

Order this document
by AN1734/D

Motorola Semiconductor Application Note

AN1734
Pulse Width Modulation Using the 16-Bit Timer
By Brad Bierschenk and Allan Jones

Applications Engineering
Austin, Texas

Introduction

This application note presents a method of implementing pulse width
modulation (PWM) in Motorola microcontrollers through the output
compare function of the 16-bit free-running timer counter. Using this
method, a PWM signal can be produced without dedicated on-chip PWM
circuitry.

PWM is a technique used to control devices or to provide a variable DC
voltage. Common applications include motor, lighting, and climate
controls. If the production of a PWM signal is not a vital part of an
application, the added cost and complexity of dedicated PWM hardware
in a microcontroller might not be justified. In this case it would be
desirable to implement PWM output through software control of a
common MCU module.

By using the 16-bit timer counter and its output compare function, a
PWM of desired duty cycle and frequency can be quickly and easily
implemented. This method uses modules common in most Motorola
microcontrollers and requires only a small amount of processing
overhead.

© Motorola, Inc., 1998 AN1734

Application Note

PWM

A PWM signal is a signal with a fixed frequency and variable on and off
times. In other words, the period of the signal remains constant, but the
amount of time that the signal remains high and low can vary within a
period. The duty cycle is the ratio of on time (tOn) to the total period
(t = tOn + tOff).

Figure 1 illustrates a square wave. When viewed as a PWM signal, its
duty cycle is 50%. In other words, it is on half of the time.

Figure 1. PWM Signal with 50% Duty Cycle

Figure 2 illustrates another PWM signal. Its duty cycle is 10%. By
varying the duty cycle, the average DC voltage output can be controlled.
For example, a PWM signal that has a 10-V amplitude and a 50% duty
cycle can provide an average 5-V output. When increasing or
decreasing a PWM duty cycle, the average output increases or
decreases respectively.

tOn tOff

t

AN1734

2 MOTOROLA

Application Note
Output Compare Method

Figure 2. PWM Signal with 10% Duty Cycle

This controllable output is useful in many applications. For example, this
output could be used to control the speed of a motor. By increasing the
duty cycle, the average voltage across a motor can be controlled. The
output could also be fed through an RC network, forming a simple digital-
to-analog converter.

Output Compare Method

One effective method of producing a PWM signal in a Motorola
microcontroller involves the use of the 16-bit free-running timer. This
method does not require dedicated PWM circuitry and can be
implemented across a wide variety of Motorola MCUs.

The 16-bit timer and its output compare function can be used to produce
a specific output level at a particular time. When the output of the timer
compare (TCMP) pin is alternated between low and high logic levels, the
result is a periodic waveform. Values in the output compare register are
used to cause a delay between output events. Specifically, tOn and tOff
of a desired duty cycle can be calculated and programmed into the
output compare function.

The basic steps in this procedure are:

1. Compute a timer delay value, add it to the current counter value,
and place the result in the output compare register.

tOff

t

tOn
AN1734

MOTOROLA 3

Application Note

2. Set or clear the output level bit (OLVL) in the timer control register
(TCR). This will determine the TCMP pin's output level for the next
valid compare.

3. Set the output compare interrupt enable bit (OCIE) in the TCR to
enable output compare interrupts.

4. Clear the interrupt mask.

5. On timer interrupt:

a. Complement the OLVL bit for next compare.

b. Compute and store new value for output compare register.

The first step in implementing this procedure involves computing the
values needed in the output compare register. Given the desired
frequency (f) and duty cycle (DC) of the PWM signal to be generated,
delay values needed to create the waveform can be determined.

PWM Definitions Period: t = 1/f = tOn + tOff

Duty cycle: DC = tOn/(tOn+tOff) = tOn/t

Given f and DC of a PWM signal, find:

Period: t = 1/f

On time: tOn = DC * t

Off time: tOff = t – tOn

For example, a PWM is to be generated with a frequency of 2 kHz and
a duty cycle of 50%. In this case, the period t is 500 µs, and tOn and tOff
are both 250 µs.

Next, the frequency of the timer subsystem should be calculated. For the
HC05 Family of MCUs to find the MCU internal operating frequency, fop,
divide the oscillator frequency, fosc, by 2. The timer prescaler divides this
frequency further by 4. Therefore, the timer subsystem frequency, ftim, is
fosc/8.

For example, a 4-MHz oscillator would yield a timer frequency of
500kHz. The timer period would then be 2 µs. In other words, one timer
AN1734

4 MOTOROLA

Application Note
Output Compare Method

increment takes 2 µs to complete. We will define this time as ttim, the
period of the timer system.

