Active clock.
bclr CLKLINE,CLKPORT ; Inactive clock.
rola ; ready the next bit to be sent by

; rotating to carry.
rts
AN1227 – Rev.1.0

24 MOTOROLA

Application Note
Appendix H — I/O Polling to EEPROM Application Source
***;
* SENDADR - Send a 6,7, or 8 bit address to
* the serial eeprom depending on its
* type and form.
* -or-
* SENDDAT - Send 8 bits of data.
*
* INPUTS - Byte address in accumulator.
* In 16 bit format bit 0 is ignored.
* OUTPUTS - none
* DESTROYS - Accumulator
*
SENDDAT:

rola ; ready the first data bit to be
; sent by rotating to carry.

jsr EESEND ; Send data bit 7 or 15.
jsr EESEND ; Send data bit 6 or 14.
bra RTTZ

SENDADR:
coma ; Addresses are inverted twice

; before being sent!
#IF 9346FORM8

rola ; Rotate address extra bit through
; carry.

rola ; ready the first address bit to be
; sent by rotating to carry.

jsr EESEND ; Send address bit 6.
#ENDIF

#IF 9346FORM16
rola ; Rotate extra address bit through

; carry.
rola ; Rotate extra address bit through

; carry.
rola ; ready the first address bit to be

; sent by rotating to carry.
#ENDIF

#IF 9356FORM16
ora #$80 ; Set the Don't care bit.
rola ; Rotate the Don't care bit to the

; carry.
jsr EESEND ; Send 1 Don't care bit.
jsr EESEND ; Send address bit 6.

#ENDIF

#IF 9366FORM16
rola ; ready the first address bit to be

; sent by rotating to carry.
jsr EESEND ; Send address bit 7.
jsr EESEND ; Send address bit 6.
AN1227 – Rev.1.0

MOTOROLA 25

Application Note
#ENDIF

RTTZ:
jsr EESEND ; Send bit 5 or 13.
jsr EESEND ; Send bit 4 or 12.
jsr EESEND ; Send bit 3 or 11.
jsr EESEND ; Send bit 2 or 10.
jsr EESEND ; Send bit 1 or 9.
jsr EESEND ; Send bit 0 or 8.
rts

***;
* SUEEP - Set up the eeprom ports. Called
* frequently to ensure the ports are
* set up for the eeprom and so that
* other tasks can share the ports.
*
* INPUTS - none
* OUTPUTS - DDRA,DDRB
* DESTROYS - nothing
*
SUEEP:

bset CSLINE,CSPORT+4 ; Chip Select port is
bclr CSLINE,CSPORT ; output and low.
bset CLKLINE,CLKPORT+4 ; Clock is output.
bclr DOLINE,DOPORT+4 ; DO is an input.
bset DILINE,DIPORT+4 ; DI is an output.
rts

***;
* EWEN - This subroutine enables erase and write
* operations. It in effect unlocks the
* eeprom so that its cells may be
* changed.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - nothing
*
EWEN:

bset CSLINE,CSPORT ; Select the Eeprom
bset DILINE,DIPORT ; Send 1.
jsr CLOCK ; Clock it into the eeprom.
bclr DILINE,DIPORT ; Send 00.
jsr CLOCK2 ; Clock them into the eeprom.
bset DILINE,DIPORT ; Send 11.
jsr CLOCK2 ; Clock them into the eeprom.
bclr DILINE,DIPORT ; DI line low.
jsr D_CARE ; Clock the Don't care clocks.
bclr CSLINE,CSPORT ; deselect the Eeprom
rts
AN1227 – Rev.1.0

26 MOTOROLA

Application Note
Appendix H — I/O Polling to EEPROM Application Source
***;
* EWDS - This subroutine disables erase and
* write operations so that data cannot be
* inadvertently corrupted. It in effect
* locks the eeprom so that its cells
* cannot be changed.
*

* INPUTS - none
* OUTPUTS - none
* DESTROYS - nothing
*
EWDS:

bset CSLINE,CSPORT ; Select the Eeprom
bset DILINE,DIPORT ; Send 1.
jsr CLOCK ; Clock it into the eeprom.
bclr DILINE,DIPORT ; Send 0000.
jsr CLOCK4 ; Clock them into the eeprom.
bclr DILINE,DIPORT ; DI line low.
jsr D_CARE ; Clock the Don't care clocks.
bclr CSLINE,CSPORT ; deselect the Eeprom
rts

***;
* ERAL - This subroutine erases the entire
* eeprom. An erased cell will put a high
* level on the DO line when read, but
* due to inverting in READ, the result
* will arrive as 0x00 in 6805 memory.
* ERAL calls EWEN to allow erasure.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - all contents of eeprom
*
ERAL:

jsr SUEEP ; Set up the ports for the eeprom.
jsr EWEN ; Open the eeprom for writing.
bset CSLINE,CSPORT ; Select the Eeprom
bset DILINE,DIPORT ; Send 1.
jsr CLOCK ; Clock it into the eeprom.
bclr DILINE,DIPORT ; Send 00.
jsr CLOCK2 ; Clock them into the eeprom.
bset DILINE,DIPORT ; Send 1.
jsr CLOCK ; Clock it into the eeprom.
bclr DILINE,DIPORT ; Send 0.
jsr CLOCK ; Clock it into the eeprom.
jsr D_CARE ; Clock the Don't care clocks.
bclr CSLINE,CSPORT ; deselect the Eeprom
jsr WAIT ; Pause until the eeprom comes

; ready.
rts
AN1227 – Rev.1.0

MOTOROLA 27

Application Note
***;
* WRAL - In FORM8 eeproms this subroutine
* writes the byte in the accumulator to
* every byte of the Eeprom. In FORM16
* eeproms the accumulator is written to
* the most significant byte the X
* register is written to the less
* significant byte.
*
* INPUTS - Accumulator (and X for FORM16)
* OUTPUTS - none
* DESTROYS - accumulator in FORM16 applications.
*
#MACRO WRAL16

txa ; Put more significant byte into X.
jsr SENDDAT ; Send that byte to the eeprom for

; writing.
#MACROEND

WRAL:
jsr SUEEP ; Set up the ports for the eeprom.

#IFNOT AUTOERASE
jsr ERAL ; Erase and open the eeprom.

#ELSEIF
jsr EWEN ; Open the eeprom for writing.

#ENDIF
bset CSLINE,CSPORT ; Select the Eeprom
bset DILINE,DIPORT ; Send 1.
jsr CLOCK ; Clock it into the eeprom.
bclr DILINE,DIPORT ; Send 000.
jsr CLOCK3 ; Clock them into the eeprom.
bset DILINE,DIPORT ; Send 1.
jsr CLOCK ; Clock it into the eeprom.
bclr DILINE,DIPORT ; Send DI low.
jsr D_CARE ; Clock the Don't care clocks.

jsr SENDDAT ; Send a byte for writing.

#IF 9346FORM16
WRAL16 ; Send a second byte if form 16.

#ENDIF

#IF 9356FORM16
WRAL16 ; Send a second byte if form 16.

#ENDIF

#IF 9366FORM16
WRAL16 ; Send a second byte if form 16.
AN1227 – Rev.1.0

28 MOTOROLA

Application Note
Appendix H — I/O Polling to EEPROM Application Source
#ENDIF
bclr DILINE,DIPORT ; Send DI line low.
bclr CSLINE,CSPORT ; deselect the Eeprom

jsr WAIT ; <- Waits here for erasure to
; finish.

jsr EWDS ; Close the eeprom for writing.
rts

***;
* ERASE - This subroutine Erases an eight
* cell byte or 16 cell word in the
* Eeprom. The address of the cell is
* located in the accumulator. The
* accumulator is returned unchanged.
*
* INPUTS - Eeprom address for erasure in Acc.
* OUTPUTS - none
* DESTROYS - X.
*
ERASE:

tax ; Store address in X.
jsr SUEEP ; Set up the ports for the eeprom.
jsr EWEN ; Open the eeprom for writing.
bset CSLINE,CSPORT ; Select the Eeprom
bset DILINE,DIPORT ; Send 111.
jsr CLOCK3 ; Clock them into the eeprom.

jsr SENDADR ; Send the 6,7, or 8 bit address.

bclr DILINE,DIPORT ; DI line low.
bclr CSLINE,CSPORT ; deselect the Eeprom

jsr WAIT ; <- Waits here for erasure to
; finish.

txa ; Return the address to accumulator.
rts

**
* Write macros ------------------------------

#MACRO WRBYTE
ldx mem_addr ; Bring in the address pointer

; of the byte to be written.
lda ,x ; Bring the byte to be written

; into the accumulator.
incx ; Increment the address pointer.
stx mem_addr ; Update the address pointer.
jsr SENDDAT ; Send accumulator to eeprom for

; writing.
lda block_to_go ; load block length.
deca ; Decrement length and check if

; done.
AN1227 – Rev.1.0

MOTOROLA 29

Application Note
sta block_to_go ; Update block length.
#MACROEND

#MACRO INIT16
lda block_to_go ; Check for Zero length.
beq WRDONE ; Abort if Zero.
rora ; Place LS bit of address in carry.
bcc LEN_OK ; Ensure that block_to_go
rola ; starts as an even number.
inca ; increment if not.
sta block_to_go ; Update to new even value.

