
Order this document
by AN1818/D

Motorola Semiconductor Application Note

AN1818
Software SCI Routines with the 16-Bit Timer Module
By Brad Bierschenk

MMD Applications Engineering
Austin, Texas

Introduction

Many applications that communicate to off-board devices require an
asynchronous serial link. A Motorola microcontroller unit (MCU) with a
serial communications interface (SCI) module can provide this
communications functionality.

However, in many applications, an MCU that does not have an SCI
module must be used. If asynchronous communications capability is
needed, it must be provided through software control of existing
modules. A “bit-banged” approach, as documented in HC05 MCU
Software-Driven Asynchronous Serial Communication Techniques
Using the MC68HC705J1A, Motorola document order number AN1240,
is convenient, but requires dedicated software overhead while
transmitting and receiving data.

Through the use of the 16-bit free-running counter, the HC05 and other
MCU families can provide an interrupt-driven software SCI with minimal
software overhead.
© Motorola, Inc., 1999 AN1818

Application Note
General Information

The solution discussed here works in half-duplex mode. This means it
can transmit or receive serial data, but cannot simultaneously transmit
and receive. This is enough for most applications and is much easier to
implement than a full-duplex solution.

The timing in Figure 1 shows the standard non-return-to-zero (NRZ)
asynchronous transmission protocol of an RS-232 serial transfer.

Figure 1. Serial RS-232 Timing

A complete byte transfer takes 10 bit times, due to the start and stop bits.
The first falling edge indicates the beginning of the start bit, and thus the
beginning of a byte transmission. After the start bit, data is sent in eight
bits. The logic high stop bit signals the end of the byte transmission.

A 16-bit free-running timer counter with one input capture (IC), one
output compare (OC), and the associated interrupts, allows software
emulation of an SCI module with only a small amount of processor
overhead. In addition to the timer module, one digital input pin that can
be sampled using BRSET or BRCLR instructions is needed.

On some MCUs, including the 68HC705P6A, the input capture pin can
be read directly as a digital input. On other MCUs, the input capture pin
also should be connected to a digital input pin to allow digital polling.

ONE BYTE TX/RX

START BIT STOP BIT

IDLE LINE

1 2 3 4 5 6 7 8
AN1818

2 MOTOROLA

Application Note
Receiving Serial Data
A byte variable in RAM can be used to simulate the flags of an SCI status
and control register. Likewise, a RAM variable can function as a data
register where transmitted and received bytes are stored.

RX — Receive In-Progress Flag

A 1 here signifies that a receive is in progress.

TX — Transmit In-Progress Flag

A 0 here indicates a transmit is in progress.

RDRF — Receive Data Register Full

 A 1 here indicates that a byte has been received.

TDRE — Transmit Data Register Empty

A 1 here indicates that a byte has been transmitted.

Receiving Serial Data

In this application, if data is not being transmitted, the input capture (IC)
function of the timer is enabled. In this way, the user can wait for the start
bit of an incoming transmission without any software overhead. When
the start bit is received, the IC interrupt is triggered. This provides both
a wakeup to start receiving and the start of a timing reference via the
value in the IC registers.

RX TX RDRF TDRE X X X X

7 6 5 4 3 2 1 0

Figure 2. Simulated Status Register in RAM Variable

D7 D6 D5 D4 D3 D2 D1 D0

7 6 5 4 3 2 1 0

Figure 3. Simulated Data Register in RAM Variable
AN1818

MOTOROLA 3

Application Note
Figure 4. Receiving with the Timer Functions

The contents of the IC registers show the time of the falling edge of the
start bit. The resulting timer interrupt routine has to determine which
event (IC or OC) triggered the interrupt. In the first entry. One and a half
bit times are added to the content of the capture register. The result is
stored in the OC registers and interrupts are switched from the IC to the
OC. The delay of one and a half bit times will cause an output compare
event approximately in the middle of the first data bit’s reception.

Next, the data register is cleared, and bit 7 of the data register is set. This
most significant bit (MSB) of the data variable acts as a bit counter. In
the next output compare, the data at the pin (either TCAP or port pin) is
sampled using a BRSET instruction. This brings the value of the data
received into the carry bit of the condition code register (CCR). The
“rotate right through carry” (ROR) instruction rotates the new data bit into
the data register. It is rotated into the data register and one bit time is
added to the OC register.

Because the data register was cleared prior to reception, and bit 7 was
set, a 0 is always rotated into the carry bit until the eighth data bit is
received. The setting of the carry bit after a rotate indicates that the
eighth bit has been received. When this happens, the receive data full
flag is set and the interrupt capability is switched back to input capture.