Once the timer period, ttim, is found, compute the number of timer cycles
required to cause a specific delay. This delay can be used to time an
output. In the case of generating a PWM signal, the high and low levels
of the output need to be timed. Specifically, the on and off delay values
should be calculated. These delays reflect the number of timer cycles
necessary to produce a pulse of a specific duration.

The delay values are proportional to the on and off times of the desired
PWM signal, and are defined as:

On delay: DOn = tOn/ttim

Off delay: DOff = tOff/ttim

Using the previous example of a 4-MHz oscillator, 2-kHz PWM, and 50%
duty cycle, DOn and DOff would each require a decimal value of 125.

The delay values DOn and DOff can be added to the timer counter, and
the result will be stored in the output compare register. On a valid
compare (when the contents of the counter match the output compare
register), an output compare interrupt can be generated. This interrupt
can then be used to prepare the MCU for the next pulse segment delay
and its associated output level.

In MCUs equipped with output compare (TCMP) pins, the logic level to
be output on a valid compare can be preset. In this way, an output
compare timer interrupt will set the output level of the TCMP pin
immediately. A new value for the output compare register to time the
current output level can then be loaded, and the next triggered output
level set. In this manner, a highly accurate PWM output can be achieved,
as the output level is set automatically on a valid compare.

If a microcontroller does not have a TCMP pin, the same procedure for
setting up output compares can be followed. The timer interrupt service
routine can be programmed to manually set the PWM output level at the
pin of an I/O port. In this case, the software would set the current pulse
segment's output level and delay, rather than the next segment's output
level and the current segment's delay.
AN1734

MOTOROLA 5

Application Note

NOTE: When using this method, one must consider the latency of entering the
interrupt routine when calculating the necessary delays. The time
between a valid compare and the manual setting of the output level in
this case is not always negligible.

By controlling DOn and DOff, different combinations of PWM duty cycles
and frequencies can be achieved. Some applications, such as motor
control or lighting, involve control of the duty cycle of a PWM output.
Other applications, such as tone generation, require a fixed duty cycle
and different frequencies.

This technique of generating a PWM signal is limited by the duration of
the timer interrupt routine. Because the timer interrupt computes and
loads the compare values needed to produce the desired output, the
minimum delay that can be tolerated is the worst-case duration of the
software. A pulse cannot be produced if its segment delay time is shorter
than the time needed to process the output compare interrupt.

If other tasks are to be performed between timer interrupts, the worst
case time requirements of the other tasks should be considered as well.
The time to process other software functions may need to be included in
the minimum delay.
AN1734

6 MOTOROLA

Application Note
Output Compare Method

Figure 3. Example Limits for MC68HC705C8A (1 to 4 MHz) and MC68HSC705C8A (8 MHz)

Figure 3 illustrates the limits encountered when using this method of
PWM generation. The bus frequency and the interrupt routine latency
determine the minimum delay that can be tolerated.

For example, in our sample application the interrupt routine demands 52
bus cycles in the worst case. This makes the minimum tolerable delay
time 52 * top. The minimum delay time applies to both on and off times,
therefore affecting the minimum and maximum achievable duty cycles.
Figure 3 shows that higher bus frequencies and lower PWM frequencies
provide greater duty cycle control. The minimum duty cycle is the
minimum time delay divided by the desired PWM period. The maximum
duty cycle results from the off delay being equal to the minimum
tolerable delay.

Timing limits

fosc
(MHz)

fop (MHz) top (µs) ftim (kHz) ttim (µs)
Minimum delay(µs)

= (interrupt cycles)*top
Minimum timer change
= (interrupt cycles)/4

8 4 0.25 1000 1 13 13

4 2 0.5 500 2 26 13

2 1 1 250 4 52 13

1 0.5 2 125 8 104 13

Duty cycle limits
Desired PWM frequency

1 kHz 2 kHz 5 kHz

fosc (MHz) Min DC Max DC Min DC Max DC Min DC Max DC

8 1.3% 98.7% 2.6% 97.4% 6.5% 93.5%

4 2.6% 97.4% 5.2% 94.8% 13.0% 87.0%

2 5.2% 94.8% 10.4% 89.6% 26.0% 74.0%

1 10.4% 89.6% 20.8% 79.2% 52.0% 48.0%
AN1734

MOTOROLA 7

Application Note

Sample Application — Motor Controller

In this example application, we want to produce a PWM signal of a fixed
frequency. We want to control the duty cycle with as wide a range as
possible. The PWM output will drive a fan motor. Figure 4 shows the
example application circuit using the Motorola MC68HC705P9.