LEN_OK:
#MACROEND

***;
* WRITE - This subroutine Writes a block of
* eight cell bytes to the Eeprom.
* Writing starts at low memory value
* in both eeprom, ee_addr, and 6805
* memory, mem_addr, and increments
* upward as block_to_go is decremented
* downward.
*
* INPUTS - The following memory locations
* set up as follows.
* ee_addr -> contains the absolute
* address of where the
* data will start in
* the eeprom.
* mem_addr -> contains the absolute
* starting address of the
* block of memory
* to be written to eeprom.
* block_to_go -> The length of the block,
* 1 writes one byte,
* 0 writes none.
* OUTPUTS - none
* DESTROYS - ee_addr, mem_addr, block_to_go,
* Acc. and X
*
WRITE:

jsr SUEEP ; Set up the ports for the eeprom.

#IF AUTOERASE
jsr EWEN ; Open the eeprom for writing.

#ENDIF

#IF 9346FORM16
INIT16 ; Even the block to be written.

#ENDIF

#IF 9356FORM16
INIT16 ; Even the block to be written.

#ENDIF
AN1227 – Rev.1.0

30 MOTOROLA

Application Note
Appendix H — I/O Polling to EEPROM Application Source
#IF 9366FORM16
INIT16 ; Even the block to be written.

#ENDIF

WRLP:
lda ee_addr ; eeprom address to be written,
inca ; Update for the
sta ee_addr ; next address to be written.
deca ; Restore address to be written

; for this time.

#IFNOT AUTOERASE
jsr ERASE ; Erase the cell if not autoerase.

#ENDIF

bset CSLINE,CSPORT ; Select the Eeprom
bset DILINE,DIPORT ; Send 1.
jsr CLOCK ; Clock it into the eeprom.
bclr DILINE,DIPORT ; Send 0.
jsr CLOCK ; Clock it into the eeprom.
bset DILINE,DIPORT ; Send 1.
jsr CLOCK ; Clock it into the eeprom.

jsr SENDADR ; Send eeprom address to eeprom.

WRBYTE ; Send a byte to be written to the
; eeprom.

#IF 9346FORM16
WRBYTE ; Send a byte to be written to the eeprom.

#ENDIF

#IF 9356FORM16
WRBYTE ; Send a byte to be written to the

; eeprom.
#ENDIF

#IF 9366FORM16
WRBYTE ; Send a byte to be written to the

; eeprom.
#ENDIF

bclr DILINE,DIPORT ; DI low.
bclr CSLINE,CSPORT ; deselect the Eeprom

jsr WAIT ; <- Waits here until the byte
; is written.

tsta ; Acc still has block_to_go.
bne WRLP ; If not done loop again.

WRDONE:
jsr EWDS ; Close the eeprom for writing.
rts
AN1227 – Rev.1.0

MOTOROLA 31

Application Note
**
* reading - The following are used by the
* reading routine.
RECEIVE:

ldx #$8
RCVLP:

bset CLKLINE,CLKPORT ; Active clock.
bclr CLKLINE,CLKPORT ; Inactive clock.
brset DOLINE,DOPORT,RTTY; Bit from eeprom

; comes in carry.
RTTY: ; Not really a branch.

rola ; Rotate new bit from carry to
; accumulator.

decx ; decrease bit count.
bne RCVLP ; If bit count = 0 then acc has

; received byte.
coma ; Complement the whole thing, All

; bits come out of the eeprom
; complemented.

rts

#MACRO READ8
jsr RECEIVE ; read 1 byte from eeprom.
ldx block_to_go ; Check if finished.
beq NOSAVE ; Throw byte away if done.
decx ; If kept decrement the length

; counter.
stx block_to_go ; Update the block length counter.
ldx mem_addr ; Load the address to store into X.
sta ,x ; Store read byte to memory.
incx ; Increment the address pointer.
stx mem_addr ; Update the address pointer.

NOSAVE: ; Branch around storage.
#MACROEND

***;
* READ - This subroutine reads a block of
* data out of the eeprom and places it
* in a block of 6805 memory. It is used
* with eeproms that do not have the
* autosequence feature.
*
* INPUTS - The following memory locations
* set up as follows.
* ee_addr -> contains the eeprom
* address where the data
* block starts.
*
* mem_addr -> contains the absolute
* starting
* address of the 6805
* memory block
* destination.
*

AN1227 – Rev.1.0

32 MOTOROLA

Application Note
Appendix H — I/O Polling to EEPROM Application Source
* block_to_go -> The length of the block,
* 1 reads one byte,
* 0 reads none.
* OUTPUTS - a block of updated memory
* DESTROYS - ee_addr, mem_addr, block_to_go,
* Acc. and X
*
*
READ:

jsr SUEEP ; Set up the ports for the eeprom.

jsr EWDS ; Close the eeprom for writing.
RDNLP:

ldx block_to_go ; Read length of block.
beq RDNDONE ; If done exit.
bset CSLINE,CSPORT ; Select the Eeprom
bset DILINE,DIPORT ; Send 11.
jsr CLOCK2 ; Clock them into the eeprom.
bclr DILINE,DIPORT ; Send 0.
jsr CLOCK ; Clock it into the eeprom.

lda ee_addr ; Bring in eeprom address.
inca ; Update eeprom address
sta ee_addr ; for next reading.
deca ; Restore eeprom address for this

; reading.
jsr SENDADR ; send eeprom address

bclr DILINE,DIPORT ; Bring low for the extra clock
; of read cycle.

READ8 ; Read a byte out of the eeprom and
; into the accumulator.

#IF 9346FORM16
READ8 ; Read byte 2 out of the eeprom and

; into the accumulator.
#ENDIF

#IF 9356FORM16
READ8 ; Read byte 2 out of the eeprom and

; into the accumulator.
#ENDIF

#IF 9366FORM16
READ8 ; Read byte 2 out of the eeprom and

; into the accumulator.
#ENDIF

bclr CSLINE,CSPORT ; deselect the Eeprom
bra RDNLP ; Go back to see if done reading.

RDNDONE: ; All done reading.
rts

#IF AUTOSEQ
AN1227 – Rev.1.0

MOTOROLA 33

Application Note
***;
* RDAUTO - This subroutine reads a block of
* data out of the eeprom and places it in
* a block of 6805 memory. It functions
* faster than the READ routine above and
* can only be used with the newer eeproms
* that automatically cycle to the next
* register, the "autosequence" or
* "autoincrement" feature.
*
* INPUTS - The following memory locations
* set up as follows.
* ee_addr -> contains the eeprom
* address where the data
* block starts.
*
* mem_addr -> contains the absolute
* starting address of the 6805
* memory block destination.
*
* block_to_go -> The length of the block,
* 1 writes one byte, 0 writes
* none.
* OUTPUTS - a block of updated memory
* DESTROYS - ee_addr, mem_addr, block_to_go,
* Acc. and X.
*
* USES - "RECEIVE" which is defined above.
*
RDAUTO:

jsr SUEEP ; Set up the ports for the eeprom.

jsr EWDS ; Close the eeprom for writing.
bset CSLINE,CSPORT ; Select the Eeprom
bset DILINE,DIPORT ; Send 11.
jsr CLOCK2 ; Clock them into the eeprom.
bclr DILINE,DIPORT ; Send 0.
jsr CLOCK ; Clock it into the eeprom.

lda ee_addr ; Bring in eeprom address.
jsr SENDADR ; Send it out.

bclr DILINE,DIPORT ; Bring low for the extra clock
; of read cycle.

RDALP:
ldx block_to_go ; Bring in length left to send.
tstx ; Check for done.
beq RDADONE ; If done exit.
decx ; Decrement length left.
stx block_to_go ; Update length left.
jsr RECEIVE ; Receive a byte from the eeprom.
ldx mem_addr ; Load in the place in memory to

; put the byte.
AN1227 – Rev.1.0

34 MOTOROLA

Application Note
Appendix H — I/O Polling to EEPROM Application Source
sta ,x ; <- Change store command here if
; memory is above $100.

incx ; increment the memory pointer.
stx mem_addr ; Update the memory pointer.
bra RDALP ; Loop back until done.

RDADONE:
bclr CSLINE,CSPORT ; deselect the Eeprom
rts

#ENDIF

***;
* START - Sample calling of routines.

BSTART EQU 0 ; Start eeprom addresses for these
; examples.

BL_LEN EQU $80 ; Length of block for these
; examples.

STARTRD:
lda #BSTART ; Start reading eeprom at

; address BSTART.
sta ee_addr ; Place first eeprom address in ;

; ee_addr.
lda #data ; Load in start address of receiving

; memory.
sta mem_addr ; Place start address in mem_addr.
lda #BL_LEN ; Length of block to read.
sta block_to_go ; Store block length.

#IF AUTOSEQ
jsr RDAUTO ; Read the eeprom using

; autosequencing.
#ELSEIF

jsr READ ; Read the W/O Autosequencing
; eeprom.

#ENDIF
bra $; jump to this location

; (do nothing else).

STARTWR:
lda #BSTART ; Start writing eeprom at

; address BSTART.
sta ee_addr ; Place first eeprom address in

; ee_addr.
lda #data ; Load in start address of block in

; memory.
sta mem_addr ; Place start address in mem_addr.
lda #BL_LEN ; Length of block to write.
sta block_to_go ; Store block length.
jsr WRITE ; WRITE the block.
bra $; (do nothing else).