INPUT CAPTURE

IDLE LINE

FIRST OUTPUT COMPARE

SECOND OUTPUT COMPARE
AN1818

4 MOTOROLA

Application Note
Transmitting
Transmitting

To transmit a byte, a mechanism is needed that can trigger at a given
rate and allow changing of the bit level of an output. The OC function of
the 16-bit timer module allows this.

Figure 5. Transmitting with the Output Compare Function

The routine SCISend in the software listing provides the transmit
function. Before calling SCISend, the user places the byte to be
transmitted into the SCIData location. Transmission starts by setting the
I bit in the condition code register (CCR) to ensure proper timing and
read of the contents of the free-running counter. An offset is then added
to that value, and the result is stored into the output compare registers.
This defines the time the transmission will begin. The OLVL bit is set to
0, to produce the required falling edge for the start bit at the time of the
next compare. The OC interrupt is enabled, and the user can now wait
for the predefined OC event to drive the TCMP pin low to start the
transmission.

When running through the timer interrupt service routine, distinguishing
between an IC or an OC event (they both use the same interrupt) is a
must. In this way, the user can arbitrate between the beginning of a byte
reception and a reception/transmission in progress.

FIRST COMPARE

IDLE LINE

SECOND COMPARE

THIRD COMPARE
AN1818

MOTOROLA 5

Application Note
Just as with the receiving code, the transmission of a byte uses the
propagation of a logic 1 from the carry to provide a bit counter. When all
bits have been transmitted, a logic 1 will be rotated into the carry bit, and
OC can be set up to transmit the logic high stop bit.

Baud Rates

To change the baud rate, adjust the values of BITHI and BITLO to
represent one bit time at the frequency of the timer module. Likewise,
BIT1HI and BIT1LO should be changed to represent one and a half bit
times at the frequency of the timer module.

The internal frequency of operation and the latency of the timer interrupt
define the maximum baud rate that can be achieved. The rate of the
timer interrupts should not be programmed to be faster than the latency
of the interrupt service routine. If this happened, one might miss OC or
IC events.

The frequency of the 16-bit timer counter is four times slower than the
internal operating frequency. The formula to determine what number to
add to the timer value to cause a specific delay is:

fBus ÷ [(baud rate) x 4]

For example:

Internal
Frequency

Timer
Frequency

9600
Baud

4800
Baud

2400
Baud

1200
Baud

2 MHz 500 kHz $0034 $0068 $00D0 $01A0
AN1818

6 MOTOROLA

A
N

181

M
O

T
O

R
O

LA
7

A
pplication N

ote
B

aud R
ates

t OLVL Bit to
ne next output

value

 SCIData
Empty?

Yes

 bit time to OC
store into OC
e OC interrupts
e IC interrupts
X and TDRE

flags

No

RTI

Add 1 bit time to
OC and store

into OC

terrupt
8

Figure 6. Flowchart for Timer Interrupt Service

Is ICIE = 1 ?
(IC interrupts

enabled)

Timer Interrupt
T_Int

Clear TSR Flags

Is RX = 1 ?

Is Carry Bit
Clear ?

Yes

No No

Se
defiNo

Add 1.5 bit times to
IC registers, and

store into OC
registers

Set RX flag
Disable IC
interrupts

Enable OC
interrupts

Clear data register
Set bit 7 of data
register as a bit

counter

Yes

"RX_End"

Put received bit
value into C bit of
CCR via BRSET

instruction

Rotate C bit into
data register with
ROR instruction

Check new C bit

Is Carry Bit
Set?

Clear TSR flags
Disable OC
interrupts
Enable IC
interrupts

Set RDRF flag
Clear RX flag

Yes

No

Add 1 bit time
offset to OC

registers and store
back to OC

registers

BRCLR
TX,SCIFlag

Sets C bit to 1 if a
new transmission

Clear TX if a new
transmission

ROR rotates next data bit
into C bit

C bit value goes into MSb,
1 if new transmission (for

bit counter)

Yes

Clear OLVL bit
To define next
output value

RTI

Is

Add 1
and

Disbal
Enabl
Set T

Add 1 bit time to
OC and store

into OC

Flowchart for Timer In
Service Routine

"T_Int"

New byte reception

Application Note
Software Example

The code listing that follows illustrates reading and writing serial data
through the timer interface. This simple software loop waits for data to
be received and echoes the value back to the sending device.

