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PREFACE

Unless otherwise specified, all address references are in
hexadecimal throughout this manual.

An asterisk (*) following the signal name denotes that the signal is
true or valid when the signal is low.
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CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual contains user information on the M68HC11EVB2 Evaluation Board (EVB2). The
EVB2 includes two boards and a debug monitor program:

• M68HC11EVB2CPU Central Processor Unit Board (EVB2CPU)

• M68HC11EVB2LA Logic Analyzer (EVB2LA).

• Bit User’s Fast Friendly Aid to Logical Operation (BUFFALO) monitor program

This information has been organized into general information, hardware preparation and
installation, functional description, operation, monitor commands, and support information.
Several appendices are also included. This chapter lists the features and general description of the
EVB2 and lists additional user-supplied hardware requirements.

1.2 FEATURES

The BUFFALO monitor program has been modified to include logic analyzer commands. This
modified version of the BUFFALO monitor program is BUFFALO/GATECH but for brevity is
called BUFFALO in the text references.

1.2.1 EVB2CPU Features

• Compatible with 52-pin PLCC package M68HC11 (A- and E-family members)

• Emulates M68HC11 single-chip operating mode

• Single-chip mode memory map emulation

• Download user code from a host computer

• Single-line assembler/disassembler resident in monitor program

• Includes monitor program single-step tracing and breakpoint debugging tools

• Master reset into monitor program, or user reset into user code

• Includes M68HC11EVB2LA Logic Analyzer connector

• Capable of programming CONFIG control register and internal EEPROM
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• Mapping of MCU internal RAM and control registers to addresses $00xx or $10xx

• Includes a MC34064 under-voltage sensing circuit for the reset line

• Includes two options for connecting a power supply

1.2.2 EVB2LA Logic Analyzer Features

• Real time debugging with interrupts

• Captures address bus, data bus, R/W  , LIR  and six user test points

• 8192 cycle capture buffer for bus cycle data

• Adds fourteen commands to the standard BUFFALO command set

• Trace instruction execution mode:

− Permits triggering about, after, or before execution of an instruction

− Displays captured data as disassembled instructions or in bus-cycle form

− Calculates time between any two events captured

• Trace only mode:

− Permits capturing of reads, writes, or accesses of any combination of RAM or
control register addresses, writes to internal EEPROM, or fetches of interrupt
vectors

− Displays captured data in raw bus cycle form

• Capture buffer search command for finding the presence of any condition

• Uses M68HC11E-series internal read visibility to capture reads of internal resources

• Extensive power-on performance verification

1.3 EVB2CPU DESCRIPTION

The M68HC11EVB2CPU is an emulator/debugger for the A- and E-series of the M68HC11
Microcontroller (MCU) Family. The M68HC11 device includes a central processing unit, on-
chip memory, and peripheral functions. Refer to the MC68HC11 MCU Reference Manual,
M68HC11RM/AD and the specific technical summary or data book for additional device
information. The EVB2CPU is a cost-effective board for demonstrating M68HC11 features and a
powerful tool for emulating and debugging MCU-based target system software and hardware.

Although the on-board MC68HC11E1 has four modes of operation, only the single-chip mode of
operation may be emulated with this product. Other more powerful emulators such as the
Motorola M68HC11EVM Evaluation Module are available for more complete M68HC11 MCU
emulation.
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The EVB2CPU contains an M68HC11 MCU for executing the BUFFALO monitor program and
user developed programs. You control EVB2CPU functionality, using the BUFFALO
commands. BUFFALO is contained in an EPROM on the EVB2CPU board. This EPROM is
mapped to the $8000 – $BFFF range of MCU addresses. The monitor program gains control of
the EVB2CPU at power-up and reset by using the M68HC11 special test mode of operation. In
special test mode, the MCU fetches its reset vector from $BFFE – $BFFF, which is within the
EPROM. Immediately after reset, the monitor program switches from the special test mode to
expanded multiplexed mode.

The expanded mode is used because its memory map is a superset of the single-chip mode
memory map. The MC68HC24 Port Replacement Unit (PRU) is used on the EVB2CPU to
rebuild the parallel I/O subsystem lost when in expanded mode. Use of the PRU makes single-
chip mode transparent to a software programmer. All internal MCU features are addressable: the
standard control registers, the 512 bytes of internal RAM, and the internal EEPROM.
Additionally, 16K bytes of external static RAM are addressable which is mapped to the MCU
$C000 – $FFFF address range. The upper 12K bytes of this range is the user-map. User
programs and interrupt vectors are loaded into the user-map for emulation and debugging. The
MCU internal ROM is disabled via the ROMON bit of the CONFIG register. Figure 1-1 shows
the EVB2 internal memory map.

Communication with the monitor program is through an RS-232 compatible interface via a user-
supplied terminal or personal computer (with terminal emulation program). The user issues
commands and downloads user programs through this interface. Additionally, a second RS-232
compatible interface is present for communicating with a host computer which may be used to
cross-assemble and download programs to the EVB2CPU.

1.4 EVB2LA DESCRIPTION

The EVB2LA is used with the EVB2CPU. The EVB2LA connects to the EVB2CPU through a
50-pin ribbon cable. The software required to run the logic analyzer is contained in an EPROM
that is installed on the EVB2CPU. This EPROM adds commands to the BUFFALO command set
when the EVB2LA is present. These commands:

• Set-up the EVB2LA to capture selected cycle-by-cycle data when a user program is
executed

• Execute user code

• Display the data from the logic analyzer’s 8192 cycle capture buffer

The EVB2LA capture buffer contains the MCU address bus, data bus, R/W  signal, LIR  signal,
and six user test points for each cycle of captured data. This includes read cycles from internal
resources such as the internal RAM which are usually not visible externally from the MCU.
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Figure 1-1. EVB2 Memory Map

The EVB2LA has two data capture modes: trace instruction execution mode and trace only
mode. Four functions comprise trace instruction execution mode: trace about, trace after, trace
before, and trace fault. The set-up commands let you specify the trace function and trigger
instruction addresses. The trace only mode lets you capture either reads from or writes to specific
internal RAM or control register addresses, both of the above, writes to internal EEPROM at
$B600 – $B7FF, or fetches of interrupt vectors.

When data capture is complete, a non-maskable interrupt is generated which returns control to
the monitor program. The data capture terminates when the capture buffer fills with data or you
press a key on the display terminal. The data in the capture buffer is then available for display.
Data captured from trace instruction execution mode may be displayed as disassembled
instructions or in raw bus-cycle form. Additionally, the time in bus-cycles may be calculated
between the occurrence of any two events captured in the buffer. Data captured in trace only
mode displays the individual bus-cycles captured.
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1.5 SPECIFICATIONS

Tables 1-1 and 1-2 list the EVB2CPU and EVB2LA Specifications.

Table 1-1. M68HC11EVB2CPU Specifications

Characteristic Specification

MCU MC68HC11E1FN

PRU MC68HC24FN

DUART MC2681 or SCC2692AC1N40

I/O ports:
Terminal (P6)
Host computer (P5)
Target System (P1)
Logic Analyzer (P2)

RS-232 compatible DB-25 (female)
RS-232 compatible DB-9 (female)
HCMOS-TTL compatible, 60-pin header
50-pin header (logic analyzer only)

Temperature:
Operating
Storage

0 to +50° C
-40 to +85° C

Relative Humidity 0 to 90% (non-condensing)

Power Requirements +5 Vdc @ 500 mA (max)

Dimensions 7.00 x 5.75 in. (17.78 x 14.61 cm)
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Table 1-2. M68HC11EVB2LA Specifications

Characteristic Specification

Triggering Capability:
Opcode fetch from any address
Read cycle from any address
Write cycle to any address
Write cycle to EEPROM address
Interrupt vector fetch from address

$D000 – $FFFF
$0000 – $1FFF
$0000 – $1FFF
$B600 – $B7FF
$FFC0 – $FFFE (even addresses)

Capture Buffer Size 8192 cycles x 32 bits

I/O ports:
Test Point connector P1

EVB2 connector P2

TTL compatible, 7-pin header with 10k½ pull-up
resistors to +5V.

Dedicated to EVB2, 50-pin header

Temperature:
Operating
Storage

0 to +50° C
-40 to +85° C

Relative Humidity 0 to 90% (non-condensing)

Power Requirements +5 Vdc at 500 mA (max), supplied by EVB2

Dimensions 7.00 x 5.75 in. (17.78 x 14.61 cm)
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1.6 EQUIPMENT REQUIRED

Table 1-3 lists the external equipment requirements for EVB2LA operation.

Table 1-3. External Equipment Requirements

An RS-232 compatible terminal or host computer (with a terminal emulation package –
PCKERMIT, PROCOMM, MacTerminal, Red Ryder, etc.)(1)

Host computer (RS-232 compatible)

Serial communication cable for the terminal or host computer(2).

+5 Vdc @ 500 mA power supply(2)

Additionally, an unregulated +9 Vdc power supply may be used with the EVB2. To use an
unregulated power supply, a MC7805CT (rated 5V @ 1A) voltage regulator must be installed at
location VR1. A heat sink must be used with the voltage regulator. A user-supplied and -installed
3.5 mm phone jack at P3 is also required when using an unregulated power supply(3).

1. Refer to Chapter 4 for an example of downloading with PCKERMIT.

2. Refer to Chapter 2.

3. Refer to Appendix C.
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CHAPTER 2

HARDWARE PREPARATION AND INSTALLATION

2.1 INTRODUCTION

This chapter provides unpacking instructions, hardware preparation, and installation instructions
for the EVB2CPU and EVB2LA.

2.2 UNPACKING INSTRUCTIONS

Unpack the EVB2 from the shipping carton. Refer to the packing list and verify that all items are
present. Save the packing material for storing or shipping the equipment.

NOTE

Should the product arrive damaged, save all packing material and
contact the carrier’s agent.

2.3 EVB2CPU AND EVB2LA HARDWARE PREPARATION

The EVB2CPU is shipped from the factory with the EVB2LA connected and jumpers installed
on the jumper headers. You must connect a user-supplied: power supply, communications cables,
and target system cable to the EVB2CPU. Figure 2-1 shows the location of the EVB2CPU
jumper headers, I/O connectors, reset switches, and power connector.

The EVB2LA contains no hardware options and, if connected to the EVB2CPU, requires no
hardware preparation prior to use.
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P1 

SW2

SW3

SW1

P4 

HOST 

TERMINAL

J15 
J16 

P2

U2 

P5 

P6 
J13 
J14 

J17 
J18 

J11 

J12 

J10 

J19 

J8 J9 J7 

J4 

J5 

J6 

J3 

J2 

USER 

RESET

J1 

Figure 2-1. EVB2CPU Jumper Header, Switch, and Connector Layout
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2.3.1 EVB2CPU – EVB2LA Interconnection

To use the EVB2LA requires connection to the EVB2CPU via a 50-pin ribbon cable (see the
factory configuration in Figures 2-2 and 2-3). The EVB2CPU and EVB2LA may be mounted
back-to-back or laid flat on a table top, side-by-side. The 50-pin ribbon cable is shipped with the
EVB2CPU and EVB2LA.

Follow these steps to connect the EVB2LA to the EVB2CPU:

CAUTION

Sudden power surges could damage EVB2CPU, EVB2LA, and
target system integrated circuits. Turn off EVB2 and target system
power when installing or removing the EVB2LA or the target
system from the EVB2CPU.

1. Mate the 50-pin ribbon cable to connector P2 on the EVB2CPU (Figure 2-2). Press
the cable connector down firmly while supporting the EVB2CPU from beneath.

2. Mate the 50-pin ribbon cable to connector P2 on the EVB2LA. Again press the cable
connector down firmly while supporting the board from beneath.

P1

P1 

P5 P6 

P2 P2

50-PIN RIBBON CABLE 

EVB2CPU EVB2LA   

Figure 2-2. 50-Pin Ribbon Cable Interconnection
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3. Optionally, the EVB2CPU and EVB2LA may be stacked back-to-back in a sandwich
arrangement using four threaded spacers between the boards (Figure 2-3). The
EVB2LA faces downward using the original EVB2CPU feet to protect the
components.

EVB2CPU 

50-PIN RIBBON CABLE 

EVB2LA       

Figure 2-3. EVB2CPU/EVB2LA Factory Configuration



HARDWARE PREPARATION AND INSTALLATION

M68HC11EVB2/D 2-5

2.3.2 EVB2CPU Jumper Headers

The EVB2CPU has been factory tested and is shipped with installed jumpers. These jumper may
be moved to customize the EVB2CPU functionality. These paragraphs are a detailed description
of each jumper header function. Refer to the schematic diagrams in Chapter 6 for additional
details concerning hardware jumper headers.

2.3.2.1 Jumper Header Types

A jumper installed on a jumper header provides a connection between two points in the
EVB2CPU circuit. There are four types of jumper headers on the EVB2CPU: two-post, and two-
post with a cut-trace short, three-post, and three-post with a cut-trace short. Each jumper header
type consists of feed-thru holes on the EVB2CPU printed circuit board (PCB). The jumper
header types that are cut-trace shorts have a copper trace between the feed-thru holes (bottom or
solder side of the EVB2CPU). Table 2-1 describes each type of jumper header.

CAUTION

Depending on the application, it may be necessary to cut wiring
trace shorts (cut-trace shorts) on the PCB. Be careful not to cut
adjacent PCB wiring traces.

NOTE

If the cut-trace short on a jumper header is cut, a user-supplied
fabricated jumper must be installed on the jumper header to return
the EVB2CPU to its default setting.
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Table 2-1. Jumper Header Types

Jumper Header
Type Symbol Description

two-post Two-post jumper header and designated as JX (X = the jumper
header number). Use a fabricated jumper to create a short between
the two posts of the jumper header.

two-post with cut-trace
short

Two-post jumper header with cut-trace short, designated as JX (X =
the jumper header number). After removing the cut-trace short, use a
fabricated jumper to return the jumper header to its factory default
state.

three-post Three-post jumper header, designated as JX (X = the jumper header
number). Use a fabricated jumper to create a short between two of the
three posts of the jumper header.

three-post with cut-
trace short

Three-post jumper header with cut-trace short and designated as JX
(X = the jumper header number). To change the factory jumper
header configuration, cut the trace on the bottom of the board and
install a jumper on the two desired posts.
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2.3.2.2 Jumper Header Descriptions

Table 2-2 lists the jumper headers on the EVB2CPU and a description of its function in each
position.

Table 2-2. EVB2CPU Jumper Header Descriptions

Jumper
Header Type Description

J1 1 2 3 Jumper between pins 1 and 2 (factory default); a regulated power supply supplies +5
Vdc to the EVB2CPU via P4.

Jumper between pins 2 and 3; an unregulated power supply supplies +5 Vdc to the
EVB2CPU via P3. A voltage regulator is required at location VR1. VR1 and P3 are
user supplied and installed.

J2 2 1 Jumper installed or cut-trace short intact (factory default); TERMINAL port (P6) pin 1
connected to EVB2CPU ground (GND).

No jumper or cut-trace short; P6 pin 1 disconnected from EVB2CPU GND.

J3 1 
2

Jumper installed or cut-trace short intact (factory default); On-board oscillator
connected to MCU XTAL line.

No jumper or cut-trace short; Disconnects the MCU XTAL line from the on-board 8
MHz oscillator clock. J3 must be open if the target system supplies the clock signal
(refer to J4).

J4 1 2 3 Jumper or cut-trace short between pins 1 and 2 (factory default); MCU EXTAL line
connected to on-board oscillator.

Cut-trace short removed and a jumper between pins 2 and 3; MCU EXTAL
disconnected from the on-board 8 MHz oscillator clock and connected to target
system connector P1 pin 7. The cut-trace short must be removed and a jumper
installed on pins 2 and 3 if the target system supplies the clock signal (refer to J3).

NOTE

If the trace is cut and no jumper is installed
between J4 pins 2 and 3, the MCU will not
operate.

J5 1 2 Jumper installed or cut-trace short intact (factory default); MCU VRL line connected to
ground.

No jumper or cut-trace short; Disconnects the MCU line VRL from the EVB2CPU
ground bus. Useful when an external A-D converter low reference voltage is used.
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Table 2-2. EVB2CPU Jumper Header Descriptions (continued)

Jumper
Header Type Description

J6 1 
2

Jumper installed or cut-trace short intact (factory default); MCU VRH line connected to
+5 Vdc bus through 1K½ R6.