STARTERAL:
jsr ERAL ; Erases the entire serial eeprom

LOOP3:
bra $; (do nothing else).
AN1227 – Rev.1.0

MOTOROLA 35

Application Note
STARTWRL:
lda #$a5 ; (write $a5 to form 8 eeprom.)

#IF 9346FORM16
ldx #$c3 ; write $a5c3 to form 16 eeprom.

#ENDIF

#IF 9356FORM16
ldx #$c3 ; write $a5c3 to form 16 eeprom.

#ENDIF

#IF 9366FORM16
ldx #$c3 ; write $a5c3 to form 16 eeprom.

#ENDIF
jsr WRAL ; 0xa5 to all memory locations in

; the eeprom.
* bra $; (do nothing else).

STARTERSE:
lda #$05 ; Bring in 5 as location to be

; erased.
jsr ERASE ; Erases memory location 5 of the

; eeprom.
bra $; (do nothing else).

ORG VECTORS

VECSPI: fdb STARTRD ; SPI VECTOR
VECSCI: fdb STARTRD ; SCI VECTOR
VECTMR: fdb STARTRD ; TIMER VECTOR
VECIRQ: fdb STARTRD ; IRQ VECTOR
VECSWI: fdb STARTRD ; SWI VECTOR
VECRST: fdb STARTRD ; START VECTOR
AN1227 – Rev.1.0

36 MOTOROLA

Application Note
Appendix I — SPI Polling to EEPROM Application Source
Appendix I — SPI Polling to EEPROM Application Source

RAM EQU $50 ; RAM starts at $50
ROM EQU $100 ; ROM Starts at $100
VECTORS EQU $1ff4 ; Reset and interrupt vectors start

; at $1ff4

**
* Eeprom type and configuration switches
*
#SETNOT 9346FORM8 ; 9346 eeprom, 1 byte format.
#SETNOT 9346FORM16 ; 9346, 2 byte word format.
#SETNOT 9356FORM16 ; 9356, 2 byte word format.
#SET 9366FORM16 ; 9366, 2 byte word format.

#SET AUTOERASE ; For eeproms that do not need to
; erase before writing.

#SET AUTOSEQ ; For eeproms that automatically
; sequence to the next cell when
; being read.

**
* RAM - variables
*

ORG RAM

ee_addr ds 1 ; eeprom address stored here.
mem_addr ds 1 ; Block index stored here.
block_to_go ds 1 ; Block length stored here.

data ds $ad ; Rest of data space is data to be stored.

*
* PROGRAM
*
* The main subroutines are READ, EWEN, EWDS,
* WRITE, WRAL, ERASE, and ERAL. SLACK, WAIT,
* CLOCK, and SHUFFLE support
* these.
*
* Port locations follow.
*
*
CSPORT EQU 0 ; Eeprom Chip Select.
CSLINE EQU 5 ; porta.5, an output line.

SPCR EQU $0a ; Location of SPI control reg.
SPSR EQU $0b ; Location of SPI status reg.
SPIDAT EQU $0c ; Location of SPI data reg.

ORG ROM
AN1227 – Rev.1.0

MOTOROLA 37

Application Note
**
* Command set

#if 9346FORM8 ; Command set for 9346 in the byte wide
; form.

MASK equ %01111111 ; Mask of valid address bits
READ1 equ %00000110 ; READ command padded to 16 bits.
READ2 equ %00000000
EWEN1 equ %00000010 ; Write enable command padded to 16 bits.
EWEN2 equ %01100000
EWDS1 equ %00000010 ; Write protect command padded to 16 bits.
EWDS2 equ %00000000
WRITE1 equ %00000010 ; Write command padded to 16 bits.
WRITE2 equ %10000000
WRAL1 equ %00000010 ; Write all command padded to 16 bits.
WRAL2 equ %00100000
ERASE1 equ %00000011 ; Erase cell command padded to 16 bits.
ERASE2 equ %10000000
ERAL1 equ %00000010 ; Erase all command padded to 16 bits.
ERAL2 equ %01000000
#endif

#if 9346FORM16 ; Command set for 9346 in the 16 bit wide
; form.

MASK equ %00111111 ; Mask of valid address bits
READ1 equ %00000011 ; READ command padded to 16 bits.
READ2 equ %00000000
EWEN1 equ %00000001 ; Write enable command padded to 16 bits.
EWEN2 equ %00110000
EWDS1 equ %00000001 ; Write protect command padded to 16 bits.
EWDS2 equ %00000000
WRITE1 equ %00000001 ; Write command padded to 16 bits.
WRITE2 equ %01000000
WRAL1 equ %00000001 ; Write all command padded to 16 bits.
WRAL2 equ %00010000
ERASE1 equ %00000001 ; Erase cell command padded to 16 bits.
ERASE2 equ %11000000
ERAL1 equ %00000001 ; Erase all command padded to 16 bits.
ERAL2 equ %00100000
#endif

#if 9356FORM16 ; Command set for 9356 in the 16 bit wide
; form.

MASK equ %01111111 ; Mask of valid address bits
READ1 equ %00001100 ; READ command padded to 16 bits.
READ2 equ %00000000
EWEN1 equ %00000100 ; Write enable command padded to 16 bits.
EWEN2 equ %11000000
EWDS1 equ %00000100 ; Write protect command padded to 16 bits.
EWDS2 equ %00000000
WRITE1 equ %00000101 ; Write command padded to 16 bits.
WRITE2 equ %00000000
WRAL1 equ %00000100 ; Write all command padded to 16 bits.
WRAL2 equ %01000000
ERASE1 equ %00000111 ; Erase cell command padded to 16 bits.
AN1227 – Rev.1.0

38 MOTOROLA

Application Note
Appendix I — SPI Polling to EEPROM Application Source
ERASE2 equ %00000000
ERAL1 equ %00000100 ; Erase all command padded to 16 bits.
ERAL2 equ %10000000
#endif

#if 9366FORM16 ; Command set for 9366 in the 16 bit wide
; form.

MASK equ %11111111 ; Mask of valid address bits
READ1 equ %00001100 ; READ command padded to 16 bits.
READ2 equ %00000000
EWEN1 equ %00000100 ; Write enable command padded to 16 bits.
EWEN2 equ %11000000
EWDS1 equ %00000100 ; Write protect command padded to 16 bits.
EWDS2 equ %00000000
WRITE1 equ %00000101 ; Write command padded to 16 bits.
WRITE2 equ %00000000
WRAL1 equ %00000100 ; Write all command padded to 16 bits.
WRAL2 equ %01000000
ERASE1 equ %00000111 ; Erase cell command padded to 16 bits.
ERASE2 equ %00000000
ERAL1 equ %00000100 ; Erase all command padded to 16 bits.
ERAL2 equ %10000000
#endif

***;
* WAIT - This routine delays the next command
* to the eeprom until the most recent
* write or erase has finished.
* If in a write or erase
* cycle the routine loops. One
* write or erase takes 4
* milliseconds.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - nothing
*
WAIT:

bset CSLINE,CSPORT ; Select.

clr SPIDAT ; Send 8 more don't care zeros.
brclr 7,SPSR,$; Loop here until eeprom ready.
tst SPIDAT ; Is eeprom ready? Zero if not.
beq WAIT ; if not ready send more clocks and

; zeros.
bclr CSLINE,CSPORT ; De-select eeprom is ready.
rts
AN1227 – Rev.1.0

MOTOROLA 39

Application Note
***;
* IDIO - This routine handles the idiosyncratic
* requirements of the particular test
* hardware used. It may be deleted
* in most applications
IDIO:

bset 4,CSPORT+4 ; Output port 0.4
bset 4,CSPORT ; Pulls up the "SS" line.
bset 7,CSPORT+4 ; Output port 0.7
bset 7,CSPORT ; Pulls up the "RESET" line.
rts

***;
* SUSPI - Sets up the eeprom IO port and the
* SPI to communicate with the eeprom
* by polling.
* Other tasks can share the SPI.
*
* INPUTS - none
* OUTPUTS - DDRA,SPI
* DESTROYS - Accumulator.
*
SUSPI:

bset CSLINE,CSPORT+4 ; Chip select line is output.
bclr CSLINE,CSPORT ; Chip select is low de-selected.
lda #%01010000 ; SPI enabled phase 0.
sta SPCR ; SPI control register, SPI set up.
rts

***;
* EESEND - sends a byte to the eeprom through
* the SPI.
*
* INPUTS - accumulator, send to SPI
* OUTPUTS - accumulator, response from SPI
*
* DESTROYS - Accumulator
*
EESEND:

sta SPIDAT ; Accumulator goes out the SPI.
brclr 7,SPSR,$; Should loop 3 times.
lda SPIDAT ; What comes out of the SPI is

; placed in the accumulator.
rts
AN1227 – Rev.1.0

40 MOTOROLA

Application Note
Appendix I — SPI Polling to EEPROM Application Source
***;
* EWEN - This subroutine enables erase and write
* operations. It in effect unlocks the
* eeprom so that its cells may be
* changed.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - nothing
*
EWEN:

jsr SUSPI ; Ensure that the SPI is set up.
lda #EWEN1 ; Load first part of EWEN command.
bset CSLINE,CSPORT ; Select the Eeprom
jsr EESEND ; Send the command out the SPI.
lda #EWEN2 ; Load the second part of EWEN

; command.
jsr EESEND ; Send the command out the SPI.
bclr CSLINE,CSPORT ; deselect the Eeprom
rts