We have attached a potentiometer to the analog-to-digital (A/D)
subsystem of the microcontroller. By monitoring the A/D data register, a
number between $00 and $FF is obtained. This number is used as the
on delay, DOn. The main software loop simply polls the A/D subsystem,
waiting for new data. To further expand this application, the
potentiometer could be replaced with a temperature sensor, creating a
temperature-controlled fan.

When a new A/D value is ready, the software determines the difference
between the new DOn (the ADDR value) and the current DOn. If the new
A/D value does differ from the DOn, it can be determined whether the
duty cycle should increase or decrease.
AN1734

8 MOTOROLA

Application Note
Sample Application — Motor Controller

Figure 4. Fan Control Circuit

When the duty cycle is altered through the potentiometer, the new DOn
and DOff is calculated. However, before these new values are recorded,
they must be checked against the upper and lower delay limits. If they
exceed these limits, no change is made in the delays.

Because an 8-bit delay value is used, the upper limit on delays is $FF.
There is also a lower limit on delays. The time it takes to process the
timer output compare interrupt routine determines this limit. Output
compare interrupts should not happen faster than they can be serviced.

In this example, the worst case interrupt service time is 52 cycles. With
an internal operating frequency of 2 MHz, the time required is 26 µs.
Because the 16-bit timer runs at 500 kHz, its period is 2 µs. Therefore,
the minimum delay this interrupt routine can tolerate is 13 "ticks" of the
free-running timer (13 * 2 µs = 26 µs). Keeping track of this lower limit
ensures an accurate and clean output waveform.

470 Ω

TCMP

AN0

M
O

TO
R

O
LA

 H
C

05
 M

IC
R

O
C

O
N

TR
O

LL
ER

MOTOR
WINDING

IRF730

1N4002

24 V

FAN: PANAFLO DC BRUSHLESS,
FBP — 08B24L
24 Vdc, 0.09A

FAN

VRH

VDD

VDD

0.1 µF

10 kΩ
AN1734

MOTOROLA 9

Application Note
Conclusion

There are many other methods of producing PWM outputs using
Motorola microcontrollers. In choosing one method over the others,
trade-offs must be considered regarding convenience, cost, and
precision.

The method discussed in this application note provides a good balance
between cost, convenience, and duty cycle control.This method can be
implemented across a wide variety of Motorola microcontrollers.

PWM generation can also be implemented entirely in software. This
method can be implemented in any microcontroller, but requires a great
deal of software overhead. The simultaneous use of the timer overflow
interrupt and real-time interrupt as timing references for a PWM signal
can also be implemented. This method can produce only a few different
duty cycles for any given frequency and cannot be implemented in all
Motorola microcontrollers.

For applications which require precise control of multiple PWM signals,
Motorola provides parts with dedicated PWM circuitry. Examples include
the MC68HC708MP16, MC68HC705MC4, and MC68HC05D9/D24/D32
microcontrollers. For more information on such products, consult the
68HC05/68HC08 selector guide, Motorola document order number
SG165/D.
AN1734

10 MOTOROLA

Application Note
Conclusion
Figure 5. Main Program Flow

NEW ADC DATA READY?

YES

LOOP

NO

SUBTRACT OLD
ON DELAY FROM

NEW VALUE

INITIALIZE ADC
GET INITIAL VALUE

SET UP INITIAL DUTY
CYCLE

GET NEW VALUE
OF ON DELAY

FROM AD DATA

IS NEW VALUE
THE SAME AS OLD

VALUE OF

(NEW > OLD)
POSITIVE?
IS RESULT

CALL DUTY UP CALL DUTY DOWN

NO

YES

NOYES

ON DELAY?
AN1734

MOTOROLA 11

Application Note
Figure 6. Duty Down Subroutine

EXCEEDED $FF?
YES

RTS

OFF DELAY = OFF DELAY

ADC DATA < DELAY MIN?

NO

DLIMIT1

OFF DELAY = DELAY MAX

ON DELAY = DELAY MIN

YES

STORE NEW
ON DELAY,

STORE NEW
OFF DELAY

LOAD ADC DATA

DUTY DOWN
 DELTA = |DELTA|

NO

+ DELTA
AN1734

12 MOTOROLA

Application Note
Conclusion
Figure 7. Duty Up Subroutine

 DUTY UP

DELTA > OFF DELAY?YES

RECORD NEW
OFF DELAY

RTS

NO

YES

OFF DELAY =

NEW OFF DELAY <

ON DELAY =

DLIMIT2

ON DELAY = DELAY MAX

OFF DELAY = DELAY MIN

 ADC DATA

 DELAY MIN

OFF DELAY – DELTA

NO
AN1734

MOTOROLA 13

Application Note
Figure 8. Timer Interrupt Routine

TIMERINT
TIMER INTERRUPT

IS CURRENT OUTPUT
(TCMP) HIGH?