No jumper or cut-trace short; Disconnects the MCU line VRH from the EVB2CPU +5
Vdc bus. Useful when an external A-D converter high reference voltage is used.

J7 1 2 No jumper installed (factory default); Isolates the target system
XIRQ (connector P1 pin 18)  from the on-board MCU XIRQ  line.

Jumper  installed;  Connects  the  target  system  XIRQ  signal to MCU
XIRQ (U2 pin 18) .

J8 1 2 No jumper installed (factory default); Target system VCC line isolated from EVB2CPU
+5 Vdc bus.

Jumper installed; EVB2CPU +5 Vdc connected to target system via P1 pin 26. Use
jumper header J8 when the target system and EVB2CPU are powered by a common
power supply.

J9 1 2 No jumper installed (factory default); Normal MCU operation.

Jumper installed; MODA signal connected to ground. Reset or power-up causes MCU
to enter special bootstrap mode as long as the USER RESET switch (SW2) is not
pressed. May be used to download a program to the MCU RAM through the MCU SCI
(refer to J11 and J12).

J10 2 
1

Jumper installed (factory default); EVB2LA generated XIRQ  signal connected to
MCU.

No jumper installed; Isolate the P2 EVB2LA XIRQ  signal from the MCU XIRQ  pin.
Useful when the EVB2LA generated XIRQ  signal interferes with target system
operation.

NOTE

Removing the factory installed jumper disables
EVB2LA capture functions.

J11 1 2 3 Jumper or cut-trace short between pins 1 and 2 (factory default); DUART RXDB input
connected to P5 pin 2.

Cut-trace short removed and a jumper between pins 2 and 3; MCU RXD input
connected to P5 pin 2. Isolate the P5 HOST port DB-9 pin 2 from the DUART RXDB
input pin 10 and connect the MCU RXD input pin 20 to P5 pin 2. May be used to
connect the MCU SCI to the P5 connector (refer to J12).

Cut-trace removed and no jumper; P5 pin 2 not connected.
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Table 2-2. EVB2CPU Jumper Header Descriptions (continued)

Jumper
Header Type Description

J12 1 2 3 Jumper or cut-trace short between pins 1 and 2 (factory default); DUART TXDB
output connected to P5 pin 3.

Cut-trace short removed and a jumper between pins 2 and 3; MCU TXD output
connected to P5 pin 3. Isolate the P5 HOST port DB-9 pin 3 from the DUART TXDB
input pin 11 and connect the MCU TXD output pin 21 to P5 pin 3. May be used to
connect the MCU SCI to the P5 connector (refer to J11).

Trace cut and no jumper: P5 pin 3 not connected.

J13 1  
2  
3 

J13 provides input to the DUART (U12 pin 39).

No jumper installed (factory default); ties IP1 to VCC.

Jumper installed; ties IP1 to GND.

J14 1  
2  
3 

J14 provides input to the DUART (U12 pin 38).

No jumper installed (factory default); ties IP1 to VCC.

Jumper installed; ties IP1 to GND.

J15 1  
2  
3 

J15 tells the monitor program to locate the MCU control registers at $0000 or $1000
after reset.

Jumper installed on pins 1 and 2 (factory default); MCU control registers mapped to
$1000.

Jumper installed on pins 2 and 3 or no jumper installed; MCU control registers
mapped to $0000.

J16 1  
2  
3 

J16 tells the monitor program to locate the MCU internal RAM at $0000 or $1000 after
reset.

Jumper installed on pins 2 and 3 (factory default); MCU internal RAM mapped to
$0000.

Jumper installed on pins 1 and 2; MCU internal RAM mapped to $1000.

J17 1 
2

No jumper installed (factory default); EVB2CPU operates normally.

Jumper installed; special test mode entered after reset. Provides input to the monitor
program to keep the MCU in special test mode after reset. May be used to access
MCU special test mode features through the monitor.
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Table 2-2. EVB2CPU Jumper Header Descriptions (continued)

Jumper
Header Type Description

J18 1 
2

J18 provides input to the DUART (U12 pin 4).

No jumper installed (factory default); ties IP1 to VCC.

Jumper installed; ties IP1 to GND.

J19 1 
2

Jumper installed (factory default); DUART generated XIRQ  signal connected to MCU.

No jumper installed; DUART generated XIRQ  signal disconnected from MCU.
Isolates the DUART INTR  signal from the MCU XIRQ  pin. Use when the DUART
generated XIRQ  signal interferes with target system operation.

NOTE

Removing the factory installed jumper on this
jumper header disables the TRACE, PROCEED,
and STOPAT commands, as well as breakpoint
operation.
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2.3.3 Terminal – EVB2 Connection

There are two ways to communication with the EVB2:

1. An RS-232 compatible personal computer (PC) with a terminal emulation package
may be connected to EVB2CPU TERMINAL port (P6). In this configuration, the PC
can cross-assemble M68HC11 programs and download S-Record files to the EVB2.
The TERMINAL port baud rate is 9600 baud.

2. An RS-232 compatible personal computer (PC) with a terminal emulation package or
a terminal connected to EVB2CPU TERMINAL port (P6) and a host computer
connected to EVB2CPU HOST port (P5). Refer to paragraph 2.3.4 for a description
of this configuration.

The RS-232 cable, as a minimum, must contain three wires: the signal-ground wire (GND), the
transmit-data wire (TXD), and the receive-data wire (RXD). The connector (P6) on the
EVB2CPU is a DB-25 female (Figure 2-4).

For hardware handshaking two additional wires are required: the request-to-send wire (RTS) and
clear-to-send wire (CTS). The RTS signal lets you suspend EVB2 data transmissions using the
display terminal device while internal processing is taking place. The CTS line lets the EVB2
interrupt terminal data transmissions. Basic EVB2 operation does not require the RTS or CTS
signals, but they may be useful for downloading S-record files directly into internal EEPROM.

Figures 2-5 through 2-8 show several variations of the display terminal cable for different
devices. The RS-232 connector P6 (TERMINAL port) is a data carrier equipment (DCE) port.

NOTE

The cable required to connect your personal computer to the EVB2
is a standard Hayes modem cable. This cable is available in most
computer stores.
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Figure 2-4. EVB2CPU Connector P6
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Figure 2-5. DB-25 to DB-25 Cable Assembly Diagram
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Figure 2-6. DB-25 to DB-9 Cable Assembly Diagram for PC
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Figure 2-7. DB-25 to DB-9 Cable Assembly Diagram for Macintosh
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Figure 2-8. DB-25 to 8-pin DIN Cable Assembly Diagram
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2.3.4 Host Device – EVB2 Connection

A host computer connected to EVB2CPU P5 (HOST port) may be used to download S-record
files to the EVB2. The host device must be a computer with an RS-232 compatible serial
connection. When a host device is connected to EVB2CPU P5 (HOST port) and a terminal is
connected to EVB2CPU P6 (TERMINAL port), the transparent mode (TM ) command may be
used. In the transparent mode all data sent from either the TERMINAL port or HOST port is
passed through the EVB2 to the other device.

The HOST port connector (EVB2CPU P6) is a DB-9 female (shown below). No hardware
handshaking capabilities are provided through this connector. Figure 2-9 shows one typical cable
for connecting the EVB2 to a host device with a DB-25 style connector. The RS-232 connector
P5 (HOST port) RS-232 is a Data Terminal Equipment (DTE) port.

In this configuration, the host computer would be used to cross-assemble M68HC11 programs
and download S-Record files to the EVB2 through the HOST port. The TERMINAL port baud
rate is fixed at 9600 baud, while the HOST port may be set for 300, 1200, 2400, 4800, 9600, or
38400 baud.
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Figure 2-9. DB-9 to DB-25 Cable Assembly Diagram for Host Device
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2.3.5 Power Supply – EVB2 Connection

The EVB2 requires a +5 Vdc @ 500 mA power supply for operation (refer to Table 2-3). Use
EVB2CPU connector P4 (shown below) to connect power to the EVB2CPU. The black lever is
ground (GND). The red lever is +5 Vdc (VCC). Use 20 or 22 AWG wire for power connections.
For each wire, trim back the insulation 1/4 in. (.635 cm), lift the appropriate lever of EVB2CPU
P4 to release tension on the contacts, then insert the bare wire into EVB2CPU P4 and close the
lever. Refer to Appendix C for specifications for using an unregulated power supply.

BLK    
RED  

+5V   

GND   

P4   

CAUTION

Do not use wire larger than 20 AWG in connector EVB2CPU P4.
Such wire could damage the connector.

Table 2-3. Power Supply Requirements

Equipment Supplier Connector Voltage Current

Regulated supply Lambda P4 +5 Vdc 500 mA
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2.3.6 Target System – EVB2 Connection

The target system is user-developed M68HC11 MCU-based hardware. The EVB2 is capable of
emulating the MCU operating in single-chip mode via a 60-pin ribbon cable connected between
the EVB2CPU P1 and the target system. The 60-pin ribbon cable is user-supplied. Use a standard
60-pin ribbon cable with one-to-one connectors at both ends. Construct the target system with a
60-pin connector that matches the EVB2CPU pinouts. Figure 2-10 shows the EVB2CPU P1 60-
pin connector pinouts.

P1

1  
3  
5  
7  
9  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  

GND  
NC  

E  
NC or EXTAL  

PC0  
PC2  
 PC4  
PC6  

RESET*  
IRQ*  
PD1  
PD3  
PD5  
PA7  
PA5  
PA3  
PA1  
PB7  
PB5  
PB3  
PB1  
PE0  
PE1  
PE2  
PE3  
VRL  
NC  
NC  
NC  
NC  

NC  
STRA  
STRB  
NC  
PC1  
PC3  
PC5  
PC7  
XIRQ*  
PD0  
PD2  
PD4  
NC or VDD  
PA6  
PA4  
PA2  
PA0  
PB6  
PB4  
PB2  
PB0  
PE4  
PE5  
PE6  
PE5  
PE6  
NC  
NC  
NC  
MODB  

2  
4  
6  
8  

10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  

Figure 2-10. EVB2CPU Connector P1
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Generally the EVB2CPU P1 connector is a one-for-one pinout of the on-board MCU. In the
factory configuration five signals are not available on P1: XTAL, EXTAL, VCC, MODA, and
MODB. Three of these signals (XTAL, EXTAL, and VCC) can be connected to P1 if you use the
jumper header options (refer to paragraph 2.3.2). Two signals are not wired to the EVB2CPU P1
connector: MODA and MODB.

If the target system clock is a crystal it is not possible to drive the EVB2 clock signals XTAL and
EXTAL. This is due to the high capacitance introduced by the cable. If the target system clock is
a buffered oscillator you can overcome this restriction. When using a buffered oscillator to drive
the EVB2 MCU it is necessary to modify the default jumper header settings on J3 and J4.

VCC (+5 Vdc) in the factory default is not connected to EVB2CPU P1 because there’s a
likelihood of overloading the EVB2 power supply. The target system may be powered by the
EVB2 power supply, but the power supply connected to EVB2CPU P4 must have the available
current to support the target system. When using the EVB2 power supply a jumper must be
installed at J8 to connect the VCC to the target system via P1 pin 26.

MODA and MODB signals define the MCU operating mode at power-up or RESET. These
signals are wired so the EVB2 powers up in single-chip mode and may not be manipulated.

These steps outline the target system installation procedure:

CAUTION

Failure to disconnect all cabling between the EVB2 or target
system and other energized equipment during installation may
damage the EVB2 or target system or both.

1. Switch the EVB2CPU power switch SW1 OFF.

2. Disconnect any energized circuits from the target system.

3. Mate the 60-pin ribbon cable from the target system to EVB2CPU connector P1.
Press the cable connector down firmly while supporting the EVB2CPU from beneath.
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2.4 EVB2 CHECKOUT PROCEDURE

With the power supply and terminal device installed, follow these steps to verify that the EVB2
is functioning.

1. Prepare the display terminal device (PC communications program or terminal) for the
serial communication parameters shown in Table 2-4.

2. With the EVB2CPU power switch SW1 OFF, turn-on or plug-in the external power
supply.

3. Switch EVB2CPU SW1 ON. Verify that EVB2CPU LED L1 is ON.

4. Watch for the power-up reset screen shown in Figure 2-11. If this screen does not
appear or part of the data is garbled or missing, check that the serial communications
parameters are properly set as shown in Table 2-4.

5. Press the terminal’s carriage return to display the EVB2 primary help screen.

The preceding steps are sufficient to verify that the EVB2 is configured properly and
communicating with the terminal device. The monitor program contains a power-up RAM test
that performs a non-destructive checkerboard test of the external static RAM on the EVB2CPU.
The results of this test (pass or fail) are displayed at power-up only and indicate the operability of
the MCM60256 static RAM at U11.

Table 2-4. Terminal Device Serial Communications Parameters

Parameter Set Value

data rate 9600 baud

data word length 8 data bits

stop bits 1 stop bit

parity none

duplex (local echo) full duplex (no local echo)

flow control hardware (CTS/RTS)
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BUFFALO/GATECH 1.0 - Bit User’s Fast Friendly Aid to Logical Operation

Register Start (J15): 1000
MCU RAM Range (J16): 0000 01FF
EEPROM Range:        B600 B7FF
User Program Range:  D000 FFFF
Internal ROM Disabled
COP System Disabled
EVB2 RAM test passed
EVB2LA Logic Analyzer Functioning Says "Not Present" if there is no EVB2LA.
>

Figure 2-11. EVB2 Power-On Reset Screen

At power-up the BUFFALO monitor program identifies the existence of the EVB2LA and
executes the self-test program. Test results are displayed on the screen which appears after
power-up occurs.

With the EVB2LA, power supply, and data terminal device connected to the EVB2, follow this
step-by-step checkout procedure:

1. Turn the EVB2CPU SW1 switch on.

2. Watch for the power-up reset screen shown in Figure 2-12. The following paragraphs
explain the required action if this screen is not received correctly.

BUFFALO/GATECH 1.0 - Bit User’s Fast Friendly Aid to Logical Operation

Register Start (J15): 1000
MCU RAM Range (J16): 0000 01FF
EEPROM Range:        B600 B7FF
User Program Range:  D000 FFFF
Internal ROM Disabled
COP System Disabled
EVB2 RAM test passed
EVB2LA Logic Analyzer Functioning
>

Figure 2-12. EVB2 Power-up Screen
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The following messages may be generated by the EVB2LA self-test program:

• EVB2LA Logic Analyzer Functioning

• EVB2LA Logic Analyzer Not Functioning XXXXXXXX

• EVB2LA Logic Analyzer Not Present

The error message EVB2LA Logic Analyzer Not Functioning XXXXXXXX means that the
EVB2LA did not pass at least one of its power-up self-test functions. All EVB2LA commands
will be disallowed by the monitor program until the EVB2LA successfully passes the self-test.
The 8-bit binary value at the end of the error message is an error code giving helpful information
about the potentially failing hardware. To interpret this code, consult Figure 2-13.

The error message EVB2LA Logic Analyzer Not Present means that the EVB2LA failed all
power-up self-test functions. Check that the EVB2LA is properly connected to the EVB2CPU.

Note that the EVB2 only runs the EVB2LA self-test after a power-up reset (POR) or after a
RESET T command. The EVB2LA status line does not appear when a RESET occurs. In some
cases, switching the power switch SW1 off in itself will not produce a power-up reset either. The
low-power CMOS chips and capacitive effects on the boards may require that SW1 be turned off
for up to five seconds. Additionally, any energized circuits on the target system must be de-
energized, and the RS-232 TERMINAL port and HOST port cables at P5 and P6 may need to be
disconnected.

U5 6264 Auxiliary RAM A  
U8 6264 Data RAM D  

U7 6264 LoAddress RAM C  
U6 6264 HiAddress RAM B  

U17 74AC169 State Counter  
U9 6267 Trigger RAM  

U16 74HC4020 PT Counter  
U19-22 74AC169 LA Counters A,B,C,D  

 
Logic Analyzer error code in binary:  

(A 1 represents a failure)  

123 04567

Figure 2-13. EVB2LA Error Code Interpretation
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CHAPTER 3

FUNCTIONAL DESCRIPTION

3.1 INTRODUCTION

This chapter is a functional description of the M68HC11EVB2 Evaluation Board and its
subsystems the EVB2CPU and EVB2LA.