***;
* EWDS - This subroutine disables erase and
* write operations so that data cannot be
* inadvertently corrupted. It in effect
* locks the eeprom so that its cells
* cannot be changed.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - nothing
*
EWDS:

jsr SUSPI ; Ensure that the SPI is set up.
lda #EWDS1 ; Load first part of the EWDS

; command.
bset CSLINE,CSPORT ; Select the Eeprom
jsr EESEND ; Send EWDS1 out the SPI.
lda #EWDS2 ; Load second part of the EWDS

; command.
jsr EESEND ; Send EWDS2 out the SPI.
bclr CSLINE,CSPORT ; deselect the Eeprom
rts
AN1227 – Rev.1.0

MOTOROLA 41

Application Note
***;
* ERAL - This subroutine erases the entire
* eeprom. An erased 93x6 cell will
* put a high level on the DO line when
* read, but due to inverting in READ,
* the result will arrive as 0x00 in
* 6805 memory. ERAL calls EWEN to
* allow erasure.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - all contents of eeprom
*
ERAL:

jsr SUSPI ; Ensure that the SPI is set up.
jsr EWEN ; "OPEN" the eeprom for writing and

; erasure.
lda #ERAL1 ; Load the first part of the ERAL

; command.
bset CSLINE,CSPORT ; Select the Eeprom
jsr EESEND ; Send ERAL1 out the SPI.
lda #ERAL2 ; Load the second part of the ERAL

; command.
jsr EESEND ; Send ERAL2 out the SPI.
bclr CSLINE,CSPORT ; deselect the Eeprom
jsr WAIT ; Wait until eeprom is ready.
rts

***;
* WRAL - In FORM8 eeproms this subroutine
* writes the byte in the accumulator to
* every byte of the Eeprom. In FORM16
* eeproms the accumulator is written to
* the most significant byte the X
* register is written to the less
* significant byte.
*
* INPUTS - Accumulator (and X for FORM16)
* OUTPUTS - none
* DESTROYS - accumulator, ee_addr, and mem_addr .
*

#MACRO WRAL16
lda mem_addr ; Load Second byte of word to be

; written.
jsr EESEND ; Send that second byte out the SPI

; to eeprom.
#MACROEND

WRAL:
sta ee_addr ; Store low order byte in ee_addr.
stx mem_addr ; Store high order byte in mem_addr.
jsr SUSPI ; Ensure that the SPI is set up.
AN1227 – Rev.1.0

42 MOTOROLA

Application Note
Appendix I — SPI Polling to EEPROM Application Source
#IFNOT AUTOERASE
jsr ERAL ; if not autoerase, erase the eeprom

; first.
#ELSEIF

jsr EWEN ; if an autoerase eeprom open it for
; writing.

#ENDIF
lda #WRAL1 ; Load Write all #1 command.
bset CSLINE,CSPORT ; Select the Eeprom
jsr EESEND ; Send Write All command #1 out the

; SPI.
lda #WRAL2 ; Load Write All #2 command.
jsr EESEND ; Send Write all command #2 out the

; SPI.
lda ee_addr ; Load the low byte to be written.
jsr EESEND ; Send it out the SPI.

#IF 9346FORM16
WRAL16 ; Send out the high byte if a form

; 16 eeprom.
#ENDIF

#IF 9356FORM16
WRAL16 ; Send out the high byte if a form

; 16 eeprom.
#ENDIF

#IF 9366FORM16
WRAL16 ; Send out the high byte if a form

; 16 eeprom.
#ENDIF

bclr CSLINE,CSPORT ; deselect the Eeprom

jsr WAIT ; <- Waits here for erasure to
; finish.

jsr EWDS ; "Close" or write protect the
; eeprom.

rts
AN1227 – Rev.1.0

MOTOROLA 43

Application Note
***;
* ERASE - This subroutine Erases an eight
* cell byte or 16 cell word in the
* Eeprom. The address of the cell is
* located in the accumulator. The
* accumulator is returned unchanged.
*
* INPUTS - Eeprom address for erasure in Acc.
* OUTPUTS - none
* DESTROYS - X
*

ERASE:
jsr SUSPI ; Ensure that the SPI is set up.
jsr EWEN ; Open the eeprom for writing.
lda #ERASE1 ; Load with Erase #1 command.
bset CSLINE,CSPORT ; Select the Eeprom
jsr EESEND ; Send Erase #1 command out SPI.
txa ; Copy address to X for storage.
and #MASK ; AND address with mask.
ora #ERASE2 ; OR address with ERASE #2 command.
jsr EESEND ; Send out SPI.

bclr CSLINE,CSPORT ; deselect the Eeprom

jsr WAIT ; <- Waits here for erasure to
; finish.

txa ; Return eeprom address to ;
; accumulator.

rts

**
* Write macros ------------------------------

#MACROWRBYTE
ldx mem_addr ; Load pointer reg with address

; of byte to be sent next.
lda ,x ; Bring that byte into accumulator.
incx ; Increment pointer for next byte.
stx mem_addr ; Update with address of next byte

; to be sent.
jsr EESEND ; Send byte out SPI.
lda block_to_go ; Load the length left to be sent.
deca ; Dec length and check if done.
sta block_to_go ; Update the length of block to be

; sent.
#MACROEND

#MACRO INIT16
lda block_to_go ; Load the length left to be sent.
beq WRDONE ; If Zero finish.
rora ; Place least significant bit in ; carry.
bcc LEN_OK ; Ensure that block_to_go
rola ; starts as an even number.
inca ; If not increment to an even ; number.
sta block_to_go ; Update to the new even number.

LEN_OK:
#MACROEND
AN1227 – Rev.1.0

44 MOTOROLA

Application Note
Appendix I — SPI Polling to EEPROM Application Source
***;
* WRITE - This subroutine Writes a block of
* eight cell bytes to the Eeprom.
*
* INPUTS - The following memory locations
* set up as follows.
* ee_addr -> contains the absolute
* address of where the
* data will start in
* the eeprom.
* mem_addr -> contains the absolute
* starting address of the
* block of memory
* to be written to eeprom.
* block_to_go -> The length of the block,
* 1 writes one byte,
* 0 writes none.
* OUTPUTS - none
* DESTROYS - ee_addr, mem_addr , block_to_go,
* Acc. and X
*
WRITE:

jsr SUSPI ; Ensure that the SPI is set up.

#IF AUTOERASE
jsr EWEN ; Open the eeprom for writing.

#ENDIF

#IF 9346FORM16
INIT16 ; Adjust the length of the block to

; be sent.
#ENDIF

#IF 9356FORM16
INIT16 ; Adjust the length of the block to

; be sent.
#ENDIF

#IF 9366FORM16
INIT16 ; Adjust the length of the block to

; be sent.
#ENDIF

WRLP: ; <- This is where the loop starts
; for repetitive writes to the ; eeprom

; eeprom until the block to be
; written is zero.

#IFNOT AUTOERASE
lda ee_addr ; eeprom address to be written,
jsr ERASE ; Erase the cell if not autoerase.

#ENDIF

lda #WRITE1 ; Load the first part of the write
; command.

bset CSLINE,CSPORT ; Select the Eeprom
AN1227 – Rev.1.0

MOTOROLA 45

Application Note
jsr EESEND ; Send the first part of the write
; command out SPI.

lda ee_addr ; eeprom address to be written.
inca ; Increment it for next byte.
sta ee_addr ; Update eeprom address to be

; written.
deca ; Decrement eeprom address to be

; written for this byte.
and #MASK ; AND with address mask for this

; type and form of eeprom.
ora #WRITE2 ; OR with Write command #2.
jsr EESEND ; Send address and WRITE2 out SPI.

WRBYTE ; Send a byte to be written out SPI.

#IF 9346FORM16
WRBYTE ; If 16 bit form Send the second

; byte to be written out SPI.
#ENDIF

#IF 9356FORM16
WRBYTE ; If 16 bit form Send the second

; byte to be written out SPI.
#ENDIF

#IF 9366FORM16
WRBYTE ; If 16 bit form Send the second

; byte to be written out SPI.
#ENDIF

bclr CSLINE,CSPORT ; deselect the Eeprom

jsr WAIT ; <- Waits here until the byte
; is written.

tsta ; Acc still has block_to_go.
bne WRLP ; Loop until the block left is zero.

WRDONE: ; All done writing.
jsr EWDS ; "Close" or Write protect the

; eeprom
rts

**
* reading - The following is used to read
* form 16 configured eeproms.
*
#MACRO RD_BYTE

jsr EESEND ; Read a byte from the eeprom
; through the SPI.

ldx block_to_go ; Load the length left to read.
beq NOSAVE ; Only store if length is left.
decx ; Decrement the block counter.
stx block_to_go ; Update the block to go length.
ldx mem_addr ; Load location where the byte from

; eeprom is to go.
sta ,x ; Store the byte from eeprom to

; memory.
AN1227 – Rev.1.0

46 MOTOROLA

Application Note
Appendix I — SPI Polling to EEPROM Application Source
incx ; Increment the location for the
; next byte.

stx mem_addr ; Update the memory address for the
; next read.

NOSAVE: ; jump to here if end of block
; occurs.