Code Listing

* -=-
* SWSCI.ASM
* -=-
* A software-driven SCI simulation for the 705P6A MCU,
* using the timer's input capture and output compare
* functions.
*
* Brad Bierschenk, MMD Applications Engineering
* Oak Hill, Austin, Texas
* 08/06/99
* -=-
* NOTES:
* a) The "SCI" subroutine sets up the transmit routine
* so to send a byte, you have to load it into SCI data
* variable, and JSR to SCI
* b) The "simulated" SCI status and data register are held
* in RAM, and the "simulated" SCI interrupt is really the
* timer interrupt.
* c) Limitation is half-duplex only.
* d) To transmit, use the SCI routine. But you will not
* be able to receive until the transmission is complete.
* e) This requires a part that can digitally read its
* TCAP pin (P6A). Otherwise, a separate input pin should
* be tied to the TCAP pin for polling.
* 4) The P6A REQUIRES a pullup on TCAP to VDD for this
* application.
* -=-
* ---
* Needed P6A bits and bytes
* ---
RAMSPACE EQU $0050
ROMSPACE EQU $0100

PORTB EQU $01
PORTC EQU $02
PORTD EQU $03
DDRB EQU $05
AN1818

8 MOTOROLA

Application Note
Code Listing
DDRC EQU $06
DDRD EQU $07
TCR EQU $12
TSR EQU $13
IC1HI EQU $14
IC1LO EQU $15
OC1HI EQU $16
OC1LO EQU $17
TCNTHI EQU $18
TCNTLO EQU $19
OLVL EQU 0
IEDG EQU 1
OCF EQU 6
ICF EQU 7
OCIE EQU 6
ICIE EQU 7

* Software SCI equates for RAM variable SCIFlag
TDRE EQU 4
RDRF EQU 5
TX EQU 6
RX EQU 7

;BIT1HI+BIT1LO define the timer delay for 1.5 bit times at given
;baud rate.
;-=-
;9600 baud
BITHI EQU $00
BITLO EQU $34
BIT1HI EQU $00
BIT1LO EQU $48

;4800 baud
;BITHI EQU $00
;BITLO EQU $68
;BIT1HI EQU $00
;BIT1LO EQU $9C

;2400 baud
;BITHI EQU $00
;BITLO EQU $D0
;BIT1HI EQU $01
;BIT1LO EQU $38

;1200 baud
;BITHI EQU $01
;BITLO EQU $A0
;BIT1HI EQU $02
;BIT1LO EQU $70
AN1818

MOTOROLA 9

Application Note
* --
* RAM Variables
* --

ORG RAMSPACE
SCIFlag RMB 1 ;Simulated Status register
SCIData RMB 1 ;Simulated Data register
* ---
* Start of program code
* ---

ORG ROMSPACE
Begin LDA #$10

STA PORTB ;Set OC pin to high ==> idle line
LDA #$F7
STA DDRB

CLR SCIFlag ;Clear SCI status register
CLR SCIData ;Clear SCI data register
LDA TSR ;Clear possibly set OC & IC flags
LDA IC1LO
LDA OC1LO

;Initialize timer system to OCLevel High (idle)
;IC falling edge (detect start bit), disable OCI
;enable ICI (SCI ready to receive)
LDA #$81
STA TCR

BSET TX,SCIFlag ;Clear first-entry-to-transmit
;flag

CLI ;Globally enable interrupts

Main BRCLR RDRF,SCIFlag,* ;Wait for a byte to be received

;Allow ~2 bit times for rest of last bit and stop bit
;~210 µs ~= 55 cycles

LDA #$09 ;2
DelayLoop DECA ;3

BNE DelayLoop ;3

;Echo back the received byte...
BCLR RDRF,SCIFlag
JSR SCISend

;Wait for next received byte
BRA Main
AN1818

10 MOTOROLA

Application Note
Code Listing
* ---
* SCISend sets up the timer module to transmit a byte.
* Uses the OC function to transmit data. Can't receive
* while transmitting (limitation is half-duplex)
* --
SCISend SEI ;Disable interrupts to ensure

;timing
LDX TCNTHI ;Read current timer value
LDA TCNTLO
ADD #$15 ;Add offset
STA OC1LO ;Store new value
TXA
ADC #$00 ;Accommodate carry if needed
STA OC1HI
LDA TSR
LDA OC1LO
STA OC1LO
LDA #%01000000 ;Generate start bit by setting OLVL
STA TCR ;bit to falling edge, disable ICI,

;enable OCI
CLI ;Globally enable interrupts again
RTS

* ---
* T_Int is the timer interrupt service routine.
* Must arbitrate whether an IC or OC caused the interrupt,
* to determine whether receiving or transmitting a byte.
* (Timer interrupt ~= SCI Interrupt)
* OC event is either 1) byte transmitting or 2) sampling
* byte being received.
* IC event is the start bit of a received byte
* ---
T_Int LDA TSR ;Clear any flags

;If IC interrupts are enabled, we are in receive mode
;and have received start bit on TCAP BRSET ICIE,TCR,Receive

;If OC interrupts are enabled, we are either
;transmitting a byte, or are sampling a byte coming in
BRSET RX,SCIFlag,RX1
;Is SCI receiving?