The EVB2 is a hardware/software emulator and evaluation tool for the M68HC11 MCU in
single-chip mode. EVB2 control is provided by an on-board MC68HC11E1 MCU executing the
BUFFALO/GATECH monitor program. The BUFFALO monitor program is located in EVB2
EPROM. User programs may be downloaded into EVB2 RAM and executed by the on-board
MCU.

The minimal interaction between the monitor program and the MCU resources lets the EVB2
closely emulate the M68HC11 and makes the EVB2 as general as possible. EVB2 control and
communications use external components which are addressed within the undefined areas of the
normal single-chip mode memory map.

3.2 EVB2CPU HARDWARE DESCRIPTION

The EVB2CPU is designed around an M68HC11 MCU with supporting systems such as power
supply, clock, and reset circuitry, an MC68HC24 Port Replacement Unit (PRU) for single-chip
mode emulation, and decoding circuitry for addressing external components. These external
components include EPROM memory, static RAM memory, a DUART for communicating with
a terminal or host computer, and the M68HC11EVB2LA Logic Analyzer (EVB2LA).

3.2.1 Microcontroller (MCU)

The MC68HC11E1 MCU is supplied with the EVB2CPU. This MCU contains 512 bytes of
internal RAM, 512 bytes of internal EEPROM, and is shipped with the internal ROM disabled
via the configuration (CONFIG) register ROMON bit. After power-on or a reset occurs, the
EVB2 configures the MCU for special test operating mode (MODA = VCC, MODB = VSS). In
this configuration the MCU fetches the reset vector from addresses $BFFE – $BFFF. The
EVB2CPU EPROM (at location U9) is mapped to the address space from $8000 – $BFFF. This
EPROM contains the main monitor program and special test mode interrupt vector table, thus
allowing a reset to start the monitor program. Once started, the monitor program re-configures
the MCU operating mode to expanded multiplexed mode by writing to the HPRIO register
SMOD bit.
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The external static RAM (at location U11) is mapped to the MCU addresses $C000 – $FFFF.
The lower 4K bytes of this RAM, from $C000 – $CFFF, are reserved and used by the monitor
program. The upper 12K byte range is designated as the user-map and is intended to emulate the
internal ROM for an MCU application program.

Simultaneously pressing the USER RESET (SW2) and RESET (SW3) switches on the
EVB2CPU configures the MCU for expanded multiplexed mode (MODA = MODB = VCC).
This allows a user program to be executed without monitor program intervention provided that
the normal mode reset vector at $FFFE – $FFFF is properly initialized.

All 52-pin PLCC members of the M68HC11 family are capable of operating in the EVB2. Thus a
user-supplied MCU may be swapped with the factory-supplied MCU. Special care should be
exercised, however, when using the EVB2LA while operating the EVB2CPU with a replacement
MCU. The EVB2LA requires that the internal read visibility (IRV) feature of the MCU be ON in
order that read cycles from the MCU internal modules are captured in the EVB2LA. Only
MC68HC11 E-Series parts enable the IRV feature in expanded multiplexed operating mode.

To change the contents of the CONFIG register the MCU must be in the special test mode, while
normal MCU operation is expanded multiplexed mode. So a specific sequence must be followed
by the monitor program to program the CONFIG register. While the MCU is in special test mode
the EVB2 identifies that a CONFIG register change request exists following a reset into the
monitor program. The CONFIG register programming operation is performed and the MCU is
immediately forced into reset again to implement the CONFIG register change.

Although special care should be taken when programming the MCU CONFIG register due to the
critical MCU features that it controls (internal ROM on/off, internal EEPROM on/off, computer
operating properly (COP) on/off, security mode on/off, and EEPROM location for MCUs with
2K bytes of EEPROM), the EVB2 cannot be adversely affected by an improper setting in the
CONFIG register. The monitor program operates regardless of the internal EEPROM and ROM
status, and identifies when the COP system is enabled and resets the COP timer automatically. If
an MCU with a re-locatable block of EEPROM is controlling the EVB2, the monitor program
verifies that the EEPROM is not mapped over the external monitor EPROM U9 ($8000 –
$BFFF) and disables the EEPROM if so.

3.2.2 Port Replacement Unit (PRU)

The MC68HC24 PRU operates in conjunction with the MCU in the expanded multiplexed and
special test operating modes to replace the port B, port C, STRA, and STRB signals lost when
the external address and data bus signals are brought out of the MCU. The PRU operates
invisibly to a user program controlling the MCU and provides full single-chip mode
functionality. Thus the MCU appears to the user program to be operating in single-chip mode,
although the SMOD and MDA bits of the HPRIO register reflect the true expanded multiplexed
operating mode of the MCU.
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3.2.3 EPROM Memory

Programs in the MCU internal ROM may be evaluated by first copying the program into the
EVB2CPU RAM and then disabling the internal ROM.

The BUFFALO monitor program is addressed in the $8000 – $BFFF range. The EVB2CPU
EPROM (at location U9) is enabled by a memory-decoder over the ranges $8000 – $B3FF and
$B800 – $BFFF. This non-contiguous mapping allows for further decoding of the $B400 –
$B5FF range to control other EVB2 features, and prevents external data bus contention when the
MCU internal EEPROM is addressed at $B600 – $B7FF. This contention arises because the
MCU internal read visibility feature (IRV) is enabled by the monitor program to facilitate
capturing of MCU internal resource read cycles by the EVB2LA.

The EVB2CPU EPROM (at location U10) contains the portion of the monitor program required
to drive the EVB2LA. U10 is enabled over the address range $2000 – $3FFF by a memory-
decoder in conjunction with address line A13 tied to the active-high chip enable
CE/PGM (U10 pin 27) . Special care must be taken when selecting a replacement part for U10 to
insure that U9 PGM (pin 27)  also acts as an active-high chip enable. The presence of U10 is
identified by the monitor program code in U9 prior to attempting a jump into U10 code.

The high address lines of both U9 and U10 are independently tied to the DUART (at location
U12) output port to allow for monitor controlled bank-switching. Bank-switching effectively
doubles the addressable size of each EPROM (U9 and U10). This bank-switching is provided as
a future expandability option and is currently not implemented in the monitor program.

3.2.4 RAM Memory

The EVB2CPU static RAM memory (at location U11) is decoded into the address range $C000 –
$FFFF by a memory-decoder. This RAM is used to store monitor program variables and for
emulation of MCU ROM. Like the EPROMs, the high address line of the RAM may be bank-
switched under monitor control by the EVB2CPU DUART output port (at location U12). Again
this feature is provided for future use and is not implemented in the monitor program.

3.2.5 Clock Circuitry

An on-board clock circuit produces a 2 MHz E-clock frequency unless a target system external
clock driver is used via jumper headers J3 and J4. The on-board clock is a parallel resonant
crystal oscillator consisting of an 8 MHz ceramic resonator with internal capacitors and a 10 M½
resistor.

When using a target system external clock signal to drive the EVB2 MCU, do not use a simple
crystal oscillator. Only a CMOS compatible buffered oscillator clock source should be used as
the target system external clock driver.
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3.2.6 Power Supply

The EVB2 requires a user-supplied +5 Vdc regulated power supply. Connect this supply directly
to EVB2CPU connector P4. Alternatively, an external +9 Vdc unregulated power supply may be
connected to connector P3. If an unregulated power supply is to be used, you must mount an
MC7805CT voltage regulator on the EVB2 board (refer to Appendix C).

The EVB2CPU SW1 power switch connects the external power supply (from either source) to
the EVB2 +5 Vdc bus which supplies the EVB2CPU on-board components. The EVB2CPU red
LED L1 lights when +5 Vdc is present on the bus.

3.2.7 Reset Circuitry

The EVB2CPU contains an under-voltage sensing circuit (at location Q1) on the EVB2CPU +5
Vdc bus. This under-voltage circuit drives the MCU RESET  line low when an under-voltage
condition exists on the bus. The Q1 has dual thresholds which prevent noise on the power supply
from false starting the MCU as the power supply voltage ramps up, while also forcing the MCU
into reset and preventing runaway when the power supply is turned off.

The MCU RESET  line is also controlled by the EVB2CPU RESET switch (SW3). SW3 lets you
drive the RESET  line low and restart the monitor program.

3.2.8 Decode Circuitry

Address decoding circuitry is provided on the EVB2CPU to allow the on-board components to
be controlled by the MCU by addressing them in various areas of the MCU memory map. The
decoding circuitry consists of two memory-decoders (at locations U3 and U4), a hex inverter (at
location U7), and an 8-input NAND gate (at location U6).

The memory-decoder (U3) divides the MCU address range into 16K byte blocks, with separate
outputs for read and write cycles. All decoder outputs are disabled throughout the address range
$B400 – $B7FF. This prevents contention on the data bus when the MCU internal read visibility
is enabled and internal EEPROM is addressed in $B600 – $B7FF. U3 is used to enable the
EVB2CPU EPROM (at location U9) during reads of the address range $8000 – $B3FF and
$B800 – $BFFF, while the EVB2CPU EPROM (at location U10) is enabled when reading the
address range $2000 – $3FFF. The EVB2CPU RAM (U11) is enabled for reading and writing
within the address range $C000 – $FFFF. Special EVB2LA decoding is also performed over the
range $4000 – $7FFF to generate the WTRIG  and RTEST  control signals.
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The memory-decoder (U4) decodes the address range $B400 – $B5FF for communications and
EVB2LA control. The EVB2CPU DUART (at location U12) is enabled for reading and writing
over the address range $B400 – $B40F. The pulse generated by reading address $B500 resets and
initializes the DUART. The RLA , WNIB , and PTRESET EVB2LA control signals are
generated by reading addresses $B480 – $B4B0, writing to $B490, and writing to $B500
respectively.

3.2.9 External Communications

Communications with the terminal device (EVB2CPU connector P6) and the host device
(EVB2CPU connector P5) are through the DUART (at location 12). The DUART contains dual
asynchronous receiver/transmitters which operate independently. The DUART also performs
several input/output functions to control the EVB2. The RS-232 driver (at location U5) uses the
+5 Vdc power supply of the EVB2 to internally generate RS-232 voltage levels (±10 Vdc) for
communications with RS-232 compatible equipment.

The MCU controls the DUART by reading and writing within the address range $B400 – $B40F.
A hardware reset of the DUART is generated by reading address $B500. The DUART is capable
of generating a non-maskable XIRQ  interrupt to the MCU after the proper initialization occurs.
This feature passes CPU control from a user program back to the monitor program when a key is
pressed on the user’s terminal.

The DUART contains an input port, with six parallel binary inputs, that can be interrogated by
the MCU. These inputs allow the user to control the EVB2 functions such as default RAM and
control register mapping by repositioning the jumpers on EVB2CPU jumper headers J15 and
J16. The DUART also contains an eight-bit parallel output port used by the MCU to control the
LAMODE  and S16 signals (EVB2LA) as well as providing bank-switching controls to
EVB2CPU EPROM at locations U9 and U10 and RAM at location U11. These bank-switching
controls are not currently utilized by the EVB2.

3.3 EVB2LA HARDWARE DESCRIPTION

The EVB2LA consists primarily of:

• A static RAM buffer (32 bits x 8K)

• A counter to address the RAM

• Three-state buffers to control data flow into and out of the RAM

• A trigger RAM for memory of trigger addresses

• A state counter

• Post-trigger counter

• Field programmable logic array (FPLA) to provide state machine control
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3.3.1 EVB2LA RAM

The EVB2LA capture buffer consists of four 8K x 8 bit static RAM chips (at locations U5, U6,
U7, and U8,) to provide a 32 bit wide data word. All RAM is addressed in parallel by the 13 low
order outputs of the EVB2LA counters. These counters increment and decrement the current
RAM address. Each RAM has access to a different input source as shown in Table 3-1.

Table 3-1. Logic Analyzer RAM Configuration

ID Input Output Output Enable Write Enable

U5 Auxiliary byte or test byte Data bus LAMODE , READ AUX WRITE 

U6 High byte of address bus Data bus LAMODE , READ HIADD WRITE 

U7 Low byte of address bus Data bus LAMODE , READ LOADD WRITE 

U8 Data bus Data bus LAMODE , READ DATA WRITE 

The auxiliary byte stored in the RAM at location U5 consists of six user test points from
connector P1, the MCU R/W  line, and the MARK bit. The three-state buffers may alternately be
configured so that the input to RAM U5 is a test byte consisting of the state counter outputs S1-
S8, the PTCLOCK, PT4096, PT8192, and TRIGGER control signals for performance testing.

All RAM chips are enabled in parallel by the LAMODE  signal from the EVB2CPU. Output
from each RAM is also enabled by an independent signal from the memory-decoder at location
U13. All of the RAMs are write enabled in parallel from the WRITE  output of the field
programmable logic array (FPLA) at location U18.

The EVB2CPU can retrieve data from the capture buffer by reading one of four decoded
addresses. Each address enables one of the four RAMs and enables the respective three-state
buffer to place the output of the RAM onto the data bus. The data is retrieved from the address in
the RAM which is determined by the EVB2LA counter value.

3.3.2 EVB2LA Counters

The EVB2LA counters are four synchronous 4-bit counters configured so that they effectively act
as a single 16-bit counter. The lower 13 bits address the EVB2LA RAM, while the upper 2 bits
are the control signals ENA and ENT that enable the three-state buffers (U4 and U10). These
buffers are provided for performance testing of the EVB2LA.
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The four EVB2LA counters (at locations U19, U20, U21, and U22) are high-speed, CMOS,
up/down, synchronously pre-loadable counters. The up/down feature is controlled by the
LADOWN  signal output of the memory-decoder at location U13. While normally configured to
count up while capturing data, the counters may count down to facilitate data retrieval by the
EVB2CPU. The synchronous pre-load feature is implemented by connecting each of the four
EVB2LA counters and the state counter in series. Connecting the EVB2LA counters and state
counter in series lets you shift one nibble (4-bits) from the data bus into the high order EVB2LA
counter, while each counter in the series is loaded with the previous counter’s value. Thus after
five nibble-shift operations, all of the EVB2LA counters and the state counter are pre-loaded
with specific EVB2CPU values. By pre-loading the EVB2LA counters and the state counter with
specific EVB2CPU values the ENA and ENT outputs are determined.

The LACOUNT  signal from the FPLA (U18) causes a single increment/ decrement of the 14-bit
counter chain. LACOUNT  is generated automatically by the FPLA state machine while
capturing data. While retrieving data, the EVB2CPU can increment the EVB2LA counter chain
by reading address $B4B0, and decrement it by reading address $B4A0. The counters are
disabled from counting by the EVB2CPU LAMODE  signal being active.

3.3.3 Three-State Buffers

Seven three-state buffers are required to control data flow to and from the EVB2LA RAM as
shown in Table 3-2.

Table 3-2. Three-State Buffer Configuration

ID Input Output

U4 Auxiliary byte RAM (U5)

U10 Test byte RAM (U5)

U1 RAM (U5) data bus

U11 A8 – A15 RAM (U6)

U2 RAM (U6) data bus

U12 A0 – A7 RAM (U7)

U3 RAM (U7) data bus

Three-state buffer at location U10 may also be used to place the test byte directly onto the data
bus using the RTEST  signal output of the EVB2CPU. Therefore the test byte may be determined
by reading anywhere in the address range $4000 – $7FFF.
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3.3.4 Trigger RAM

A 16K x 1 bit static RAM (at location U9) is the memory for trigger addresses. The trigger RAM
is write enabled by the EVB2CPU WTRIG  output, which is asserted by writing to the address
range $4000 – $7FFF. The trigger RAM is addressed by the address bus lines A0 – A13 and
takes its input from the data bus line D7. Therefore, when the EVB2CPU writes to the address
space $4000 – $7FFF, D7 is stored in the corresponding address of the trigger RAM.

The output of the trigger RAM is fed into the FPLA as the TRIGGER signal. TRIGGER is
asserted when addresses appear on the address bus that have been set in the Trigger RAM. When
the EVB2LA state machine is setup for data capture, the state machine responds to the
TRIGGER input depending on the particular EVB2LA state.

3.3.5 State Counter

A 4-bit binary counter (EVB2LA location U17) determines the current state for the EVB2LA
state machine. The output of the state counter is fed into the FPLA. The FPLA changes states by
enabling the state counter to count via the STCOUNT  signal. The state counter is clocked from
the inverted MCU E-clock output. The up/down feature of the binary counter is not utilized, so
the state counter always counts up. The state counter is disabled by the EVB2CPU LAMODE 
signal.