#MACROEND

***;
* READ - This subroutine reads a block of
* data out of the eeprom and places it
* in a block of 6805 memory. It has the
* autosequence feature as an option.
*
* INPUTS - The following memory locations
* set up as follows.
* ee_addr -> contains the eeprom
* address where the data
* block starts.
*
* mem_addr -> contains the absolute
* starting
* address of the 6805
* memory block
* destination.
*
* block_to_go -> The length of the block,
* 1 reads one byte,
* 0 reads none.
* OUTPUTS - a block of updated memory
* DESTROYS - ee_addr, mem_addr, block_to_go,
* Acc. and X
*
*
READ:

jsr SUSPI ; Ensure that the SPI is set up.

jsr EWDS ; Ensure that the eeprom is write
; protected.

RDNLP:
ldx block_to_go ; Load in the length of block to

; read.
tstx ; Test for a zero length block.
beq RDNDONE ; Test length to see if done.
decx ; Decrement the length of the block.
stx block_to_go ; Update block length for next loop.

#if 9366FORM16
lda ee_addr ; Bring in eeprom address
lsla ; Place MS Bit in carry.
clra ; Zero out the accumulator.
rola ; MS Bit of ee_address is LS Bit of

; accumulator.
ora #READ1 ; Overlay first part of read

; command.
AN1227 – Rev.1.0

MOTOROLA 47

Application Note
#ELSEIF
lda #READ1 ; Load the first part of read

; command.
#ENDIF

tst SPSR ; clean out the SPI receiver.
tst SPIDAT ; Ensure SPI has no old data in it.
bset CSLINE,CSPORT ; Select the Eeprom
jsr EESEND ; Send READ1 command.
lda ee_addr ; Load in eeprom address.
and #MASK ; Mask in only valid address bits.
lsla ; Shift left to create dummy clock

; idiosyncratic to READ.
ora #READ2 ; OR address with READ#2.
jsr EESEND ; Send READ2 out the SPI.
lda ee_addr ; Load accumulator with eeprom

; address.
inca ; Increment eeprom address for next

; pass.
sta ee_addr ; Update eeprom address.
clra ; Clear the accumulator to read

; eeprom.
jsr EESEND ; Read first byte.
ldx mem_addr ; Load X with the location to store

; read byte.
sta ,x ; Store the read byte.
incx ; Increment X in preparation for

; next read.
stx mem_addr ; Update the memory address.

#IF AUTOSEQ
WRLOOP: ; Tighter loop for autosequence

; eeproms.
RD_BYTE ; Read a byte from the eeprom +

; Store it.
bne WRLOOP ; If block length = 0, all done,

; else loop.
bclr CSLINE,CSPORT ; deselect the Eeprom
bra RDNDONE ; Branch to out.

#ENDIF

#IF 9346FORM16
RD_BYTE ; Read a byte from the eeprom +

; Store it.
#ENDIF

#IF 9356FORM16
RD_BYTE ; Read a byte from the eeprom +

; Store it.
#ENDIF

#IF 9366FORM16
RD_BYTE ; Read a byte from the eeprom +

; Store it.
AN1227 – Rev.1.0

48 MOTOROLA

Application Note
Appendix I — SPI Polling to EEPROM Application Source
#ENDIF
bclr CSLINE,CSPORT ; deselect the Eeprom
bra RDNLP ; Branch to set up command and

; address necessary
; for non autosequenced eeproms.

RDNDONE: ; Branch to here when all done.
rts

***;
* START - Sample calling of routines.
*
BSTART EQU 0 ; Start eeprom addresses for these

; examples.
BL_LEN EQU $80 ; Length of block for these

; examples.

STARTRD:
jsr IDIO ; ensure the ports are set up

; for this particular test set up.
lda #BSTART ; Start reading eeprom at

; address BSTART.
sta ee_addr ; Place first eeprom address in ; ee_addr.
lda #data ; Load in start address of receiving

; memory.
sta mem_addr ; Place start address in mem_addr.
lda #BL_LEN ; Length of block to read in.
sta block_to_go ; Store block length.
jsr READ ; Read the eeprom.
bra $; jump to this location

; (do nothing else).

STARTWR:
jsr IDIO ; ensure the ports are set up

; for this particular test set up.
lda #data ; Load in start address of receiving

; memory.
sta mem_addr ; Place start address in mem_addr.
lda #BSTART ; Start writing eeprom with bytes at

; address BSTART and up.
sta ee_addr ; Place first eeprom address in

; ee_addr.
lda #BL_LEN ; Length of block to write to

; eeprom.
sta block_to_go ; Store block length.
jsr WRITE ; Write the block to the eeprom.
bra $; jump to this location

; (do nothing else).

STARTERAL:
jsr IDIO ; ensure the ports are set up

; for this particular test set up.
jsr ERAL ; Erases the entire serial eeprom
bra $; jump to this location

; (do nothing else).
AN1227 – Rev.1.0

MOTOROLA 49

Application Note
STARTWRL:
jsr IDIO ; ensure the ports are set up

; for this particular test set up.
lda #$a5 ; (write $a5 to form 8 eeprom.)

#IF 9346FORM16
ldx #$c3 ; write $a5c3 to form 16 eeprom.

#ENDIF

#IF 9356FORM16
ldx #$c3 ; write $a5c3 to form 16 eeprom.

#ENDIF

#IF 9366FORM16
ldx #$c3 ; write $a5c3 to form 16 eeprom.

#ENDIF
jsr WRAL ; 0xa5 to all memory locations in

; the eeprom.
* bra $; jump to this location

; (do nothing else).

STARTERSE:
lda #$05 ; Load A with the eeprom address to

; be erased.
jsr ERASE ; Erases memory location 5 of the

; eeprom.
bra $; jump to this location

; (do nothing else).

ORG VECTORS

VECSPI: fdb STARTRD ; SPI VECTOR
VECSCI: fdb STARTRD ; SCI VECTOR
VECTMR: fdb STARTRD ; TIMER VECTOR
VECIRQ: fdb STARTRD ; IRQ VECTOR
VECSWI: fdb STARTRD ; SWI VECTOR
VECRST: fdb STARTRD ; START VECTOR
AN1227 – Rev.1.0

50 MOTOROLA

Application Note
Appendix J — SPI to EEPROM Using Interrupt Application Source
Appendix J — SPI to EEPROM Using Interrupt Application Source

*~~~~~~~~~~~~~~~MACRO~~~FOR~~WRITING~~~~~~~~~~~~~~~~~~~~~~~~~
* This writes a block of memory starting at absolute address
* "RAM_start" of length "length" to the eeprom starting at
* its absolute address "ee_start."

#MACRO WRBLOCK ee_start,RAM_start,length
jsr CK_CLR ; Ensure the eeprom is free.
lda #%2 ; Get Start of block in memory.
sta mem_addr ; Place memory start in proper

; place.
lda #%1 ; Get Start of block in destination

; eeprom.
sta ee_addr ; Place eeprom destination start in

; proper place.
lda #%3 ; Get the full block length.
sta block_to_go ; Place Block length in proper

; place.
jsr WRITE ; Write block from memory to eeprom.

#MACROEND

RAM EQU $50 ; RAM starts at $50
ROM EQU $100 ; ROM starts at $100
VECTORS EQU $1ff4 ; RESET and interrupt vectors start

; at $1ff4.

**
* Eeprom type and configuration switches
*
#SETNOT 9346FORM8 ; 9346 eeprom, 1 byte format.
#SETNOT 9346FORM16 ; 9346, 2 byte word format.
#SETNOT 9356FORM16 ; 9356, 2 byte word format.
#SET 9366FORM16 ; 9366, 2 byte word format.
*
* Use with AUTOERASE eeproms only.
*
#SETNOT AUTOSEQ ; For eeproms that automatically

; sequence to the next cell when
; being read.

**
*
* RAM - variables
*
*
*

ORG RAM
ee_addr ds 1 ; eeprom address stored here.
mem_addr ds 1 ; Block index stored here.
block_to_go ds 1 ; Block length stored here.
flag ds 1 ; Flags for eeprom status.
AN1227 – Rev.1.0

MOTOROLA 51

Application Note
* Two flags are usually used
WR equ 0 ; Set for Write, reset for erase.
m_to_pr equ 1 ; More to program flag.
data ds $ad ; Rest of data space is data to be

; stored.

ORG ROM

**
* Command set
#if 9346FORM8 ; Command set for 9346 in the byte

; wide form.
MASK equ %01111111 ; Mask of valid address bits
READ1 equ %00000110 ; READ command padded to 16 bits.
READ2 equ %00000000
EWEN1 equ %00000010 ; Write enable command padded to 16

; bits.
EWEN2 equ %01100000
EWDS1 equ %00000010 ; Write protect command padded to 16

; bits.
EWDS2 equ %00000000
WRITE1 equ %00000010 ; Write command padded to 16 bits.
WRITE2 equ %10000000
WRAL1 equ %00000010 ; Write all command padded to 16

; bits.
WRAL2 equ %00100000
ERASE1 equ %00000011 ; Erase cell command padded to 16

; bits.
ERASE2 equ %10000000
ERAL1 equ %00000010 ; Erase all command padded to 16

; bits.
ERAL2 equ %01000000
#endif

#if 9346FORM16 ; Command set for 9346 in the 16 bit
; wide form.