NO YES

GO HIGH

SET OLVL BIT FOR

ADD OFF DELAY TO
OUTPUT COMPARE
LOW BYTE (OCL)

GO LOW

CLEAR OLVL BIT FOR
NEXT OUTPUT LEVEL

 ADD ONDELAY TO
OUTPUT COMPARE
 LOW BYTE (OCL)

COMPENSATE FOR
CARRY IF NEEDED

COMPENSATE FOR
 CARRY IF NEEDED

CLEAR OCF

WRITE NEW OUTPUT
 OUTPUT COMPARE
 LOW BYTE (OCL)

RTI

NEXT OUTPUT LEVEL

 LEVEL
AN1734

14 MOTOROLA

Application Note
Code Listing
Code Listing

**
* DCVAR.ASM *
* This program illustrates the use of the 16-bit free-running timer to *
* generate a Pulse Width Modulated (PWM) signal using a Motorola HC05 *
* MCU. *
* *
* This example was written for the M68HC05P9 microcontroller. As shown *
* in the accompanying application note, this program is used in *
* conjunction with a potentiometer connected to an ADC channel to control *
* the duty cycle of a fixed-frequency PWM signal, which appears on the *
* TCMP pin. *
* *
* The loop portion of the program reads in the value of the A/D data *
* register. When the contents of the data register do not match the *
* OnDelay of the program, an adjustment is made to OnDelay and OffDelay *
* and the duty cycle of the PWM signal is changed. *
* *
* OnDelay is determined and controlled by the value in the A/D data *
* register (ADDR). *
* *
* The PWM signal is achieved by keeping track of two variables, OnDelay *
* and OffDelay. These two values determine the amount of time the output *
* signal is kept high or low. The timer routine reads the free-running *
* timer, adds the delay amount to it, and stores the result in the output *
* compare register. When the free-running timer matches the value in the *
* output compare register, the TCMP pin is toggled, and new delay values *
* are computed. *
* *
* The maximum delay value is $FF, due to the use of an 8-bit value. *
* The minimum delay value is $0D, determined by the time it takes to *
* execute the timer interrupt routine. In this case it is around 52 bus *
* cycles, which at an internal operating frequency of 2 MHz is ~26 µs. *
* Because the timer frequency is the operating frequency divided by 4, *
* the minimum delay value for the timer becomes the interrupt latency *
* divided by 4. *

* Equate statements for assembler

* Registers
TCR EQU $12 ;Timer control register
TSR EQU $13 ;Timer status register
OCH EQU $16 ;Output compare registers
OCL EQU $17 ;(High/Low Bytes)
ACRH EQU $1A ;Alternate counter registers
ACRL EQU $1B ;(High/Low Bytes)
ADDR EQU $1D ;A/D data register
ADSCR EQU $1E ;A/D status and control register
AN1734

MOTOROLA 15

Application Note
* Bit positions
OCIE EQU $06 ;OCIE bit position in TCR
OLVL EQU $00 ;OLVL bit position in TCR
CCF EQU $07 ;CCF bit position in ADSCR

* Vector and memory assignments
TIMERVEC EQU $1FF8 ;Timer interrupt vector
RESETVEC EQU $1FFE ;Reset vector
RAMSPACE EQU $80 ;User RAM
ROMSPACE EQU $0100 ;User ROM

* Initial OnDelay and OffDelay
* 500 kHz timer frequency => 2 µs timer period
HALFPERIOD EQU $7D ;2 kHz frequency @ 50% duty cycle

* PWM definitions
* Minimum achievable delay is determined by the timer interrupt latency
* Maximum achievable delay is determined from period - (minimum delay)
DELAYMIN EQU $0D ;Minimum achievable delay
 ;determined by interrupt latency
DELAYMAX EQU $ED ;Maximum delay
 ;(HALFPERIOD*2) - (DELAYMIN)

* RAM Variables

 ORG RAMSPACE ;Start of user RAM
OnDelay RMB 1 ;PWM variables
OffDelay RMB 1
ADCData RMB 1
Delta RMB 1
TempA RMB 1 ;Temporary storage variable