The state counter is the fifth counter in the chain consisting of the EVB2LA counters and the
state counter. The state counter is pre-loaded with the first nibble shifted into the counter chain
after five nibbles have been loaded. The output of the state counter is also the lower four bits of
the test byte which may be interrogated by the EVB2CPU using the RTEST  signal. By reading
the test byte as each nibble is shifted into the counter chain, the value of the state counter as well
as the EVB2LA counters can be determined by the EVB2CPU.

3.3.6 Programmable Logic Array

The FPLA (at location U18) is the heart of the EVB2LA state machine. The 24-pin FPLA is used
on the EVB2LA to save board space and lower the number of discrete components required to
generate the EVB2LA control signals. The FPLA uses 15 input signals to produce six output
signals (shown in Tables 3-3 and 3-4) that drive the EVB2LA. For more information on the
FPLA, refer to the FPLA flow diagrams in Appendix B.
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Table 3-3. FPLA Input

Input Signal Source

A15 MCU

A14 MCU

R/W MCU

E MCU/74HC00

LIR MCU

S1 – S8 State Counter

S16 EVB2CPU

COUNT EVB2/74HC09

LAMODE EVB2CPU

PT8192 PT Counter

PT4096 PT Counter

TRIGGER Trigger RAM

Table 3-4. FPLA Output

Output Signal Purpose

XIRQ Non-maskable interrupt to MCU

WRITE Enable three-state buffers and RAMs for capture of one bus
state

MARK Auxiliary byte, inverted LIR 

PTCLOCK Clock PT Counter

LACOUNT Clock EVB2LA Counters

STCOUNT State Counter increment
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3.3.7 Post-Trigger Counter

The post-trigger (PT) counter (at location U16) is a 14-bit counter controlled by the FPLA state
machine and is used as a memory device for the number of cycles elapsed after the trigger
condition. Only two outputs are used from the PT counter: PT4096, asserted after 4096 counts
and PT8192, normally asserted after 8192 counts.

State machine usage of the PT counter output depends on the EVB2LA function in progress. For
example, the PT counter is clocked every cycle when a trace-after function is triggered. Therefore
PT8192 signals that the capture buffer is full and to stop the trace. The PT counter is pre-loaded
with the value 8192-N by the EVB2CPU for a trace before <n>th execution trace and the PT
counter is clocked by each trigger. The PT8192 signal is again used to end the trace.

The PT counter is reset by the PTRESET signal from the EVB2CPU which is generated by
writing to address $B500. The EVB2CPU may clock up the PT counter by reading address
$B4B0 while in state 00000.
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CHAPTER 4

OPERATION

4.1 INTRODUCTION

This chapter contains operating procedures and limitations for the EVB2. Additionally this
chapter addresses the advanced features available with the board and special instructions for
performing some tasks. Finally, how to use the M68HC11EVB2LA Logic Analyzer is covered.
This section is complemented by Chapter 5 Monitor Commands which is a detailed description
of each BUFFALO (Bit User’s Fast Friendly Aid to Logical Operation) monitor command.

Before attempting to use the EVB2 or logic analyzer for the first time, follow the steps outlined
in Chapter 2.

4.2 OVERVIEW

The EVB2 EPROM contains a monitor program called BUFFALO. This program controls the
EVB2 and allows you to direct its functions. The user accomplishes this by entering commands
on the terminal device.

4.3 EVB2 LIMITATIONS

The EVB2 is a single-chip mode emulator/evaluation tool for the M68HC11 family. There are
several differences between EVB2 and standard MCU operation. The following paragraphs list
these EVB2 limitation.

• These memory locations in the MCU memory map are used by the EVB2, and so, are
unavailable for user programs:

− $2000 – $3FFF EVB2LA logic analyzer control program

− $4000 – $7FFF EVB2LA triggering circuitry

− $8000 – $B3FF Monitor program

− $B400 – $B5FF Decoded control circuitry

− $B800 – $BFFF Monitor program

− $C000 – $CFFF Monitor program usage of EVB2 RAM
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The EVB2 disables the monitor program EPROM over the $B400 – $B7FF address
range to prevent conflicts with internal EEPROM at $B600 – $B7FF. Spurious read
or write operations within the $B400 – $B5FF range can interfere with EVB2
operation, and may require a hardware reset to recover.

• The MCU non-maskable interrupt resource XIRQ  is used by the EVB2 to return
control to the monitor program after execution of a user program. It is recommended
that your target system ignore XIRQ . If the target system must control XIRQ , refer to
paragraph 2.3.2 for methods of disengaging EVB2 control circuitry from XIRQ .
Regardless of the hardware settings, the monitor program always intervenes in XIRQ 
interrupt sequencing before passing control to the user program.

• The MCU software interrupt resource SWI is used by the monitor program to
implement breakpoints. A software interrupt instruction cannot be used in user
programs.

• A RESET into the monitor program causes three things to occur:

1. Starts a 64 cycle time-out sequence. Completion of the time-out sequence
prevents you from changing some MCU control register bits, such as the INIT
register. Also, user program instructions that modify these bits have no effect
after the time-out sequence. The user-reset feature allows evaluation of user
program initialization code (refer to paragraph 4.4.3).

2. The state of jumper headers J15 and J16 are checked to determine RAM and
control register mapping. This permits mapping of RAM and/or control
registers starting at addresses $0000 or $1000 (refer to paragraph 2.3.2.2 for
J15 and J16 position definitions).

3. These MCU control registers are automatically modified from their default
post-reset conditions:

BPROT register All bits are cleared (applies to MC68HC11E9 only)

HPRIO register IRV bit is set

INIT register Value determined by jumpers J15 and J16

OPTION register IRQE, CR1, and CR0 bits are set

TEST1 register DISR bit is cleared

• The EVB2 is fully compatible with M68HC11 family members with 2K bytes of
internal EEPROM. However, if the EEPROM is mapped over the monitor-program
address space via the CONFIG register, the EEPROM is disabled.

• The EVB2 contains an MC34064 under-voltage sensing circuit that pulls the RESET 
line low during low power supply voltage conditions.
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• Generally the EVB2 P1 connector is a one-for-one pin-out of the on-board MCU. In
the factory configuration five signals are not available on P1: XTAL, EXTAL, VDD,
MODA, and MODB,. Three of these signals (XTAL, EXTAL, and VDD) can be
connected to P1 if you use the jumper header options (refer to paragraph 2.3.2.2).
While two signals are not wired to the EVB2 P1 connector: MODA and MODB.

• The EVB2 contains an MC68HC24 port replacement unit to rebuild the port B and C
I/O lines lost in expanded multiplexed mode. Minor differences exist between the
MC68HC11 and MC68HC24 timing implementation for the STRA and STRB
signals. Refer to the MC68HC24 Advanced Information Data Sheet  for more
information.

4.4 EVB2 OPERATING PROCEDURE

When the EVB2 is turned on the on-board MCU comes out of reset in special test mode (so that
the reset vector is fetched from EPROM at $BFFE – $BFFF). After the power-up sequence the
BUFFALO monitor gains control of the MCU. The monitor program executes several self-tests,
and then switches to expanded multiplexed operating mode. The board status is displayed for the
user on the EVB2 power-on screen (Figure 4-1).

BUFFALO/GATECH 1.0 - Bit User’s Fast Friendly Aid to Logical Operation

Register Start (J15): 1000
MCU RAM Range (J16):  0000 01FF
EEPROM Range:         B600 B7FF
User Program Range:   D000 FFFF
Internal ROM Disabled
COP System Disabled
EVB2 RAM test passed
EVB2LA Logic Analyzer Functioning
>

Figure 4-1. EVB2 Power-On Reset Screen
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The greater than character (>) in Figure 4-1 is the EVB2 command prompt. When > is displayed,
the EVB2 is waiting for input from the user. The user controls the EVB2 by entering a valid
command and a carriage return. One or more tab or space characters must separate the EVB2
command and each of its parameters. An example of an EVB2 command is shown in Figure 4-2.
When the EVB2 completes the execution of a command, the command prompt is displayed.

>bf 1000 10ff 5a

EVB2 command prompt  
Block fill command  
First parameter: starting address  
Second parameter: ending address  
Third parameter: fill data value  

separating spaces

Figure 4-2. EVB2 Command Example

These rules apply to command line entries:

• Pressing a carriage return with no preceding characters repeats the last command
entered.

• Command line entries may be either upper or lower case. The EVB2 converts all
commands to uppercase before parsing the command line and interpreting the entry.

• A maximum of 80 characters may be entered on the command line.

• Command line errors may be corrected by entering a backspace, (CNTL–H ).

• Command line entries may be aborted by entering (CNTL–X ) or (DELETE ).

Valid EVB2 commands are listed in Chapter 5. All commands may be abbreviated by entering
the minimum number of characters required to uniquely identify the command. If an abbreviated
command entry matches multiple commands in the monitor’s command table, the first match
encountered in the table is executed.

The command line error messages generated by the EVB2 and error message definitions are:

What? Invalid EVB2 command

Too Long Command line entries must be less than 80 characters
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4.4.1 User Program Evaluation Procedure

After a reset into the monitor program, the monitor program maintains control of the MCU until
instructed to execute a user program. A user program may either be entered line-by-line via the
monitor program assembler/disassembler (refer to the ASM command), or may be downloaded
into the EVB2 memory (refer to paragraph 4.4.2). There are several monitor commands that
execute user programs:

CALL Execute user subroutine in real time

GO  & RUN Execute a user program in real time

PROCEED Execute a user program in real time past a breakpoint

TRACE & STOPAT Single-step trace one instruction at a time

SB, DB, SP, & PC Execute user program with real-time tracing

The user program executes until control of the MCU returns to the monitor program through one
of these:

A key is pressed on the display terminal

A breakpoint is encountered

An RTS instruction returns to the monitor program from the CALL command

The M68HC11EVB2LA logic analyzer completes a trace

To generate a hardware reset into the monitor program, press the RESET switch (SW3). When
this switch is pressed, the EVB2 MCU comes out of reset in special test mode and follows an
initialization procedure similar to power-on reset. EVB2 self-tests are not executed when SW3 is
pressed.

Immediately prior to passing MCU control to the user program, a checksum value is calculated
by the monitor program. The checksum value is over the user program range $D000 – $FFFF.
When the user program completes execution, control of the EVB2 returns to the monitor
program. The monitor program then calculates a new checksum value and compares it to the
previous value. If the values are not identical, the following message is displayed on the user’s
terminal:

**WARNING**: User code space modified

If this warning message appears, check the user program via the ASM command or the VERIFY
command. Verify the integrity of the user program and ensure the user program is not writing to
the memory range $D000 – $FFFF before again attempting execution.
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The monitor program includes three principal debugging tools: breakpoints, single-stepping, and
real-time tracing. These tools should not be confused with the tracing capabilities introduced by
the EVB2LA logic analyzer. The logic analyzer board adds extensive bus state logic analysis
features. Refer to paragraph 4.5 for logic analyzer operation.

A breakpoint may be set at an address in a user program to stop user program execution. When a
breakpoint is encountered control returns to the monitor program. The user program stops before
the instruction at the breakpoint address is executed. In this way the state of the CPU registers,
MCU control registers, user program variables and target system hardware may be checked.

Single-stepping executes one user program instruction at a time. After execution of each
instruction control returns to the monitor program and the state of the CPU registers is displayed.
Single-stepping allows the user to watch execution of each program instruction. When single-
stepping, execution is not in real time.

The real-time tracing feature displays a requested value on the user’s terminal periodically during
user program execution by briefly interrupting the user program to assist in program debugging.

4.4.1.1 User Registers

The monitor program contains a set of user registers that emulate the CPU registers. The user
registers values are loaded into the CPU registers immediately before the user program is
executed by one of these commands: CALL, GO & RUN, PROCEED, TRACE & STOPAT,
SB, DB, SP, & PC. When control returns to the monitor program, the value of each CPU register
is saved in its corresponding user register. Table 4-1 shows the names of each user register and
the CPU register correspondence. The user registers may be displayed with the RD command and
modified with the RM command.

Table 4-1. User Register Definitions

User Register CPU Register

P Program counter

Y Index register Y

X Index register X

A Accumulator A

B Accumulator B

C Condition code register

S Stack pointer
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After reset, the values in the user registers are undefined except for the C register. Like the CPU
condition code register, the S, X, and I bits in the C register are always set after reset. However
any time a user program is executed, the X-bit in the C register is cleared to allow the monitor
program to regain control of the MCU.

After a user program has executed, the value of the I bit interrupt mask is always saved in the C
register as execution returns to the monitor program. However interrupts enabled by the user
program will not be serviced while the monitor program has control of the MCU. Instead, these
interrupts will remain pending until reset or until the user program is executed again. At that
time, if the I bit is clear then all pending interrupts will be serviced in the order of the established
interrupt priority.

4.4.1.2 Breakpoints

Breakpoints are set and removed using the BR command. Breakpoints appear in the breakpoint
table. The breakpoints in the breakpoint table are installed in the user program when the GO,
CALL, RUN, and USER commands are executed. When the monitor program regains control it
removes the breakpoints from the user program.

Breakpoints are not installed when a single-step trace is executed, or when the logic analyzer is
present and set-up to capture a trace.

4.4.1.3 Single-Step Trace

A single-step trace occurs when either a TRACE or STOPAT command is executed. All user
programs must reside in RAM or internal EEPROM to use the PROCEED, STOPAT, and
TRACE commands. The PROCEED command is implemented in the monitor by single-
stepping one user program instruction (past a breakpoint address), subsequently installing
breakpoints, and then executing a GO command. The instruction to be executed by single-step
trace is determined by the user P-register (program counter).

A single-step trace places a software interrupt (SWI) instruction after the instruction to be
executed. When the SWI instruction is encountered control returns to the monitor program. The
primary advantage of this single-stepping method is that the software interrupt has the lowest
interrupt priority. This method allows all other pending interrupts to be serviced, followed by the
execution of the traced instruction. Single-step trace execution is not in real time and may affect
the operation of some user programs. Because the monitor uses the SWI opcode, the user cannot
use the SWI instruction in user programs.



OPERATION

4-8 M68HC11EVB2/D

4.4.1.4 Real-Time Trace

Real-time tracing periodically displays a value on the display terminal during user program
execution. Four commands start real-time tracing: SB, DB, SP, and PC. The SB command
displays a single-byte (8-bit) value from memory. The DB command displays a double-byte (16-
bit) value from memory. The SP command displays the user stack-pointer value. The PC
command displays the user program counter value. Each command executes the user program at
the address contained in the user program’s reset vector ($FFFE – $FFFF).

Real-time tracing interrupts the user program with a non-maskable interrupt (XIRQ) once every
0.25 seconds and displays the requested data on the terminal device. The length of the user
program interruption needed to display the data value has been minimized, but this process in
itself may affect execution of the user program. While using single-byte or double-byte tracing,
reading one of the MCU control registers PIOC, SPSR, or SPCR will affect execution of the user
program.

4.4.2 Downloading Procedure

The monitor program includes two commands, LOAD and VERIFY, to download programs and
data to the EVB2. All programs and data must be in Motorola S-record format as described in
Appendix A. The S-record data may be downloaded from a personal computer through the
TERMINAL port or from a HOST device through the HOST port.

The LOAD command is used to download S-record files into EVB2 memory, while the
VERIFY command is used to check an S-record file against EVB2 memory. Both commands
have the same syntax rules:

1. If the only parameter following the command is the letter t, the EVB2 waits for the S-
record file to be sent from the TERMINAL port (P6).

2. If any other character sequence follows the command, that character sequence is
transmitted to the HOST device. The EVB2 then waits for the S-record file to be sent
from the HOST port (P5).

While the LOAD command may be used to download programs and data into EVB2 RAM,
MCU RAM, and even MCU EEPROM (with restrictions). There are restrictions when
downloading programs and data into MCU EEPROM (refer to paragraph 4.4.2.3).