MASK equ %00111111 ; Mask of valid address bits
READ1 equ %00000011 ; READ command padded to 16 bits.
READ2 equ %00000000
EWEN1 equ %00000001 ; Write enable command padded to 16

; bits.
EWEN2 equ %00110000
EWDS1 equ %00000001 ; Write protect command padded to 16

; bits.
EWDS2 equ %00000000
WRITE1 equ %00000001 ; Write command padded to 16 bits.
WRITE2 equ %01000000
WRAL1 equ %00000001 ; Write all command padded to 16

; bits.
WRAL2 equ %00010000
ERASE1 equ %00000001 ; Erase cell command padded to 16

; bits.
ERASE2 equ %11000000
ERAL1 equ %00000001 ; Erase all command padded to 16

; bits.
AN1227 – Rev.1.0

52 MOTOROLA

Application Note
Appendix J — SPI to EEPROM Using Interrupt Application Source
ERAL2 equ %00100000
#endif

#if 9356FORM16 ; Command set for 9356 in the 16 bit
; wide form.

MASK equ %01111111 ; Mask of valid address bits
READ1 equ %00001100 ; READ command padded to 16 bits.
READ2 equ %00000000
EWEN1 equ %00000100 ; Write enable command padded to 16

; bits.
EWEN2 equ %11000000
EWDS1 equ %00000100 ; Write protect command padded to 16

; bits.
EWDS2 equ %00000000
WRITE1 equ %00000101 ; Write command padded to 16 bits.
WRITE2 equ %00000000
WRAL1 equ %00000100 ; Write all command padded to 16

; bits.
WRAL2 equ %01000000
ERASE1 equ %00000111 ; Erase cell command padded to 16

; bits.
ERASE2 equ %00000000
ERAL1 equ %00000100 ; Erase all command padded to 16

; bits.
ERAL2 equ %10000000
#endif

#if 9366FORM16 ; Command set for 9366 in the 16 bit
; wide form.

MASK equ %11111111 ; Mask of valid address bits
READ1 equ %00001100 ; READ command padded to 16 bits.
READ2 equ %00000000
EWEN1 equ %00000100 ; Write enable command padded to 16

; bits.
EWEN2 equ %11000000
EWDS1 equ %00000100 ; Write protect command padded to 16

; bits.
EWDS2 equ %00000000
WRITE1 equ %00000101 ; Write command padded to 16 bits.
WRITE2 equ %00000000
WRAL1 equ %00000100 ; Write all command padded to 16

; bits.
WRAL2 equ %01000000
ERASE1 equ %00000111 ; Erase cell command padded to 16

; bits.
ERASE2 equ %00000000
ERAL1 equ %00000100 ; Erase all command padded to 16

; bits.
ERAL2 equ %10000000
#endif
AN1227 – Rev.1.0

MOTOROLA 53

Application Note
CMDLST ; Command list.
DB WRAL1 ; WRAL Write All is #0 in the

; command list.
DB WRAL2
DB ERAL1 ; ERAL Erase All is #1 in the

; command list.
DB ERAL2
DB ERASE1 ; ERASE one cell is #2 in the

; command list.
DB ERASE2
DB WRITE1 ; WRITE a block of cells is #3 in
DB WRITE2 ; the command list.
DB EWDS1 ; EWDS Write protect or close is #4
DB EWDS2 ; in the command list.
DB EWEN1 ; EWEN Enable write or open is #5 in
DB EWEN2 ; the command list.

*
* PROGRAM
*
* The main subroutines are READ, EWEN, EWDS,
* WRITE, WRAL, ERASE, and ERAL.
*

CSPORT EQU 0 ; Eeprom Chip Select.
CSLINE EQU 5 ; porta.5, an output line.

SPCR EQU $0a ; Location of SPI control reg.
SPSR EQU $0b ; Location of SPI status reg.
SPIDAT EQU $0c ; Location of SPI data reg.

SPIIRON EQU %11010011 ; SPI and interrupt on
; with lowest possible
; baud rate.

***;
* SETUP - This routine initializes the flags
* to the preset inactive condition.
*
SETUP:

bclr m_to_pr,flag ; Initialize to no more to
; program into the eeprom.

bclr WR,flag ; Not writing at initialization.
rts
AN1227 – Rev.1.0

54 MOTOROLA

Application Note
Appendix J — SPI to EEPROM Using Interrupt Application Source
***;
* IDIO - This routine handles the idiosyncratic
* requirements of the particular test
* hardware used. It may be deleted
* in most applications
IDIO:

bset 4,CSPORT+4 ; Output in this application.
bset 4,CSPORT ; Pulls up the "SS" line.
bset 7,CSPORT+4 ; Output in this application.
bset 7,CSPORT ; Pulls up the "RESET" line.
rts

***;
* SUSPI - Sets up the eeprom IO port and the
* SPI to communicate with the eeprom
* by polling.
* Other tasks can share the SPI.
*
* INPUTS - none
* OUTPUTS - DDRA,SPI
* DESTROYS - Accumulator.
*
SUSPI:

bset CSLINE,CSPORT+4 ; Output for Chip Select.
bclr CSLINE,CSPORT ; Initialize to not selected.
lda #%01010000 ; SPI enabled phase 0.
sta SPCR ; Set up the SPI to phase 0.
rts

***;
* SUSPIR - Sets up the SPI to communicate
* with the eeprom with interrupts.
* This is used to determine when the
* eeprom is ready.
*
* INPUTS - none
* OUTPUTS - DDRA,SPI
* DESTROYS - Accumulator.
*
SUSPIR:

lda #SPIIRON ; SPI enabled phase 0.
sta SPCR ; Set up SPI with interrupt.
cli ; Enable the interrupt.
rts

* SUALT - This is an example alternate
* set up of the SPI. It runs at a
* higher baud rate than the eeprom
* SPI, and uses the interrupt.
* However, use of the interrupt or
* the higher baud rate is not necessary.
*

AN1227 – Rev.1.0

MOTOROLA 55

Application Note
SUALT:
lda #%11010000 ; Interrupt with high baud rate.
sta SPCR ; Set up the alternate SPI.
bclr CSLINE,CSPORT ; ensure de-selection.
cli ; Allow SPI interrupt.
rts

* CLRSPI - This sets the SPI to the reset
* condition.
*
CLRSPI:

clr SPCR ; Shut off SPI.
clr SPSR ; Zero status register.
rts

***;
* EESEND - sends a byte through the SPI to
* the serial eeprom and receives
* a byte from the serial eeprom
*
* INPUTS - accumulator, send to SPI
* OUTPUTS - accumulator, response from SPI
*
* DESTROYS - Accumulator
*
EESEND:

sta SPIDAT ; Byte to send is in accumulator.
brclr 7,SPSR,$; Should loop 3 times.
lda SPIDAT ; Bring in what SPI has received.
rts

***;
* SENDADR - Sends two bytes to the eeprom through
* the SPI.
* A code is read in X to determine the
* command sent to the eeprom. They cross
* as follows:
* 0 = WRITE ALL
* 1 = ERASE ALL
* 2 = ERASE
* 3 = WRITE
* 4 = EWDS
* 5 = EWEN
* If the command is ERASE or WRITE the
* Eeprom address is included
* else only the command is included.
*
* INPUTS - Number for the command in "X"
* OUTPUTS - none
* DESTROYS - Accumulator and "X"
*

AN1227 – Rev.1.0

56 MOTOROLA

Application Note
Appendix J — SPI to EEPROM Using Interrupt Application Source
SENDADR:
cpx #6 ; Ensure the value is in bounds.
bcc ABSEN ; If invalid, exit.
txa ; Copy command code to A.
lslx ; Scale X input as a word pointer.
lsra ; If command code is 0, 1, 4, or 5
lsra ; an address is not to be sent.
bset CSLINE,CSPORT ; Select the eeprom here.
bcc SEN2 ; Jump to code which will not send

; address.
lda cmdlst,x ; Bring in first byte of proper

; command.
jsr EESEND ; Send that first byte of command

; out SPI.
lda ee_addr ; Bring in eeprom address.
inca ; Increment it for the next pass.
sta ee_addr ; Update eeprom address for next

; pass.
deca ; Decrement eeprom address for this

; pass.
and #MASK ; Mask off non-address bits.
ora cmdlst+1,x ; OR second part of command with address.
bra ADRDONE ; Re-join the paths of this routine.

SEN2: ; No address send starts here.
lda cmdlst,x ; Bring in first byte of proper

; command.
jsr EESEND ; Send that first byte of command

; out SPI.
lda cmdlst+1,x ; Bring in second byte of proper

; command.

ADRDONE:
jsr EESEND ; Send out the second part of

; command with or without address.
ABSEN: ; Branch around invalid commands

; comes here.
rts

*
***;
* EWEN - This subroutine enables erase and write
* operations. It in effect unlocks the
* eeprom so that its cells may be
* changed.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - Accumulator and "X"
*
EWEN:

ldx #$05 ; Bring in 5 for EWEN.
jsr SENDADR ; Interpret command 5 as EWEN.
bclr CSLINE,CSPORT ; Release the eeprom.
rts
AN1227 – Rev.1.0

MOTOROLA 57

Application Note
***;
* EWDS - This subroutine disables erase and
* write operations so that data cannot be
* inadvertently corrupted. It in effect
* locks the eeprom so that its cells
* cannot be changed.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - Accumulator and "X"
*
EWDS:

ldx #$04 ; Bring in 4 for EWDS.
jsr SENDADR PF ; Interpret command 4 as EWDS.
bclr CSLINE,CSPORT ; deselect the Eeprom
rts

***;
* CK_CLR - This subroutine checks the status
* of eeprom operation. If the eeprom
* is busy the routine loops until the
* previous eeprom operation becomes
* ready. It also checks the SPI to
* ensure that the SPI is interrupt
* operating.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - Accumulator.
*
CK_CLR:

brset CSLINE,CSPORT,NCLR; Selected?
brset m_to_pr,flag,NCLR ; Programming?
bra READY ; All Clear.