;Is this a byte transmitalready-in-progress?
;The BRCLR instruction sets the carry bit to the value
;of the bit being tested.
BRCLR TX,SCIFlag,TX1
AN1818

MOTOROLA 11

Application Note
;New transmission
;Carry bit gets set, clear the flag to indicate
;transmit-in-progress.
;C = 1 will be rotated into bit 7 of data register
;for use as a bit counter.
BCLR TX,SCIFlag

;Transmitting
TX1 ROR SCIData ;Shift next data bit into carry

BCC TX2 ;If low, go to TX2
BSET OLVL,TCR ;If high, next OC level to high
;If Data register is zero, and Carry is set, we have
;just rotated out the last bit, and need to send the
;stop bit.
BEQ TX_End ;If stop bit, go to TX_End
LDA OC1LO ;Otherwise, add bit time to OC
ADD #BITLO ;for the next bit
TAX
LDA OC1HI
ADC #BITHI
STA OC1HI
STX OC1LO
RTI

TX2 BCLR OLVL,TCR ;Carry was low means next data bit
;low
;so next OC level to low

LDA OC1LO ;Add bit time to OC
ADD #BITLO
TAX
LDA OC1HI
ADC #BITHI
STA OC1HI
STX OC1LO
RTI

TX_End LDA OC1LO ;Add last bit time to OC for the
;stop bit

ADD #BITLO
TAX
LDA OC1HI
ADC #BITHI
STA OC1HI
STX OC1LO
LDA TSR
LDA IC1LO
LDA #$81
STA TCR ;Disable OCI, enable ICI
AN1818

12 MOTOROLA

Application Note
Code Listing
;Clear first TX entry flag again,
;and set the TDRE bit. NOTE that even though
;the TDRE bit is set, the TX of the data byte
;is not complete, with the rest of the last bit
;and the stop bit to be transmitted
LDA #$50
STA SCIFlag
RTI

Receive LDA IC1LO ;Start bit has been received
ADD #BIT1LO ;add 1+1/2 bit times
TAX ;to OC for the first bit sampling
LDA IC1HI
ADC #BIT1HI
STA OC1HI
LDA TSR
STX OC1LO
BSET RX,SCIFlag ;Set receive-in-progress flag
LDA #$41 ;disable ICI, enable OCI
STA TCR
LDA #$80 ;Clear data register, set bit 7 as
STA SCIData ;a bit counter
RTI

RX1 BRSET 7,PORTD,RX2 ;get bit level from TCAP pin and
RX2 ROR SCIData ;put it into data variable

BCS RX_End ;End if it is the last bit
LDA OC1LO ;If not add bit time
ADD #BITLO ;for next sample
TAX
LDA OC1HI
ADC #BITHI
STA OC1HI
STX OC1LO
RTI

RX_End LDA TSR ;Byte received, clear possibly set
;IC flag

LDA IC1LO
LDA #$81 ;Disable OCI, enable ICI
STA TCR
;Set receive register full flag in RAM
;NOTE that even so, the RX byte is not complete
;the rest of the data bit and the stop bit are
;still on their way.
BSET RDRF,SCIFlag
BCLR RX,SCIFlag ;Clear receive-in-progress flag
RTI
AN1818

MOTOROLA 13

Application Note
* ---
* P6A Vector definitions
* ---

ORG $1FF8 ;Timer vector
FDB T_Int

ORG $1FFE ;Reset vector
FDB Begin
AN1818

14 MOTOROLA

Application Note
Code Listing
AN1818

MOTOROLA 15

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140

or 1-800-441-2447. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan.

81-3-3440-8573
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong. 852-26668334
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/
AN1818/D

© Motorola, Inc., 1999

Mfax is a trademark of Motorola, Inc.

	Introduction
	General Information
	Receiving Serial Data
	Transmitting
	Baud Rates
	Software Example
	Code Listing