Remember, data stored in RAM is erased when the EVB2 power is removed. Pay special
attention when loading data into MCU RAM, since this data is cleared at power-down. Normally
any data in the MCU RAM used by the user program should be stored in the MCU RAM by the
user program during initialization.
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4.4.2.1 Personal Computer – EVB2 Downloading

Any personal computer running a terminal emulation program can download programs and data
to the EVB2. Refer to paragraph 2.3.3 for the proper serial communication settings to
communicate with the EVB2. The terminal emulation program should transmit ASCII text files
in order to send S-records.

Figure 4-3 demonstrates downloading an S-record file using an IBM-PC or compatible computer
and the terminal emulation program KERMIT. Connect the EVB2 to the computer COM1 serial
port and start the KERMIT terminal emulation program.

C>KERMIT<CR> Enter KERMIT program.
IBM-PC Kermit-MS VX.XX
Type ? for help

Kermit-MS>SET BAUD 9600<CR> Set PC serial port baud rate begin terminal emulation.
Kermit-MS>CONNECT<CR>

[Connecting to host, type Control-] C to return to PC]

Switch on EVB2 or press RESET.
BUFFALO/GATECH 1.0 - Bit User’s Fast Friendly Aid to Logical Operation

Register Start (J15): 1000
MCU RAM Range (J16):  0000 01FF
EEPROM Range:         B600 B7FF
User Program Range:   D000 FFFF
Internal ROM Disabled
COP System Disabled
EVB2 RAM test passed
EVB2LA Logic Analyzer Functioning
>load t<CR> Enter download command exit terminal emulation.
(CNTL)C
Kermit-MS>PUSH<CR> Shell to DOS.

The IBM Personal Computer DOS
Version X.XX (C)Copyright IBM Corp 1981, 1982, 1983

C>TYPE (File Name) > COM1<CR> Copy S-record file to serial port.

C>EXIT<CR> Return to KERMIT.

Kermit-MS>CONNECT<CR> Return to terminal emulation.

<CR>
> Enter monitor commands.

Figure 4-3. User Program Downloading with KERMIT
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4.4.2.2 HOST – EVB2 Downloading

The EVB2 supports use of a host computer via the HOST port (P5). Two EVB2 commands may
be used with a host computer: transparent mode (TM ) and LOAD . Use the TM  command to
transmit data to and from the host computer and the terminal. In transparent mode the EVB2
effectively becomes transparent to the HOST computer. This allows editing, cross-assembling,
and linking of 68HC11 programs on the HOST computer, as well as creation of S-record files.
Pressing (CNTL)A  terminates the transparent mode. The LOAD  command may then be used to
transmit a one-line command to the HOST computer. The one-line command instructs the host
computer to transmit the ASCII S-record file. The host computer waits for the S-record file to be
transmitted. Figure 4-4 presents a sample session in which the EVB2 is connected to a UNIX
host computer system.

>tm<CR> Enter transparent mode.
$ xasm test.asm -l > test.lst Cross-assemble program.

•
•
•

$ (CNTL)A Exit transparent mode.
>load cat text.s19<CR> Load S-record file from HOST.
cat text.s19 EVB2 echoes command to HOST and terminal.

done S-record file successfully received.
> Enter next command.

Figure 4-4. HOST Device Downloading
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4.4.2.3 Downloading to EEPROM

When developing S-record files you define the S-record memory address, the place in memory
where the S-record data is stored. The memory address of the S-record file is the destination
address. When loading an S-record using the LOAD command, if the destination address is
within the EEPROM address range, the destination cells are automatically byte-erased (as
required).

There is a timing problem when downloading to EEPROM. Downloading takes approximately
20 ms per byte to erase and program, while incoming data bytes arrive approximately every 1 ms
at 9600 baud. There are three possible solutions to downloading S-record data into EEPROM
memory:

1. An offset value can be added (OFFSET command) to all S-record addresses so that
data destined for EEPROM memory is actually loaded into EVB2 RAM. Once
loaded, use the MOVE command to copy the data into the EEPROM memory. For
example, to download S-record data to EEPROM memory at $B600 – $B7FF through
the TERMINAL port:

a. Specify <offset> into EVB2 RAM OFFSET 4000

b. Issue load from terminal port command LOAD T

c. Send S-record text file (send S-record file)

d. Copy data into EEPROM memory MOVE F600 F7FF B600

2. Use hardware handshaking with the terminal device to prevent the terminal device
from sending the S-record data too fast. Refer to paragraph 2.3.3 for hardware-
handshaking set-up requirements.

3. Use the SPEED command to set the HOST port baud rate to 300 baud and use the
LOAD command to download the S-record file through the HOST port.

4.4.3 User-Reset Procedure

The user-reset function bypasses the monitor program, resets the MCU into expanded
multiplexed operating mode, and fetches the reset vector from $FFFE – $FFFF. Operation of the
EVB2 MCU in expanded multiplexed mode is virtually identical to single-chip mode operation
due to the presence of the MC68HC24 PRU. When a user-reset is performed, a user program
must be present and the reset vector at $FFFE – $FFFF must contain the user program starting
address.

To force a user-reset, press and hold the user switch (SW2) and then press and release reset
switch (SW3). This switch combination resets the MCU, causing it to come out of reset in
expanded multiplexed operating mode. Since the monitor program is bypassed, the reset switch
must be pressed to return to the monitor program. If you issue the USER command prior to the
user-reset, pressing any key on the terminal device returns control to the monitor program.
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A user-reset lets a user program control the MCU after reset and permits the user to evaluate the
MCU initialization and operation. The user-reset also bypasses the limitations detailed in
paragraph 4.3. These limitations are imposed after a normal reset into the monitor program.

The USER command prepares the EVB2 for a user-reset and lets control return to the monitor
program. Issuing the USER command and initiating a user-reset returns control to the monitor
program when:

• Any key is pressed on the user’s terminal

• A user program breakpoint occurs

• The EVB2LA captures a trace

The logic analyzer can capture a trace following a user-reset. This trace capture occurs when one
of the trace capture commands and either a RUN, GO, or CALL command is executed (refer to
paragraph 4.5). It must be noted, however, that MCU data bus read cycles from the MCU internal
RAM, EEPROM, and control registers captured in the logic analyzer will contain irrelevant data
unless the internal read visibility (IRV) feature is activated during a user-reset. Refer to
paragraph 4.5.11 for instructions to turn IRV on within the user program.

4.4.4 CONFIG Register Programming Procedure

The MCU CONFIG register is implemented as an EEPROM cell to retain its value when MCU
power is removed. The CONFIG register controls some basic features of the MCU. The CONFIG
register can normally only be changed by performing a bulk erase operation or a single-byte
programming operation on the CONFIG register address. To change the CONFIG register, the
MCU must be in special test mode.

Any attempt to alter the CONFIG register contents causes the EVB2 to store the new value and
display the message, CONFIG programmed, reset to implement. The actual programming
sequence will not occur until the next monitor reset sequence is performed. Initiate the reset
sequence by either using the RESET command or pressing the reset switch (SW3). The
programming sequence is aborted if the RESET T command is used or a user program is
subsequently executed. Refer to the appropriate technical summary for the CONFIG register bit
description.
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4.4.5 EEPROM Programming Procedure

The EVB2 MCU is the MC68HC11E1FN. The HC11E1 has 512 bytes of EEPROM memory in
address range $B600 – $B7FF. You can replace the on-board MCU with any M68HC11 family
member and the EVB2 will still operate. This is especially useful for programming the larger and
more versatile EEPROM memories of some family members.

The internal EEPROM address range is automatically determined and displayed after reset into
the monitor program. Additionally, EEPROM cells are programmed when the EVB2
programming command sequence is executed (refer to paragraph 4.4.2.3 for EEPROM
programming limitations). Two other commands, BULK and BULKALL may be used to
modify the MCU EEPROM. Each of these commands erase all EEPROM cells to the value $FF.
BULKALL additionally prepares the EVB2 to erase the CONFIG register following a
subsequent reset.

4.4.6 ROM Debugging Procedure

Programs contained in ROM, such as the internal MCU ROM, cannot be directly debugged with
the EVB2 because the monitor program must be able to set breakpoints and change interrupt
vectors in the user program. This limitation may be overcome by loading the ROM program into
EVB2 RAM. This may be accomplished in two ways:

• S-record format user programs may be downloaded into EVB2 RAM using the LOAD
command.

• If the user program is stored in EVB2 MCU internal ROM, it can be copied into the
EVB2 RAM using these steps:

1. Set the ROMON bit in CONFIG to 1 MM 103F→ 0F

2. Reset the MCU to implement the CONFIG change RESET

3. Copy the ROM program to RAM MOVE E000 FFFF E000

4. Set the ROMON bit in CONFIG to 0 MM 103F→ 0D

5. Reset the MCU to implement the CONFIG change RESET

After the user program is copied into the EVB2 RAM, it may be evaluated using the BUFFALO
monitor debug features.
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4.5 EVB2LA OPERATING PROCEDURE

The M68HC11EVB2LA Logic Analyzer connects to the M68HC11EVB2 through a 50-pin
ribbon cable. The logic analyzer monitors the MCU multiplexed address/data bus as well as
several other signals in order to capture selected cycles of user program real-time execution. The
captured data may be viewed after the monitor program regains control of the MCU.

4.5.1 Definitions

The following definitions are used throughout this manual and in the BUFFALO monitor
program to define the basic operating characteristics of the logic analyzer :

• Trace instruction execution mode — captures every cycle of user program execution.

• Trigger — in trace instruction execution mode, an address in the user program that
causes the logic analyzer to start or stop capturing user-program-execution cycles. In
trace only mode, an address at which a read or write cycle is captured in the capture
buffer.

• Trace only mode — captures only selected cycles during user program execution.

• Capture buffer — 32-bit wide by 8K RAM memory. Each 32-bit row of the buffer
holds data concerning one cycle of user program execution. This data includes the 16-
bit address bus, 8-bit data bus, and an 8-bit auxiliary byte.

• Auxiliary byte — 8 bits in the capture buffer. The byte is comprised of six user-
defined test points, the MARK bit, and the MCU R/W  signal.

• Test points — six user-defined TTL compatible inputs on the logic analyzer board
that are captured in the capture buffer.

• MARK bit — control signal generated by the logic analyzer control circuitry and
stored in the capture buffer. In trace instruction execution mode, MARK is asserted
during the first cycle of each instruction executed by the MCU. In trace only mode,
MARK is asserted for all cycles captured in the capture buffer.

• Trigger offset — pointer used to indicate the current position in the capture buffer
from which data is displayed. The trigger offset value is relative to the trigger point
and is in units of instructions for data captured from trace instruction execution mode,
and units of cycles for trace only mode.

• Trace set-up command — BUFFALO command used to specify trigger addresses and
prepare the logic analyzer to capture a particular type of trace the next time the user
program is executed.

• Trace display command — BUFFALO command used to display data in the capture
buffer from a previous user program trace.
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4.5.2 Overview

The two principal logic analyzer hardware elements are: the capture buffer and the control
circuitry. The control circuitry allows the EVB2 monitor program to control the logic analyzer.
Monitor program control includes setting up the various traces and displaying data in the capture
buffer.

The logic analyzer contains two modes for data capture: trace instruction execution mode and
trace only mode. Trace instruction execution mode captures every cycle of user program
execution, while trace only mode captures only selected cycles. The type of trace to be performed
is determined by the command used to set-up the trace.

When the logic analyzer is installed, fourteen commands are added to the standard BUFFALO
command set. There are five logic analyzer commands which are used to set-up the logic
analyzer to capture data into the capture buffer. After a user program has been executed and data
captured in the capture buffer, two commands are used to display the capture buffer data, and six
commands are used to move through and analyze the capture buffer data. Table 4-2 shows the
logic analyzer command names and organization.

Table 4-2. Logic Analyzer Command Organization

Trace Commands

Function
Trace Instruction
Execution Mode

Trace Only
Mode

Setup ABOUT
AFTER

BEFORE
FAULT

ONLY

Display DIS
RAW

RAW

Positioning FIND
SKIP
TIME
< ^ >

FIND
SKIP
< ^ >

Refer to paragraph 5.3 for detailed descriptions of each logic analyzer command.
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4.5.3 Trace Set-Up

Issue a trace set-up command to capture a user-program-execution trace. The type of trace to be
performed by the logic analyzer is determined by the command used to set-up the trace. Five
types of traces can be performed as described in Table 4-3. When a trace set-up command is
entered, the monitor program prepares the logic analyzer for the trace and then displays the
command prompt. The user must issue one of the user program execution commands (GO,
CALL, RUN, or USER) to start user program execution. Reset the EVB2 to cancel a trace set-up
command, and issue another trace set-up command to cancel a previous set-up.

Table 4-3. Trace Types

Command Mode Description

AFTER Instruction Execution Capture 8K cycles of execution data following the trigger

BEFORE Instruction Execution Capture up to 8K cycles of execution data before the trigger

ABOUT Instruction Execution Capture up to 4K cycles of execution data before the trigger
and 4K cycles after the trigger

FAULT Instruction Execution Capture up to 8K cycles of execution data before a fault
condition, defined as an instruction fetched out of the user
program area or a write to the user program area

ONLY Only Capture only read or write cycles to the trigger

The ABOUT, AFTER, and BEFORE commands require that at least one address within the
user program area ($D000 – $FFFF) be supplied as a trigger. This address must be the start of an
instruction in the user program. If multiple trigger addresses are given, executing any one
satisfies the trigger condition.

The ONLY command requires a parameter to indicate which mode is desired: R – read cycles of
RAM/registers, W – write cycles to RAM/registers, A – accesses (both read and write cycles to
RAM/registers), E – write cycles to the internal EEPROM, and V – interrupt vector fetches. At
least one address, or range of addresses, within the appropriate range of memory, must follow the
R, W, A, and E parameters.

Some limitations are imposed once a trace set-up command is issued. Single-step tracing is not
allowed. When a subsequent user program execution command (GO, CALL, RUN, or USER) is
issued, breakpoints in the breakpoint table are not set in the user program. If desired, the logic
analyzer trace may be aborted by resetting the EVB2. Also note that at no time will data capture
begin until the user program begins executing in the upper 16K bytes of the MCU address space.
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4.5.4 Trace Displays

The capture buffer contents may be viewed once a trace has completed and the monitor program
regains control of the CPU. This data remains in the capture buffer until one of the following
events occurs:

1. An MCU reset occurs

2. A trace set-up command is entered

3. The user program is executed again

Use the DIS and RAW commands to display the capture buffer contents. DIS and RAW display
the same capture buffer data, but the data is displayed in different formats. The DIS command is
only allowed with data captured from trace instruction execution mode. DIS shows the address
and M68HC11 mnemonic that was executed, as well as any requested bus transaction data. The
RAW command displays every cycle of data, with the address bus, data bus, and auxiliary byte
values for each cycle.

Figures 4-5 and 4-6 show the equivalent instruction displayed from the logic analyzer by the DIS
and RAW commands.

>raw<CR> 
 
                          TTTTTTMR 
Offset   Address   Data   654321KW 
+0012:    F700      7A    11111111 
          F701      10    11111101 
          F702      00    11111101 
          1000      FF    11111101 
          FFFF      00    11111101 
          1000      FE    11111100 
 
Cycles:  6

MARK bit

R/W line

test points T6-T1

data bus
address bus

six cycles in instruction

trigger offset

Figure 4-5. RAW Command Display
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>dis x<CR> 
 
+0012:  F700  DEC  $1000 
          Orig:  #$FF From $1000 
          Rslt:  #$FE Into $1000

trigger offset

operand

instruction mnemonic
address

read cycle
write cycle

Figure 4-6. DIS Command Display

4.5.5 Moving Through the Capture Buffer

Both the DIS and RAW commands display data at the trigger offset. After each instruction is
displayed, the trigger offset is incremented so it points to the next instruction in the capture
buffer.

The SKIP command moves the trigger offset forward or backward in the capture buffer from the
current position. SKIP accepts a decimal number of instructions to skip, between -8192 and
8192, to move the trigger offset.

An alternative to the SKIP command is the FIND O command which moves the trigger offset to
an absolute offset. FIND O accepts the desired trigger offset value as a decimal number between
-8192 and 8192.