NCLR: ; Not Clear, something going on.
cli ; Ensure interrupts are on.
lda SPCR ; Bring in SPI control register
cmp #SPIIRON ; Check SPI control reg.
beq CK_LOOP ; If OK do not re- set up.
jsr SUSPIR ; Re-set up the SPI.

CK_LOOP:
brset CSLINE,CSPORT,$; Loop until eeprom de-selected.
brset m_to_pr,flag,$; Loop until eeprom is free.

READY:
rts
AN1227 – Rev.1.0

58 MOTOROLA

Application Note
Appendix J — SPI to EEPROM Using Interrupt Application Source
***;
* ERAL - This subroutine erases the entire
* eeprom. An erased cell will put a high
* level on the DO line when read, but
* due to inverting in READ, the result
* will arrive as 0x00 in 6805 memory.
* ERAL calls EWEN to allow erasure.
*
* INPUTS - none
* OUTPUTS - none
* DESTROYS - all contents of eeprom
*
ERAL:

jsr SUSPI ; Set up the SPI for polling.
jsr EWEN ; Open the eeprom.
ldx #$01 ; 1 is the command list location for

; erase all.
jsr SENDADR ; Interpret command 1 as ERAL.
bra SIRXIT ; Set interrupt and exit.

**
* writing - The following is used to
* write-all form 16 configured
* eeproms.
*
#MACRO WRAL16

lda block_to_go ; Bring back in the high byte to
; write.

coma ; Compliment it.
jsr eesend ; Send it to the eeprom for

; programming.
#MACROEND

**;
* WRAL - In FORM8 eeproms this subroutine
* writes the byte in the accumulator to
* every byte of the Eeprom. In FORM16
* eeproms the accumulator is written to
* the most significant byte the X
* register is written to the less
* significant byte.
*
* INPUTS - Accumulator (and X for FORM16)
* OUTPUTS - none
* DESTROYS - Accumulator, X, ee_addr .
*
*
WRAL:

sta mem_addr ; Store low byte to be written.
stx block_to_go ; Store high byte to be written.
jsr SUSPI ; Set up the SPI for polling.

jsr EWEN ; Open the eeprom for writing.
clrx ; 0 is code for Write all.
jsr SENDADR ; Interpret Command 0 as Write All.
AN1227 – Rev.1.0

MOTOROLA 59

Application Note
lda mem_addr ; Bring back data for sending.
coma ; Complement for writing.
jsr eesend ; Send byte to eeprom for writing.

#IF 9346FORM16
WRAL16 ; Write upper byte of a 16 bit wide

; eeprom.
#ENDIF

#IF 9356FORM16
WRAL16 ; Write upper byte of a 16 bit wide

; eeprom.
#ENDIF

#IF 9366FORM16
WRAL16 ; Write upper byte of a 16 bit wide

; eeprom.
#ENDIF

bra SIRXIT ; Set interrupt and exit.

***;
* ERASE - This subroutine Erases an eight
* cell byte or 16 cell word in the
* Eeprom. The address of the cell is
* located in the accumulator. The
* accumulator is returned unchanged.
*
* INPUTS - The following memory locations
* set up as follows.
* ee_addr -> contains the absolute
* address of where the
* erasure will start in
* the eeprom.
* mem_addr -> (not used)
*
* block_to_go -> The length of the block,
* 1 writes one byte,
* 0 writes none.
* OUTPUTS - none
* DESTROYS - ee_addr , mem_addr , block_to_go,
* Accumulator and X
*
*
ERASE:

jsr SUSPI ; Set up the SPI for polling.
lda block_to_go ; Bring in the length of block to be

; erased.
beq WRDONE ; When the block is 0 use the same

; finish as write.
deca ; one less in the block to go.
sta block_to_go ; Update the block to go.
brset m_to_pr,flag,NOTER1 ; Check for first pass.
jsr EWEN ; Open the eeprom for erasure.
bset m_to_pr,flag ; Set programming function flags.
bclr WR,flag ; Clear writing flag.
AN1227 – Rev.1.0

60 MOTOROLA

Application Note
Appendix J — SPI to EEPROM Using Interrupt Application Source
NOTER1:
ldx #$02 ; Erase is selection 2.
jsr SENDADR ; Send address to erase.
bra SIRXIT ; Set interrupt and exit.

**
* writing - The following is used to write
* form 16 configured eeproms.
*
#MACRO WR_BYTE

lda ,x ; X still points to the next byte,
coma ; bring it into the acc. and

; complement.
jsr EESEND ; Send the byte.
incx ; Increment to point to the next

; byte.
stx mem_addr ; Store updated pointer for the next

; pass.
lda block_to_go ; Bring in the remaining block

; length.
beq done16 ; IF zero length we are done.
deca ; IF not decrement the block length.
sta block_to_go ; Update the block length.

done16:
#MACROEND

***;
* WRITE - This subroutine Writes a block of
* eight cell bytes to the Eeprom.
*
* INPUTS - The following memory locations
* set up as follows.
* ee_addr -> contains the absolute
* address of where the
* data will start in
* the eeprom.
* mem_addr -> contains the absolute
* starting address of the
* block of memory
* to be written to eeprom.
* block_to_go -> The length of the block,
* 1 writes one byte,
* 0 writes none.
* OUTPUTS - none
* DESTROYS - ee_addr , mem_addr , block_to_go,
* Accumulator and X
*
*
WRITE:

jsr SUSPI ; Set up the SPI for sending data.
lda block_to_go ; Bring in the block length left.
beq WRDONE ; If zero block length we are finished.
deca ; Decrement the block length.
sta block_to_go ; Update block length.
brset m_to_pr,flag,NOTWR1; Check for first pass.
AN1227 – Rev.1.0

MOTOROLA 61

Application Note
jsr EWEN ; IF first pass open the eeprom.
bset m_to_pr,flag ; Set programming in process flags.
bset WR,flag ; Set the writing flag.

NOTWR1:
ldx #$03 ; code for write is 3.
jsr SENDADR ; Send the code for writing and ee

; address.
ldx mem_addr ; Bring in the memory address as

; pointer.
lda ,x ; Bring in the byte to be written.
incx ; Increment the pointer for next

; pass.
stx mem_addr ; Update memory address pointer.
coma ; Complement the byte to be written.
jsr eesend ; Send it to the eeprom to be

; programmed into it.

#IF 9346FORM16
WR_BYTE ; Send the second byte to be

; programmed if form 16.
#ENDIF

#IF 9356FORM16
WR_BYTE ; Send the second byte to be

; programmed if form 16.
#ENDIF

#IF 9366FORM16
WR_BYTE ; Send the second byte to be

; programmed if form 16.
#ENDIF

SIRXIT: ; Put the eeprom into the busy ready
; mode.

bclr CSLINE,CSPORT ; De-select the Eeprom
bset CSLINE,CSPORT ; Re-Select the Eeprom
jsr SUSPIR ; Set up SPI int on and lowest baud

; rate.
clra ; Send Zeros out SPI. Every 8

; clocks the
sta SPIDAT ; interrupt will fire and the eeprom

; will be checked for ready.
cli ; Enable SPI interrupt.
rts

WRDONE:
bclrm_to_pr,flag ; no more to write.
jsr EWDS ; Write protect the eeprom.
rts
AN1227 – Rev.1.0

62 MOTOROLA

Application Note
Appendix J — SPI to EEPROM Using Interrupt Application Source
**
* reading - The following is used to read
* form 16 configured eeproms.
*
#MACRO RD_BYTE

jsr EESEND ; read a byte from an addressed
; eeprom.

ldx block_to_go ; Read in the remaining block
; length.

beq RD16END ; Only store if remaining length is
; non Zero.

decx ; Decrement the remaining block
; length.

stx block_to_go ; Update the remaining block length.
coma ; Complement the byte read from the

; eeprom.
ldx mem_addr ; Load the pointer with the address

; to place
; the byte read from memory.

sta ,x ; Store the read byte to memory.
incx ; Increment the memory address

; pointer.
stx mem_addr ; Update the memory address pointer.

RD16END:
#MACROEND

*
***;
* READ - This subroutine reads a block of
* data out of the eeprom and places it
* in a block of 6805 memory. It has the
* autosequence feature as an option.
*
* INPUTS - The following memory locations
* set up as follows.
* ee_addr -> contains the eeprom
* address where the data
* block starts.
*
* mem_addr -> contains the absolute
* starting
* address of the 6805
* memory block
* destination.
*
* block_to_go -> The length of the block,
* 1 reads one byte,
* 0 reads none.
* OUTPUTS - a block of updated memory
* DESTROYS - ee_addr , mem_addr , block_to_go,
* Accumulator and X
*
*

AN1227 – Rev.1.0

MOTOROLA 63

Application Note
READ:
jsr SUSPI ; Set up the SPI for polling.

jsr EWDS ; Write protect the eeprom as a
; precaution. Anything worth reading
; is worth protecting.

RDNLP: ; Loop for non-autosequenced read.
ldx block_to_go ; Read in the remaining bloc

; length.
tstx ; Test length to see if done.
beq RDNDONE ; IF done jump out of routine.
decx ; decrement the block for this pass.
stx block_to_go ; Store updated block length for

; checking on the next pass.