* Main Program
* Setup timer interrupts and analog-to-digital converter

 ORG ROMSPACE ;Start of user ROM
Setup LDA #$20
 STA ADSCR ;Turn on A/D and select channel AN0
 LDA #HALFPERIOD
 STA OnDelay ;Record delay variables
 STA OffDelay
Init BRCLR CCF,ADSCR,Init
 LDA ADDR ;Get initial potentiometer reading
 STA ADCData ;Record value
 BSR UpdateDC ;Update the PWM duty cycle
 BSET OLVL,TCR ;Set to output high on first compare
 LDX ACRH ;Get the current timer value,
 LDA ACRL ;store in X and A
AN1734

16 MOTOROLA

Application Note
Code Listing
 ADD OffDelay ;Compute the next compare time
 BCC Setup2 ;Compensate for 8-bit carry,
 INCX ;increment high byte if needed
Setup2 STX OCH ;Store OC high byte and inhibit OC
 LDA TSR ;Clear OCF if set
 STA OCL ;Prepare for next compare
 BSET OCIE,TCR ;Enable OC interrupt
 CLI ;Clear interrupt mask

* Loop and wait for new A/D data

Loop BRCLR CCF,ADSCR,Loop
 LDA ADDR ;Get new potentiometer reading
 STA ADCData ;Record new value
 BSR UpdateDC ;Update the PWM duty cycle
 BRA Loop ;Repeat
UpdateDC LDA ADCData ;Load new potentiometer reading
 SUB OnDelay ;Difference of old and new OnDelay
 BHI DutyUp ;If positive difference, increase DC
 BLO DutyDown ;If negative difference, decrease DC
 RTS ;Return if no difference

* Decrease the duty cycle; decrease OnDelay, increase OffDelay

DutyDown NEGA ;If negative difference, decrease DC
 ADD OffDelay ;OffDelay += |difference|
 BCS Dlimit1 ;Exceeded $FF; don't change
 STA TempA ;Temporary storage
 LDA ADCData ;Get ADC data
 CMP #DELAYMIN ;Compare with minimum limit
 BLO Dlimit1 ;If lower than minimum, don't change
 STA OnDelay ;Record new OnDelay
 LDA TempA
 STA OffDelay ;Record new OffDelay
 BRA Ddone1
Dlimit1 LDA #DELAYMAX ;Maximum, compute limits
 STA OffDelay
 LDA #DELAYMIN
 STA OnDelay
Ddone1 RTS

* Increase the duty cycle; increase OnDelay, decrease OffDelay

DutyUp STA Delta ;Record difference
 LDA OffDelay
 CMP Delta ;Compare OffDelay and difference
 BLO Dlimit2 ;If OffDelay < difference, at minimum
 SUB Delta ;If OffDelay >= difference, go ahead
 CMP #DELAYMIN ;See if minimum delay was violated
 BLO Dlimit2 ;If so, record the limit
AN1734

MOTOROLA 17

Application Note
 STA OffDelay ;Record new OffDelay
 LDA ADCData
 STA OnDelay ;Record new OnDelay
 BRA Ddone2
Dlimit2 LDA #DELAYMAX ;Maximum, compute limits
 STA OnDelay
 LDA #DELAYMIN
 STA OffDelay
Ddone2 RTS

**
* Timer Interrupt Routine
* This routine services the output compare interrupt.
* The latency of this routine determines the minimum delay possible.
**
* NOTE:
* If other timer interrupts are active, need to arbitrate them
* before servicing the output compare interrupt
**
TimerInt BRSET OLVL,TCR,GoLow ;Determine current output level
GoHigh BSET OLVL,TCR ;Setup OLVL for high next time
 LDA OCL ;Setup next output compare time
 ADD OffDelay ;Add off delay offset
 BCC NoCarry ;Compensate for 8-bit carry
 BRA Carry
GoLow BCLR OLVL,TCR ;Setup OLVL for low next time
 LDA OCL ;Setup next output compare time
 ADD OnDelay ;Add on delay offset
 BCC NoCarry ;Compensate for 8-bit carry
Carry INC OCH
NoCarry LDX TSR ;Clear OCF bit
 STA OCL ;Ready for next compare
 RTI ;Return from interrupt

**
* Vector Definitions
**
 ORG TIMERVEC ;Timer interrupt vector
 FDB TimerInt
 ORG RESETVEC ;Reset vector
 FDB Setup
AN1734

18 MOTOROLA

Application Note
Code Listing
AN1734

MOTOROLA 19

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
AN1734/D

© Motorola, Inc., 1998

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd. SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan, 81-3-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong, 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

	Introduction
	PWM
	Output Compare Method
	PWM Definitions

	Sample Application — Motor Controller
	Conclusion
	Code Listing