The FIND command has an alternate way of locating events in the capture buffer. An event is
defined as the occurrence of a certain address bus, data bus, and auxiliary byte pattern during an
MCU cycle. For instance, the first cycle of the instruction shown in Figures 4-5 and 4-6 is an
event in which the address bus holds the value $F700, the data bus holds $7A, and the auxiliary
byte is $FF. Use the FIND command and these parameters to locate the event:

FIND A F700 D 7A X FF

The FIND command begins searching from the current trigger offset forward in the capture
buffer. FIND with a minus sign (–) parameter indicates a search backwards from the trigger
offset. If a decimal number (<n>th) is appended to the FIND command line, the <n>th
occurrence of an event may be located. Finally, any of the search parameters may be specified in
a binary format if preceded by a percent (%) sign. A bit may be specified as “don’t care” by
entering it as X. For instance, the following command locates the third occurrence of an event,
looking backward in the capture buffer from the current trigger offset:

FIND A F700 D 7A X %XXXXXX11 –3
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In the example, the auxiliary byte is specified in binary format, with the user test point bits T6-T1
specified as don’t care. This prevents activity on on the test point input pins from affecting the
results of the search. Only one address bus, data bus, and auxiliary byte value may be given to
define an event, but all three of these parameters are not required.

4.5.6 Timing Captured Events

The TIME command is incorporated in the monitor program to calculate the number of MCU
cycles between two events captured in the capture buffer. The TIME command uses the same
syntax rules as the FIND command, except that two events may be specified (separated with a
colon). For instance, suppose the event shown in Figures 4-5 and 4-6 is captured more than once
in the capture buffer because it is performed in a loop or within an interrupt service routine that is
executed twice. To locate the first and second occurrence of the event shown in Figures 4-5 and
4-6, use the following TIME command:

TIME I F700 : I F700 2

The example demonstrates the use of the “I” instruction address parameter that defines the event
of an instruction starting at the address specified. The calculated result of the TIME command is
displayed for the user in MCU cycles and the trigger offset is moved to the instruction which
contains the second event. The two events, the search direction, and <n>th occurrence may be
different depending on the trigger offset position when the TIME command is issued. For
example, if the trigger offset is positioned in between two events, use this command:

TIME  I F700 –1 :  I F700 1

This command searches backward in the capture buffer for the first event and positions the
trigger offset there before searching forward for the second event.

4.5.7 User Program Error Triggering

The logic analyzer detects an error during user program execution if the user program writes data
into the upper 16K byte range of memory. Also errors are detected when an instruction is
executed from outside of the upper 16K byte range of memory. The first of these events can
occur due to a coding error in the user program, while the second may occur if the user program
runs away. User program run away is often due to an improper stack operation in which an
incorrect return address is loaded into the program counter during an RTS or RTI instruction.

The FAULT command is used to set-up a trace that triggers on one of the above error conditions.
If the trigger condition occurs, the user program is interrupted and control is returned to the
monitor program. The capture buffer then contains the user-program execution data leading up
the the error, and the trigger offset is positioned at the user program instruction causing the error.
An error message is displayed that describes the type of error.
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4.5.8 User Test Points

Six user-defined inputs (T1 – T6) are located on the logic analyzer connector P1. These are TTL
compatible (0-5V) inputs that are pulled-up to 5V by 10K½ resistors on the logic analyzer. These
inputs are captured in the logic analyzer auxiliary byte during user program traces. The state of
these test points is stored and may be viewed using the RAW command.

The state of these inputs is captured at the same time that the data bus value is captured,
requiring the test signal be valid and stable at the same time as the MCU data bus value. This
prevents irrelevant test point data from being captured. Refer to the MC68HC11 MCU Advanced
Information Data Sheet for external MCU address/data bus timing information.

4.5.9 Logic Analyzer Debugging Examples

Debugging with the logic analyzer allows the user to view program execution. Alternately, when
breakpoint debugging, register and memory contents must be pieced together from previous
instruction execution. The logic analyzer is non-intrusive and so does not require monitor
program intervention in the user program. While the single-step trace also allows viewing of
program execution, single-step tracing requires monitor program intervention in the user
program. The logic analyzer is especially useful for viewing the operation of interrupt intensive
programs.

An example program is used throughout this section which is loaded into EVB2 RAM and starts
at address $F800. This program starts from reset, drives a target system while responding to
keyboard input, and generates random pulses to drive LEDs, a stepper motor, and a liquid crystal
display. The example program uses interrupts to perform these functions. Each section that
follows demonstrates one of the debugging capabilities of the logic analyzer.

4.5.9.1 Trace After Reset

The example in Figure 4-7 tests the vital steps in user program initialization. There are four
principal steps:

1. Reset the EVB2 and check the MCU control register values (should contain the post-
reset values)

2. Set up to trace after the user program’s starting instruction

3. Run the user program

4. Disassemble the program from the top of the capture buffer
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>reset<CR> Reset the EVB2

BUFFALO/GATECH 1.0 - Bit User’s Fast Friendly Aid to Logical Operation

Register Start (J15): 0000
MCU RAM Range (J16):  1000 10FF
EEPROM Range:         0800 0FFF
User Program Range:   D000 FFFF
Internal ROM Disabled
COP System Disabled
>after f800<CR> Setup to trace after starting instruction.
LA Set-up

>run<CR> Execute user program from the reset vector address.

0 Pre-trigger Instructions
1887 Post-trigger Instructions
P-F905 Y-FD92 X-F929 A-04 B-00 C-80 S....... S-10FD
>dis x 10<CR> Extended disassemble the first ten instructions.
 0000:  F800  LDS  #$10FF
+0001:  F803  LDAA #$10
+0002:  F805  STAA $103D
          Data:  #$10 Into $103D
+0003:  F808  BSR  $F819
          Low :  #$0A Into $10FF
          High:  #$F8 Into $10FE
+0004:  F819  LDAA #$20
+0005:  F81B  STAA $02
          Data:  #$20 Into $0002
+0006:  F81D  LDAA $89 Error: incorrect addressing mode (missing #),
          Data:  #$FF From $0089 the user intended to store the data $89 into
+0007:  F81F  STAA $26 address $26, but incorrectly used direct addressing.
          Data:  #$FF Into $0026
+0008:  F821  LDAA #$C0
+0009:  F823  STAA $24
          Data:  #$C0 Into $0024

>

Figure 4-7. Trace After Reset

4.5.9.2 Trace About an Interrupt

If the user program fails in response to a particular interrupt, it is useful to capture the user
program execution as the interrupt service routine is executed. The trace ABOUT function is
effective because it captures data before and after the trigger. If the interrupt source can be wired
to one of the six user test points, the interrupt latency (time delay before the MCU services the
interrupt) can be measured. If the trace never triggers, this test determines if the interrupt is
improperly set-up or disabled.
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In Figure 4-8, a trace is set-up about the beginning of an interrupt service routine that services
pulses generated by a rotary pulse generator. The active-low pulse is wired to test point T1.

>about fa48<CR> Setup trace about interrupt service routine that starts at
LA Set-up address $FA48.

>run<CR> Execute user program from the reset vector address.

919 Pre-trigger Instructions
936 Post-trigger Instructions
P-F91D Y-FD92 X-F92B A-FE B-00 C-94 S..I.Z.. S-10FD
>skip -2<CR> Move trigger offset back two instructions.

Trigger Offset Moved From :  0000
To : -0002

>dis x 3<CR> Extended disassemble three instructions.
-0002:  F817  BRA  $F80B
-0001:  F80B  JSR  $F8F4
          Low :  #$0E Into $10FF
          High:  #$F8 Into $10FE
        INTERRUPT Indicates beginning of interrupt stacking of CPU
registers.
          PCL :  #$F4 Into $10FD
          PCH :  #$F8 Into $10FC
          IYL :  #$92 Into $10FB
          IYH :  #$FD Into $10FA
          IXL :  #$29 Into $10F9
          IXH :  #$F9 Into $10F8
          ACCA:  #$FC Into $10F7
          ACCB:  #$00 Into $10F6
          CCR :  #$80 Into $10F5
          V_HI:  #$FA From $FFEC
          V_LO:  #$48 From $FFED
 0000:  FA48  LDAA #$02 First instruction of interrupt service routine.

>time x%xxxxx0xx - : i fa48<CR> Calculate time between T1=low and start of
interrupt

service routine.
Trigger Offset Moved From :  0001
To : -0001
To :  0000

Cycles Between Events:  19

>

Figure 4-8. Trace About an Interrupt
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4.5.9.3 Watch Interrupt Sequencing

The ONLY command V option captures the even interrupt vector addresses as each interrupt is
fetched during user program execution. This feature does not provide timing information, but the
sequencing of interrupts may be monitored. This command should be used if a specific interrupt
is expected but is not serviced (the interrupt is improperly set-up or not enabled), or if the
program does not execute properly after the first interrupt (an interrupt flag is improperly cleared
after the interrupt is serviced). Using the ONLY V command is shown in Figure 4-9.

>only v<CR> Setup to capture fetches of even interrupt vectors.
LA Set-up

>run<CR> Execute user program from the reset vector
address.

0 Pre-trigger Cycles
8191 Post-trigger Cycles
P-FB36 Y-FD92 X-F929 A-00 B-00 C-94 S..I.Z.. S-10F6
>raw 5<CR> View first five cycles in raw bus cycle format.

                          TTTTTTMR
Offset   Address   Data   654321KW
 0000:    FFF0      FA    11111111
+0001:    FFE6      FC    11111111
+0002:    FFE0      FB    11111111
+0003:    FFDE      FB    11111111
+0004:    FFE6      FC    11111111

>find i ffec<CR> Find timer input capture 2 interrupt in capture
buffer.
Trigger Offset Moved From : +0005
To End Of Capture Buffer : +8191 Interrupt vector was not fetched (i.e. TOC2 interrupt

is improperly set-up).
Trigger offset restored to previous position

>

Figure 4-9. Watch Interrupt Sequencing



OPERATION

4-24 M68HC11EVB2/D

4.5.9.4 Time Between Interrupts

If an interrupt source produces interrupts faster than every 4.096 ms, then the 8K cycle capture
buffer can hold execution data (including two or more occurrences of the interrupt service
routine). The TIME command may then be used to determine the number of cycles, and thus the
approximate interval between the actual interrupts (shown in Figure 4-10).

>before fcb7 n 100<CR> Trace before 100th execution of interrupt service
LA Set-up routine at $FCB7 (this allows the interrupts to
>run<CR> stabilize after initialization).

1841 Pre-trigger Instructions
0 Post-trigger Instructions
P-FCB9 Y-FD92 X-F929 A-40 B-00 C-90 S..I.... S-10F4
>time i fcb7 -2<CR> Calculate time from trigger offset to previous start
of

interrupt service routine.
Trigger Offset Moved From :  0000
To : -0904

Cycles Between Events:  4024 4024 cycles = 2.012 ms.

><CR> Repeat previous command.

Trigger Offset Moved From : -0904
To : -1815

Cycles Between Events:  4024 Same as previous result, 2.012 ms.

>

Figure 4-10. Time Between Interrupts
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4.5.9.5 Trace Writes to Variables

Use the ONLY command with the W (write) option to verify that the user program is correctly
writing data to the MCU control registers or the user program variables in the MCU RAM.
Individual RAM or control register addresses may be specified with the command or the entire
range of addresses may be traced as shown in Figure 4-11.

>only w 1000-10ff<CR> Trace write cycles to address $1000 – $10FF.
LA Set-up

>run<CR> Execute user program.

0 Pre-trigger Cycles
8191 Post-trigger Cycles
P-F9EE Y-FD92 X-F929 A-04 B-00 C-84 S....Z.. S-10FC
>raw 5<CR> View first 5 cycles captured.

                          TTTTTTMR
Offset   Address   Data   654321KW
 0000:    103D      10    11111110 Write to INIT register: remap MCU RAM to
$1000,
+0001:    10FF      0A    11111110 registers to $0000.
+0002:    10FE      F8    11111110
+0003:    1037      30    11111110 First variable initialization.
+0004:    1038      30    11111110

>find a 1001<CR> Locate first write to variable at $1001.

Trigger Offset Moved From : +0005
To : +0055

>raw<CR> View data.

                          TTTTTTMR
Offset   Address   Data   654321KW
+0055:    1001      00    11111110

>

Figure 4-11. Trace Writes to Variables

4.5.9.6 Trace Faults

If the user program runs away during user-program execution and the reset switch (SW3) must be
pressed to regain control of the MCU, the FAULT command may provide useful information for
isolating the error (Figure 4-12). User-program runaway is usually caused by an incorrect
stacking operation within either a subroutine or an interrupt service routine. The FAULT
command monitors CPU execution and triggers if an instruction is executed below the upper
16K address range ($C000 – $FFFF). FAULT also triggers due to a write cycle into the upper
16K address range.
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In some cases when user-program runaway occurs, the first instructions executed are still within
the $C000 – $FFFF range but are not instructions in the user program. The CPU may eventually
jump below $C000, or a write instruction be executed which writes to the $C000 – $FFFF range
and trigger the FAULT trace. In this case the trigger offset is pointing to irrelevant data in the
capture buffer, and the capture buffer must be searched to locate the last instruction of the user
program.

Anytime user-program runaway occurs, the user program may become corrupted by spurious
writes into its address range. Reload user programs into the EVB2 anytime user-program
runaway occurs.

>fault<CR> Setup to trigger on a fault
LA Set-up

>run<CR> Execute the user program
Fault occurrence:  instruction fetch out-of-range
                   Trigger offset = previous instruction

515 Pre-trigger Instructions
0 Post-trigger Instructions
P-0607 Y-0405 X-0203 A-01 B-00 C-11 ...I...C S-1107
>dis x<CR> View last instruction executed before fault
 0000:  F823  RTS
          High:  #$06 From $10FD
          Low :  #$F8 From $10FE Note program counter loaded with $06F8
End Of Capture Buffer
>skip -4<CR> Skip backwards 4 instructions

Trigger Offset Moved From :  0000
To : -0004

>dis x 5<CR> Disassemble next 5 instructions
-0004:  F817  JSR  $F81C
          Low :  #$1A Into $10FF
          High:  #$F8 Into $10FE
-0003:  F81C  PSHA
          Data:  #$06 Into $10FD
-0002:  F81D  LDAA $1001
          Data:  #$00 From $1001
-0001:  F820  STAA $1000
          Data:  #$00 Into $1000
 0000:  F823  RTS Note incorrect stacking operation: stack push
with-
          High:  #$06 From $10FD in subroutine without a corresponding stack pull.
          Low :  #$F8 From $10FE
End Of Capture Buffer
>

Figure 4-12. Trace Faults
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4.5.10 Logic Analyzer Self-Test Error Messages

When the logic analyzer self-test program is executed, error messages are displayed after a
power-on reset. If you enter a logic analyzer command and a logic analyzer error condition exists,
an error message is displayed. You cannot execute logic analyzer commands until: the error
condition is fixed, a power-on reset is performed, and the self-test program executes successfully.
Use the RESET T command to reset the MCU and execute self-tests.

The logic analyzer self-test error messages are as follows:

• EVB2LA Logic Analyzer Not Present — All self-tests failed

• EVB2LA Logic Analyzer Not Functioning XXXXXXXX — At least one
self-test failed, consult Figure 2-13

• EVB2LA Not Available- EEPROM or Internal ROM mapped over
EVB2 RAM — The ROMON bit in the CONFIG register is on, or internal EEPROM
is mapped over the EVB2 RAM via CONFIG[7:4]

4.5.11 Internal Read Visibility

Normally, data transfers on the internal MCU data bus from the control registers, internal RAM,
and internal EEPROM to the CPU are invisible outside of the MCU. In order to capture these
transfers, the logic analyzer makes use of the MC68HC11 E-Family internal read visibility (IRV)
feature (via the HPRIO register). The monitor program automatically sets the IRV bit to 1 so that
internal-MCU-read-cycle data is present on the MCU-external-data bus. The data is then
captured by the logic analyzer.

The IRV feature is only available in MC68HC11E-series parts. When IRV is disabled or an
MCU is used which does not contain the IRV feature, irrelevant data bus values are captured by
the logic analyzer. Because the IRV feature is automatically disabled when using the USER
command, irrelevant-data captures occur. To circumvent erroneous data captures, include these
instructions at the beginning of the user program:

LDAA #$35
STAA HPRIO;set IRV bit on

The label HPRIO must be defined for the current HPRIO control register address.
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4.6 SOFTWARE PREPARATION

This section provides some hints for preparing user programs for downloading to the EVB2. The
EVB2 emulates an M68HC11 MCU operating in single-chip mode to user software. However,
several important exceptions are discussed regarding the EVB2.