#if 9366FORM16
lda ee_addr ; Bring in eeprom address
lsla ; Place MS Bit in carry.
clra ; Zero out the accumulator.
rola ; MS Bit of ee_address is LS Bit of

; accumulator.
ora #READ1 ; Overlay read command #1.

#ELSEIF
lda #READ1 ; Bring in read command #1.

#ENDIF
lda #READ1 ; Bring in Read command #1.
tst SPSR ; clean out the SPI status register.
tst SPIDAT ; clean out the SPI receiver.
bset CSLINE,CSPORT ; Select the Eeprom
jsr EESEND ; Send READ command 1.
lda ee_addr ; Bring in the eeprom address to be

; read.
and #MASK ; Mask off non-valid bits of

; address.
lsla ; Shift left to accommodate read

; transition clock.
ora #READ2 ; OR address with second part of

; READ command.
jsr EESEND ; Send READ2 | ee_address.
lda ee_addr ; Bring in ee_address.
inca ; Increment ee_address.
sta ee_addr ; Update ee_address for next pass.
clra ; Clear Acc. so a logic low is sent

; to eeprom.
jsr EESEND ; Read first byte.
coma ; Complement byte, all data is

; complemented.
ldx mem_addr ; Bring in pointer for memory.
sta ,x ; Store the read byte in the memory

; location pointed to.
incx ; Increment the memory pointer for

; next pass.
stx mem_addr ; Update memory pointer.
AN1227 – Rev.1.0

64 MOTOROLA

Application Note
Appendix J — SPI to EEPROM Using Interrupt Application Source
#IF AUTOSEQ ; If an autosequence eeprom a
; smaller more efficient loop may be
; used.

WRLOOP:
RD_BYTE ; Read byte and store.
bne WRLOOP ; IF block to read is not zero, read

; more.
bclr CSLINE,CSPORT ; deselect the Eeprom
bra RDNDONE ; Branch to out of routine. None of

; the rest of the code is used if
; the eeprom is autosequence.

#ENDIF

#IF 9346FORM16
RD_BYTE ; Read byte and store.

#ENDIF

#IF 9356FORM16
RD_BYTE ; Read byte and store.

#ENDIF

#IF 9366FORM16
RD_BYTE ; Read byte and store.

#ENDIF
bclr CSLINE,CSPORT ; deselect the Eeprom
bra RDNLP ; Branch always, block check is done

; above.

RDNDONE:
clr flag ; Clear the eeprom flag.
jsr SUALT ; Set up alternate SPI.
rts

*##
* SPI Interrupt handler
*
* SPI interrupt handler is only used to assess the
* eeprom's ready condition during erasure, or writing.
SPI:

brclr CSLINE,CSPORT,SPIALT ; IF eeprom is not selected,
; then some other interrupt
; driven SPI service must be
; active. Jump there.

tst SPSR ; Test status register to reset
; interrupt.

lda SPIDAT ; Read data, to reset interrupt,
; too.

beq NOTREADY ; If Zero, the eeprom is not ready.
bclr CSLINE,CSPORT ; IF ready, deselect for next

; command.
brclr m_to_pr,flag,FINISH ; Single program cycle, go to

; end.
lda block_to_go ; A WRITE is in process, check for

; done.
AN1227 – Rev.1.0

MOTOROLA 65

Application Note
beq FINISH ; No more to write, go to end.
brset WR,flag,WRF ; erase or write?
jsr ERASE ; If erase, and not finished, erase

; another.
bra SPIDONE ; Done for now.

WRF:
jsr WRITE ; IF WRITE, and not finished, write

; another.
bra SPIDONE ; Done for now.

NOTREADY: ; IF eeprom not ready send more
; clocks.

clra ; Zero the accumulator to send
; eeprom logic low.

sta SPIDAT ; Send clocks to the eeprom using
; SPI.

SPIDONE:
rti

FINISH:
bclr m_to_pr,flag ; Clear the more to program flag.
jsr CLRSPI ; Reset SPI.
jsr SUALT ; Set up the SPI for an alternate

; handler.
SPIALT:

tst SPSR ; This is filler, put the
lda #$69 ; other SPI handler here
sta SPIDAT ; if it will be interrupt
rti ; driven.

*###

***;
* START - Sample calling of routines.
*
BSTART EQU 0
BL_LEN EQU $80 ; Length of block for examples.

STARTRD:
jsr SETUP ; Flags must be cleared on system

; start up.
jsr IDIO ; Set up lines idiosyncratic of this

; hardware.
jsr CK_CLR ; Ensure the eeprom is free.
lda #BSTART ; Start reading eeprom at

; address BSTART.
sta ee_addr ; Place that address in memory so

; program can get it.
lda #data ; Get the location of the lowest

; vector block.
sta mem_addr ; Place it in memory so the program

; can get it.
lda #BL_LEN ; Length of block to read.
sta block_to_go ; Place it in memory so the program
AN1227 – Rev.1.0

66 MOTOROLA

Application Note
Appendix J — SPI to EEPROM Using Interrupt Application Source
; can get it.
jsr READ ; Read whatever is in the eeprom.
bra $; jump to this location

; (do nothing else).

STARTWR:
jsr SETUP ; Flags must be cleared on system

; start up.
jsr IDIO ; Set up lines idiosyncratic of this

; hardware.
WRBLOCK BSTART,data,BL_LEN ; See macro at the beginning.
jsr CK_CLR ; Protect memory during write.

* Zero out all memory as a test.
lda #$ff ; Place #ff in highest
sta $ff ; place in lower RAM
ldx #$50 ; Start of lower RAM.
clra ; Acc = 0 to be written to lower

; RAM.

LOOP2:
sta ,x ; Place the Zero in Acc in memory

; pointed to.
incx ; Increment memory pointed to.
brset 1,$ff,LOOP2 ; When the last byte goes to 0,

; done.
bra STARTRD ; Read back from eeprom, should be

; the same.

STARTERAL:
jsr SETUP ; Flags must be cleared on system

; start up.
jsr IDIO ; Set up lines idiosyncratic of this

; hardware.
jsr CK_CLR ; Ensure the eeprom is free.
jsr ERAL ; Erases the entire serial eeprom
bra $; (do nothing else).

STARTWRL:
jsr SETUP ; Flags must be cleared on system

; start up.
jsr IDIO ; Set up lines idiosyncratic of this

; hardware.
lda #$a5 ; (write $a5 to form 8 eeprom.)

#IF 9346FORM16
ldx #$c3 ; write $a5c3 to form 16 eeprom.

#ENDIF

#IF 9356FORM16
ldx #$c3 ; write $a5c3 to form 16 eeprom.

#ENDIF

#IF 9366FORM16
ldx #$c3 ; write $a5c3 to form 16 eeprom.
AN1227 – Rev.1.0

MOTOROLA 67

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-800-441-2447 or

303-675-2140
Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609, US & Canada ONLY 1-800-774-1848
INTERNET: http://www.mot.com/SPS/
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan.

81-3-3521-8315
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

#ENDIF
jsr CK_CLR ; Ensure the eeprom is free.
jsr WRAL ; 0xa5 to all memory locations in

; the eeprom. ($a5c3 to 16 bit form)
* bra $; (do nothing else).

STARTERSE:
jsr SETUP ; Flags must be cleared on system

; start up.
jsr IDIO ; Set up lines idiosyncratic of this

; hardware.
lda #$05 ; ee_address to start block erasure.
sta ee_addr ; Place it in memory so the program

; can get it.
lda #3 ; Length of block to erase
sta block_to_go ; Place it in memory so the program

; can get it.
jsr CK_CLR ; Ensure the eeprom is free.
jsr ERASE ; Erases memory location 5+ of the

; eeprom.
bra $; (do nothing else).

IRQ: ; External interrupt.
jsr IDIO ; Should never get here.
rti

ORG VECTORS

VECSPI: fdb SPI ; SPI VECTOR
VECSCI: fdb STARTRD ; SCI VECTOR
VECTMR: fdb STARTRD ; TIMER VECTOR
VECIRQ: fdb IRQ ; IRQ VECTOR
VECSWI: fdb STARTWR ; SWI VECTOR
VECRST: fdb STARTRD ; START VECTOR
AN1227/D

© Motorola, Inc., 1997

Mfax is a trademark of Motorola, Inc.

	Abstract
	Introduction
	Available EEPROM Options
	Modes of EEPROM Operation
	Hardware Description
	Source Code Description
	First Application: Appendix H I/O Polling to EEPROM Application Source
	Second Application: Appendix I SPI Polling to EEPROM Application Source
	Third Application: Appendix J SPI to EEPROM Using Interrupt Application Source

	Common Problems
	 Appendix A — READ Application Flowchart
	Appendix B — Application Calling Reading or Writing Flowchart
	Appendix C — I/O and SPI Polling Application Flowchart
	Appendix D — SPI Interrupt WRITE Application Flowchart
	Appendix E — SPI Interrupt ERASE Application Flowchart
	Appendix F — SPI Interrupt Application Flowcharts
	Appendix G — SPI Interrupt Handler INTERRUPT Application Flowchart
	Appendix H — I/O Polling to EEPROM Application Source
	Appendix I — SPI Polling to EEPROM Application Source
	Appendix J — SPI to EEPROM Using Interrupt Application Source