4.6.1 RAM/Control Register Mapping

Following a normal reset into the monitor program, the locations of the internal MCU RAM and
control registers are set by the monitor program. The monitor positions these resources
independently starting at either address $0000 or $1000 (refer to paragraph 2.3.2.2). The user
must set these jumpers because writes to the INIT register, which controls the locations of these
resources, have no effect 64 cycles after reset. If you want the control registers and RAM
locations to be different than the default locations, instructions which include the new location
must occur early in the user program to write to the INIT register (located at address $103D).
These instructions will have no effect on the EVB2, but are required when the program is
installed in the MCU in the application hardware.

4.6.2 Stack

In normal MCU applications, one of the first instructions in the user program should set the stack
pointer to the top of the RAM area. For single-chip mode applications, this can only be the MCU
internal RAM. User programs running on the EVB2 should follow this rule. However, to assist
users wishing to test only a subroutine without running their program from the beginning, the
monitor program contains a default user stack area at $C000 – C014. This stack area is within the
EVB2 RAM which is external to the MCU. This RAM will not exist in a single-chip mode
application; therefore it should be used with caution.

4.6.3 Emulation ROM

The external EVB2 RAM provides a user-map at addresses $D000 – FFFF which is used to
emulate the ROM memory of an MCU in an application. User programs are typically
downloaded into this area using an S-record format. User programs should be configured so that
they originate at the same address as in their intended application. Programs intended for an
MC68HC11A8 typically originate at $E000, while programs intended for the larger
MC68HC11E9 with 12K bytes of ROM originate at $D000. If the program is designed to reside
in the internal 2K byte EEPROM memory of the MC68HC811E2, it should originate at $F800,
and so on.

Users must remember that while the memory at addresses $D000 – FFFF is RAM memory in the
EVB2, this range will be ROM memory or undefined in an MCU application. Only constants and
program instructions should be downloaded into the user-map.
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4.6.4 Interrupt Vectors

An interrupt vector table including the reset vector should be included in all user programs. This
table is expected by the MCU and is fixed at the upper 64 bytes of the memory map ($FFC0 –
FFFF). For each interrupt that is enabled by the user program, the corresponding two-byte
interrupt vector should contain the address of a routine in the user program designed to service
the interrupt. The reset vector should also contain the starting address of the user program.

4.6.5 User Program Preparation

User programs must be assembled into an S-record format to be downloaded into the EVB2.
Numerous cross-assemblers are available for generating S-record files. The MCU Toolbox book
(included in EVB2 shipping carton) provides a list of third party cross-assembler suppliers.

Note that freeware cross-assemblers are available from Motorola for the IBM-PC (or
compatible), the Apple Macintosh family of computers, and the Unix operating system that
generate the S-Record output file. Additional EVB/EVM/EVS software information can be
obtained by calling th EVM hotline (512-891-EVMS).
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CHAPTER 5

MONITOR COMMANDS

5.1 INTRODUCTION

This section provides a detailed description of each BUFFALO/GATECH monitor command
with examples of its use. For a complete listing of the BUFFALO/GATECH monitor program
refer to the BUFFALO Monitor Program Listing Reference Manual, BUGATECH/AD1.
Standard monitor commands are addressed first followed by the additional commands available
with the M68HC11EVB2LA Logic Analyzer. Table 5-1 summarizes the standard BUFFALO
command set while Table 5-2 lists the EVB2LA commands.

The following are valid BUFFALO command line inputs:

• Commands are shown in their full form, however only the minimum number of
characters required to uniquely identify the command may be entered

• Commands and parameters are shown in both upper- and lower-case, and may be
entered in any combination of upper- or lower-case letters

• Command parameters shown in brackets ([ ]) are optional

• Values shown in angle brackets (< >) represent variables

• Parameters preceding three periods (...) may be repeated

• Parameters separated by commas (,) are mutually exclusive
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Table 5-1. Standard BUFFALO Command Set

Command Description

ASM [<address>] Assembler/disassembler (interactive)

BF <addr1> <addr2> [<data>] Block fill memory with data

BREAK [–][<address>]... Breakpoint set

BULK Bulk erase internal EEPROM

BULKALL Bulk erase EEPROM and CONFIG register

CALL [<address>] Execute user subroutine

COPY <addr1> <addr2> [<dest>] Move memory contents (synonym for MOVE)

ERASE Bulk erase internal EEPROM (synonym for BULK)

GO [<address>] Execute user program

HELP Display BUFFALO commands

LOAD [T] [<host download cmnd>] Load S-records into memory

MD [<addr1> [<addr2>]] Display memory

MEM Display memory command menu

MM [<address>] Modify memory

MOVE <addr1> <addr2> [<dest>] Move memory contents

NOBR Remove all breakpoints

OFFSET [[–]<offset>] Specify signed hex value for LOAD and VERIFY

PROCEED Continue past breakpoint

RD Display contents of user registers

RESET [T] Perform MCU hardware reset

RM [P,Y,X,A,B,C,S [<data>]] Modify user register

RUN Execute user program from address in reset vector
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Table 5-1. Standard BUFFALO Command Set (continued)

Command Description

SB, DB <address> [$, &, %] Single-byte/double-byte real-time trace

SP, PC Stack pointer/program counter real-time trace

SPEED [<baud>] Set HOST port baud rate

STOPAT [<address>] Single-step trace until stop address

TEST1,TEST2,TEST3 Execute external command

TM Enter transparent mode

TRACE [<n>] Single-step trace instructions

USER Prepare for user-reset

VERIFY [T] [<host download cmnd>] Verify S-records against memory

XBOOT [<addr1> [<addr2>]] Send data to another MCU in special bootstrap mode

[<address>]/ (Slash mark) Modify memory (synonym for MM)

Question mark (?) Display BUFFALO commands (synonym for HELP)
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Table 5-2. M68HC11EVB2LA Logic Analyzer Command Set

Command Description

<, >, ^ Move trigger offset to beginning, end, or trigger in buffer

ABOUT {address list}1 Setup to trace before and after trigger at any address in list

AFTER {address list}1 Trace after trigger at any address in list

BEFORE {address list}1 [N <n>] Trace before execution of trigger at any address in list

DIS [X] [<n>] Disassemble instructions from buffer

FAULT Setup to trace before a fault condition

FIND {event}2 [–] [<n>] Move trigger offset to <n>th occurrence of event in buffer

FIND O [–] <offset> Move trigger offset

LA Display EVB2LA commands help menu

ONLY [R,W,A,E] {address list}1 Trace only read, write, access, or EEPROM write cycles to
trigger at any address in list

ONLY V [[–] <addr1> [<addr2>...]] Trace only fetches of interrupt vectors

RAW [<n>] Display instructions or cycles of bus-cycle data

SKIP [–] [<n>] Move trigger offset forward or backward

TIME {event1}2 [–] [<n1>]|
[: {event2}2 [–] [<n2>]

Display cycle-count between two events in buffer

TIME O [–] <offset1>
[: [–] <offset2>]

Display cycle-count between two offsets in buffer

1{address list} = <addr1> [[–] [<addr2>]]...

“<addr1> – <addr2>” represents a range of addresses

“<addr1> <addr2> <addr3>” represents distinct addresses

2{event} = [A, I [%] <address>] [D [%] <data>] [X [%] <aux>]

%= parameter in binary
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5.2 MONITOR COMMANDS

This section describes the standard BUFFALO commands. For each command, the command
line format is given with a description of the command and examples of its use. Within the
example boxes, bold text represents text entered by the user. A carriage return is represented by a
<CR>. Program monitor text examples are in this distinctive
typeface. Explanatory comments appear to the right. Error messages along with possible
explanations are also included for the appropriate command.



MONITOR COMMANDS

5-6 M68HC11EVB2/D

ASM Assembler/Disassembler

5.2.1 Assembler/Disassembler

ASM [<address>]

Parameters:

<address > Assembler operation starting address. When <address> is not specified,
the starting address defaults to $E000.

The assembler/disassembler subsystem is an interactive line assembler and editor. Each source
line is converted into the proper machine language code and stored into memory overwriting
previous data on a line-by-line basis at the time of entry. In order to display an instruction, the
machine code is disassembled and the instruction mnemonic and operands are displayed. All
valid opcodes are converted to assembly language mnemonics. All invalid opcodes are displayed
on the terminal as ILLOP (illegal operation).

The syntax rules for the assembler are as follows:

• All numerical values must be in hexadecimal. No base designators (e.g. $ = hex,
% = binary, etc.) are allowed.

• One or more space or tab characters must separate the opcode and each operand.

• Any characters after a valid opcode and associated operands are ignored.

Addressing modes are designated as follows:

• Immediate addressing is designated by a number sign (#) preceding the address.

• Indexed addressing is designated by a one-byte offset followed by a comma followed
by an X or Y.

• Direct versus extended addressing is determined by the length of the address operand
(1 or 2 digits specifies direct, 3 or 4 specifies extended). Extended addressing may be
forced by padding the address operand with leading zeros.

• Relative offsets for branch instructions are computed by the assembler. The valid
operand for any branch instruction is an absolute address.

The following M68HC11 instruction pairs have the same opcode and disassembly displays the
same mnemonic:

ASL and LSL display LSL

BCC and BHS display BCC

BCS and BLO display BCS
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ASM Assembler/Disassembler

The assembler accepts the following keypress sequence subcommands:

Subcommand Description

control-A (CNTL–A) or
per iod ( .)

Exit assembler/disassembler subsystem

carr iage return <CR> Accept <data> & disassemble next instruction

control-J (CNTL–J) or
plus (+)

Accept <data> & disassemble next address

– or caret (^) Accept <data> & disassemble previous address

= or slash ( /) Accept <data> & disassemble same address

EXAMPLES

>asm e000<CR>

E000 NOP >ldx #1000<CR> Immediate addressing
 CE 10 00
E003 NOP >ldaa 0,x<CR> Indexed addressing
 A6 00
E005 NOP >staa 04<CR> Direct addressing
 97 04
E007 NOP >dex<CR> Inherent addressing
 09
E008 NOP >-<CR> Subcommand:  previous address

E007 DEX >inx<CR>
 08
E008 NOP >cpx #1010<CR>
 8C 10 10
E00B NOP >bne e003<CR> Relative addressing
 26 F6
E00D NOP >rts<CR>
 39
E00E NOP >. Subcommand:  exit assembler
>
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ASM Assembler/Disassembler

Error Messages Possible Cause

Bad argument On entry, the parameter must be a hexadecimal address in
assembler, the correct number of operands must be used.

Branch out of range The branch must be within ±128 bytes of branch instruction.

Immed mode illegal Immediate addressing mode not allowed for specified
instruction.

Mnemonic not found The specified opcode is not M68HC11.

rom-xxxx Only RAM and EEPROM destination addresses are allowed.



MONITOR COMMANDS

M68HC11EVB2/D 5-99

BF Block Fill

5.2.2 Block Fill

BF <addr1> <addr2> [<data>]

Parameters:

<address1> Lower limit for fill operation.

<address2> Upper limit for fill operation.

<data> Fill pattern hexadecimal value. If <data> is not given, the default value is
$FF.

The BF command may only be used on RAM and EEPROM addresses. BF writes data one byte
at a time. If the monitor program encounters an error while writing a data byte to a new location,
the command is immediately aborted and an error message is displayed.

EXAMPLES

>bf 0100 01ff 5a<CR> Write value $5A to addresses $0100 – $01FF.

>bf 8000 8040 ff<CR> Attempt to write $FF to addresses $8000 – $8040.

rom-8000 Error at address $8000, command aborted.
>

Error Messages Possible Cause

Bad argument At least two addresses must be specified.

No more than one <data> value may be specified.

Only hexadecimal values are allowed.

rom-xxxx Only RAM and EEPROM addresses may be specified.
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BREAK Breakpoint Set

5.2.3 Breakpoint Set

BREAK [–][<address>]...

Parameters:

<address> Breakpoint is set at the parameter defined by <address>

–<address> <address> is removed from the table.

The BREAK command sets or removes breakpoints in the breakpoint table. If no parameters are
specified, the breakpoint table contents are displayed. Several set or remove operations may be
specified, separated by one or more spaces or tab characters. A maximum of four breakpoints
may be set. The contents of the table are displayed after all table changes.

Define breakpoints before user program execution. When the GO, CALL, RUN, or USER
commands are entered, the monitor program installs the breakpoint values into the user program.
Encountering a breakpoint causes the user program to halt, and control to return to the monitor
program. The instruction at the breakpoint address is not executed. When the EVB2LA is set-up
for a trace capture, breakpoint values are not loaded into the user program.

Breakpoints place a software interrupt instruction (SWI) at the addresses specified in the
breakpoint table. Therefore SWI instructions cannot be used in user programs because the
software interrupt vector at address $FFF6 is used by the monitor program. Breakpoints can only
be set at locations in RAM or EEPROM.

EXAMPLES

>break e005<CR> Install breakpoint at address $E005

E005 0000 0000 0000
>break -e005 e017<CR> Remove breakpoint at $E005 and set one at $E017

E017 0000 0000 0000
>break -<CR> Clear all breakpoints

0000 0000 0000 0000
>
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BREAK Breakpoint Set

Error Messages Possible Cause

Bad argument Parameters must be hexadecimal addresses or minus sign (–).

Full Only four breakpoints may be set in the breakpoint table.

rom-xxxx Breakpoints can only be set in RAM or EEPROM.
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BULK Bulk

5.2.4 Bulk

BULK

The BULK command lets the user erase all MCU internal EEPROM locations. All EEPROM
cells are written with the value $FF, in effect erasing the cells. BULK works for all M68HC11
family members with internal EEPROM (both 512 byte and 2K byte EEPROM versions). The
synonym for the BULK command is ERASE.

NOTE

No erase verification message is displayed upon completion of the
bulk EEPROM erase operation. User must verify erase operation
by examining EEPROM locations using the MM or MD
command.

EXAMPLE

>bulk<CR>

>
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BULKALL Bulkall

5.2.5 Bulkall

BULKALL

The BULKALL command followed by an MCU reset lets the user erase all MCU internal
EEPROM locations. All EEPROM cells are written with the value $FF, in effect erasing the
cells. To erase the CONFIG register, first enter the BULKALL command, then either enter a
RESET command or press the RESET switch (SW3). Alternately, if the BULKALL and
RESET T commands are executed sequentially, all EEPROM cells are erased but not the
CONFIG register.

NOTE

No erase verification message is displayed upon completion of the
bulk EEPROM erase operation. User must verify erase operation
by examining EEPROM locations using the MM or MD
command.

EXAMPLES

>bulkall<CR>

CONFIG programmed, reset to implement
>
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CALL Execute User Subroutine

5.2.6 Execute User Subroutine

CALL [<address>]

Parameter:

<address> Execute a user subroutine at <address>. If <address> is not defined, the
current user P-register (program counter) value is used. When writing the
user subroutine, the subroutine must end with a return from subroutine
(RTS) instruction.

Prior to user program execution, the current values of the user registers are loaded into the CPU
registers and breakpoints in the breakpoint table are set (if the EVB2LA is not set-up). The X bit
of the user C-register (condition code register) is cleared prior to execution of the user program.
The monitor program halts execution and the user program executes until one of these conditions
occurs:

1. An RTS instruction is executed returning to the monitor

2. A key is pressed on the terminal device

3. A breakpoint is encountered

4. The EVB2LA terminates a trace capture

When the monitor program regains control, the current CPU registers are saved in the user
registers and any breakpoints are removed from the user program. The user register values are
displayed and the EVB2LA status is displayed if it is present.

EXAMPLES

>call f819<CR> Call subroutine at $F819 and return to monitor

P-F819 Y-FD92 X-105B A-00 B-87 C-94 S..I.Z.. S-C014
>call e000<CR> Call program at $E000 and press key to return

To monitor
P-EA1D Y-FD92 X-0064 A-00 B-76 C-80 S....... S-00FB
>

Error Messages Possible Cause

Bad argument Only one hexadecimal address parameter is allowed.

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).
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GO Execute User Program

5.2.7 Execute User Program

GO [<address>]

Parameter:

<address> Execute a user program at <address>. If <address> is not defined, the
current user P-register (program counter) value is used.

Prior to user program execution, the current values of the user registers are loaded into the CPU
registers and breakpoints in the breakpoint table are set (if the EVB2LA is not set-up). The X bit
of the user C-register (condition code register) is cleared prior to execution of the user program.
The monitor program halts execution and the user program executes until one of these conditions
occurs:

1. A key is pressed on the terminal device

2. A breakpoint is encountered

3. The EVB2LA terminates a trace capture

When the monitor program regains control, the current CPU registers are saved in the user
registers and any breakpoints are removed from the user program. The user register values are
displayed and the EVB2LA status is displayed if it is present.

EXAMPLES

>go e000<CR> Execute program at $E000, press key to return
to monitor

P-E017 Y-FD92 X-F929 A-FC B-00 C-80 S....... S-00FF
>go e000<CR> Execute program at $E000 and hit a breakpoint

at $F819
P-F819 Y-FD92 X-F929 A-10 B-00 C-80 S....... S-00FD
>

Error Messages Possible Cause

Bad argument Only one hexadecimal address parameter is allowed.

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).
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HELP Primary Command Menu

5.2.8 Primary Command Menu

HELP

Show the primary BUFFALO command help menu.

Refer also to the MEM command to display commands related to memory operations and the
LA command for the EVB2LA. The synonym for the HELP command is a question mark (?).

EXAMPLE

>help<CR>

********** PRIMARY HELP MENU **********************************************
ASM [<addr>]    :line asm/disasm,  [CR] :next instr, [CTLA,.] :quit
                 [/,=] :same addr, [^,-] :prev addr,  [+,CTLJ] :next addr
BR [-][<addr>]  :set breakpoints, [-] : remove breakpoints
CALL [<addr>]   :call subroutine
GO [<addr>]     :execute code at addr
LOAD T or LOAD <host dwnld command>: load or verify S-record
OFFSET [-]<val> :offset for download
PROCEED         :continue past breakpoint
RESET [T]       :reset processor, [T] :self-test enabled
RUN             :execute code starting at reset vector address
SPEED [<baud>]  :set host port baud rate
STOPAT <addr>   :single-step trace until addr
TM              :transparent mode (CTLA = exit, CTLB = send brk)
TRACE [<n>]     :single-step trace n instructions
USER            :wait for user reset
VERIFY T or VERIFY <host dwnld command>: verify S-record
HELP            :this screen
LA              :logic analyzer help menu
MEM             :memory options help menu

[CTLS,CTLW]:wait            [CTLX,DEL]:abort           [CR]:repeat last cmd
***************************************************************************
>
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LOAD Load S-Records

5.2.9 Load S-Records into Memory

LOAD [<host download command>]

LOAD T

Parameters:

<host download command> Load S-records into memory from the HOST port (P5). The
<host download command> parameter defines a download command to be
executed by the host computer. The LOAD [<host download command>]
is issued from the terminal device and tells the host computer to download
S-record files. If no parameter is given, the LOAD command performs as
a TM command.

T Load S-records into memory from the TERMINAL port (P6)

The monitor program waits for S-record data from the specified port (refer to Appendix A for S-
record information). If all S-records are correctly received during LOAD, the message done is
displayed on the terminal device. If an error is encountered during LOAD, the monitor program
quits writing additional S-record information into memory, and waits for the S9 termination
record. An error message is then displayed indicating the specific error encountered.

The LOAD command can only be used for downloading S-records into RAM or EEPROM. The
current offset value as specified by the OFFSET command is added to all S-record addresses
before the data is written into memory. The LOAD command will not write to destination
address range $C000 – $C0FF, which is reserved for monitor variables.

Pressing CNTL–A  or CNTL–X  aborts the LOAD  command. The character sequence <host
download command> may not contain the slash (/) character because it is a BUFFALO
command.

EXAMPLES

>load cat program.s19<CR> Load from HOST port command
cat program.s19 HOST’s download command is “cat program.s19”

done
>load t<CR> Load from TERMINAL port command

S-record file sent from terminal device
done
>
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LOAD Load S-Records

Error Messages Possible Cause

BUFFALO memory conflict The destination address range $C000 – $C0FF is reserved.

chksum error At least one S-record checksum test failed (indicates an
attempt to load data into EEPROM without using hardware
handshaking, which is not possible above 300 baud).

xxxx-does not verify Only RAM and EEPROM destination addresses are allowed.
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MD Memory Display

5.2.10 Memory Display

MD [<addr1> [<addr2>]]

Parameters:

<addr1> Display memory contents beginning at address <addr1> in lines of 16
bytes. If no address is given, memory display continues from the end of the
last MD command or the address of the last MM command.

<addr2> Display memory contents ending at address <addr2>. If <addr2> is not
given, eight lines of 16 bytes are displayed.

Each memory display is formatted with column headings designating the address of each of the
16 bytes per line. The starting address of each line is displayed in the left column, and the ASCII
character equivalent for each memory byte is displayed in a block on the right. Bytes
corresponding to non-printable characters are displayed as a period.

EXAMPLES

>md 00 3f<CR>

     x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF 0123456789ABCDEF
0000 00 FF 03 00 00 80 06 00 20 00 00 00 00 00 CA B7 ..............m.
0010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ................
0020 00 00 00 F8 00 C0 00 00 05 00 00 07 00 00 C0 00 ................
0030 80 00 00 00 00 00 FF FF FF 93 FF 00 35 10 00 1F ............5...
>md<CR>

     x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF 0123456789ABCDEF
0040 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
0050 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F PQRSTUVWXYZ[\]^_
0060 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F ‘abcdefghijklmno
0070 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F pqrstuvwxyz.....
0080 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F ................
0090 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F ................
00A0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF ................
00B0 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF ................
>

Error Message Possible Cause

Bad argument Only hexadecimal addresses are allowed.

No more than two parameters are allowed.
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MEM Memory Command Menu

5.2.11 Memory Command Menu

MEM

Show the BUFFALO memory commands help menu.

Refer also to the HELP command to display primary commands and the LA command for
commands associated with the EVB2LA.

EXAMPLE

>mem<CR>

********** MEMORY OPTIONS MENU ********************************************
BF <addr1> <addr2> [<data>] :block fill memory
MD [<addr1> [<addr2>]]      :memory display
MM [<addr>] or [<addr>]/    :memory modify, [CR,.] :quit, [/,=] :same addr,
                             [^,-,CTLH] :prev addr, [+,CTLJ,SPACE] :nxt addr
                             <addr>O :compute offset to addr
MOVE <s1> <s2> [<d>]        :block move memory
RM [P,Y,X,A,B,C,S] [<val>]  :register modify
RD                          :register display
SB,DB <addr> [$,&,%]        :single- or double-byte trace $=hex &=dec %=bin
PC,SP                       :program counter trace, stack pointer trace
XBOOT [<addr1> [<addr2>]]   :talk out SCI to hc11 in boot mode

BULK                        :erase EEPROM
BULKALL                     :erase EEPROM and CONFIG
***************************************************************************
>
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MM Memory Modify

5.2.12 Memory Modify

MM [<address>]
[<address>]/

Parameters:

<address> Modify the memory contents at <address>. If <address> is not defined, the
address of the last MM command or the end of the last MD command is
used. The synonym for the MM command is a slash mark (/).

The memory contents at <address> is displayed with a prompt for a new value. The format for
the new data entry and the subcommands accepted are:

Data Field Subcommand Description

[<data>] control-X (CNTL–X) or
per iod ( .)

Abort

[<data>] carr iage return (<CR>) Accept <data> and exit

[<data>] control-J (CNTL–J),
spacebar, or
plus (+)

Accept <data> & modify next address

[<data>] control-H (CNTL–H),
minus (–),  or
caret  (^)

Accept <data> & modify previous address

[<data>] slash ( /)or  = Accept <data> & modify same address

[<address>] O Compute <address> offset

Only one-byte hexadecimal values (two ASCII digits) are allowed for <data>. If more than two
digits are entered, only the last two are taken as <data>. For the O subcommand, four digits may
be entered to calculate the offset between the current address and <address>. If <address> is
more than ±128 bytes away from the current address, an error message is displayed.

MM may only be used to change the contents of RAM and internal EEPROM cells.
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MM Memory Modify

EXAMPLES

>mm 10<CR> Modify address $10

0010 FF 33(SPACE)FF 5a<CR> Write $33 to address $10 and $5A to address $11
>10/ Modify address $10
0010 33 34/ Write $34 to address $10 and modify same address
0010 34 35<CR> Write $35 to address $10

>

Error Messages Possible Cause

Bad argument Only one hexadecimal address parameter is allowed.

Command? An incorrect subcommand character was entered.

Too Long With the O parameter, the offset to <address> is greater than
±128 bytes

rom-xxxx Only RAM and EEPROM destination addresses are allowed.
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MOVE Move Memory

5.2.13 Move Memory

MOVE <addr1> <addr2> [<dest>]

Parameters:

<addr1><addr2> Copy the memory contents between addresses <addr1> and <addr2> to the
destination address range starting at <dest>.

<dest> First address of the destination address. If <dest> is not defined, the
address <addr1>+1 is used.

The MOVE command copies data from any type of memory, but can only write to RAM and
internal EEPROM. MOVE copies data one byte at a time. If the monitor program encounters an
error while writing a data byte to a new location, the command is immediately aborted and an
error message is displayed. The synonym for the MOVE command is COPY.

EXAMPLES

>move e000 e100 f000<CR> Copy data at $E000 – $E100 to $F000 – $F100

>move e000 e100 8000<CR> Copy data at $E000 – $E100 to $8000 – $8100

rom-8000 Error writing to $8000, command aborted
>

Error Messages Possible Cause

Bad argument Only three parameters are allowed.

Only hexadecimal addresses are allowed.

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).
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NOBR Remove Breakpoints

5.2.14 Remove Breakpoints

NOBR

The NOBR command removes all breakpoints from the breakpoint table.

Same as BREAK –.

EXAMPLE

>nobr<CR>

0000 0000 0000 0000
>
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5.2.15 Offset Value

OFFSET [[–]<offset>]

Parameters:

<offset> Specify a signed hexadecimal value <offset> to add to all S-record address
values when using the LOAD and VERIFY commands. If no <offset> is
entered, the current offset value is displayed.

– The minus sign preceding the offset subtracts the signed hexadecimal
value of <offset> from all S-Record addresses.

Every S-record contains a 16-bit address field which specifies the destination address where the
S-record will begin loading data in the 64K byte memory map. The OFFSET command is used
to alter the destination address of all S-records as received via the LOAD and VERIFY
commands. The offset value is maintained until the next MCU reset.

The OFFSET command is useful for loading S-Records containing assembled code destined for
internal EEPROM at $B600 – $B7FF at normal baud rates when hardware handshaking is not
being performed. An offset of $4000 may be specified to load the data into RAM at $F600 –
$F7FF, and then the command MOVE F600 F7FF B600 places the data at $B600 – $B7FF.

EXAMPLES

>offset<CR> Display current offset value

0000
>offset 2000<CR> Add $2000 to all S-Record addresses

2000
>offset -2000<CR> Subtract $2000 from all S-Record addresses

E000
>

Error Message Possible Cause

Bad argument Only one hexadecimal parameter is allowed (with or without a
minus sign preceding it).
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PROCEED Continue Past Breakpoint

5.2.16 Continue Past Breakpoint

PROCEED

Continue user program execution past a breakpoint. The current user P-register (program
counter) is used as the starting address of execution.

Prior to user program execution, the current values of the user registers are loaded into the CPU
registers. A single-step trace executes one instruction in the user program (refer to paragraph
4.4.1.3). Breakpoints in the breakpoint table are set in the user program after control returns to
the monitor program. The X bit of the user C-register (condition code register) is cleared before
execution of the user program. The monitor program halts execution and the user program
executes until one of these conditions occurs:

1. A key is pressed on the terminal device

2. A breakpoint is encountered

When the monitor program regains control of the MCU, the current CPU registers are saved in
the user registers and breakpoints are removed from the user program. The user register values
are displayed and the EVB2LA status is displayed if it is present.

PROCEED is similar to GO except that the single-step trace is used to execute the first
instruction (past the breakpoint) and then a GO command is issued. PROCEED cannot be used
if the EVB2LA is set-up because the single-step trace method is used.

EXAMPLE

A breakpoint has been encountered at $F816

>proceed<CR> Continue past breakpoint

P-F91B Y-FD92 X-F929 A-FC B-00 C-90 S..I.... S-C014
> Another breakpoint encountered at $F91B
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PROCEED Continue Past Breakpoint

Error Messages Possible Cause

ILLOP The instruction to be executed is not a legal M68HC11 opcode.

LA Set-up The EVB2LA is set-up for a trace (entering RESET clears the
logic analyzer trace).

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).
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RD Register Display

5.2.17 Register Display

RD

Display the contents of the user registers. The contents of each user register is displayed with the
corresponding register name. Each user register corresponds to one of the CPU registers as
shown below.

User Register CPU Register

P program counter

Y index register Y

X index register X

A accumulator A

B accumulator B

C condition code register

S stack pointer

The user registers are loaded into the CPU registers prior to execution of a user program via the
CALL, GO, PROCEED, TRACE, and STOPAT commands. The X bit in the user C-register
(condition code register) is cleared before execution of the user program. Upon returning to the
monitor program, the new CPU register values are stored in the user registers.

Additionally, the C-register is displayed bitwise. The single-letter abbreviation for each bit of the
condition code register is displayed for bits with value 1, while a period is displayed for bits with
value 0.

EXAMPLE

>rd<CR>
P-F9EE Y-FD92 X-F929 A-00 B-00 C-9C S..INZ.. S-10FC

>
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RESET MCU Hardware Reset

5.2.18 MCU Hardware Reset

RESET [T]

Parameter:

T EVB2 hardware self-tests are performed after reset.

The RESET command performs a hardware reset of the MCU. The RESET command serves the
same function as pressing the RESET switch (SW3), driving the MCU RESET  pin low. This
occurs approximately 2 milliseconds after you issue the command. After a reset, all MCU
internal registers are changed to their pre-defined reset values as specified in the MCU Data
Sheet. If the USER switch (SW2) is not pressed, the monitor program gains control of the MCU
and displays the BUFFALO startup screen.

If the T parameter is specified, the EVB2 power-on RAM test is performed, and if present, the
EVB2LA self-test is executed. Additionally, the breakpoint table is cleared and the host port
baud rate is reset to 9600 baud. The T parameter is useful for aborting unwanted CONFIG
register modifications which require a RESET to implement.

EXAMPLES

>reset<CR>

BUFFALO/GATECH 1.0 - Bit User’s Fast Friendly Aid to Logical Operation

Register Start (J15): 1000
MCU RAM Range (J16):  0000 01FF
EEPROM Range:         B600 B7FF
User Program Range:   D000 FFFF
Internal ROM Disabled
COP System Disabled
>reset t<CR>

BUFFALO/GATECH 1.0 - Bit User’s Fast Friendly Aid to Logical Operation

Register Start (J15): 1000
MCU RAM Range (J16):  0000 01FF
EEPROM Range:         B600 B7FF
User Program Range:   D000 FFFF
Internal ROM Disabled
COP System Disabled
EVB2 RAM test passed
EVB2LA Logic Analyzer Functioning
>
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RESET MCU Hardware Reset

Error Message Possible Cause

Bad argument T is the only parameter allowed.
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RM Register Modify

5.2.19 Register Modify

RM [p,y,x,a,b,c,s [<data>]]

Parameters:

p,y,x,a,b,c,s Each user register corresponds to one of these CPU registers:

user register CPU register

P program counter

Y index register Y

X index register X

A accumulator A

B accumulator B

C condition code register

S stack pointer

<data> Modify the specified user register to the hexadecimal value <data>. If
<data> is not given, the user is prompted for a new value. If a register
name is not given, the user is prompted for the P-register value.

The user registers are loaded into the CPU registers before user program execution using the
CALL, GO, PROCEED, TRACE, and STOPAT commands. The X bit in the user C-register
(condition code register) is cleared prior to user program execution. Upon returning to the
monitor program, the new CPU register values are stored in the user registers.

If the <data> value is specified on the RM command line, the specified register is modified and
the new user register contents are displayed. If <data> is not given, the current value of the
specified register is displayed and a prompt is provided for a new value. These subcommands are
accepted:

Subcommand Description

carriage return (<CR>) Accept new register data and exit

spacebar (SPACE) Accept new register data and open the next register
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EXAMPLES

>rm c 99<CR> Modify the C-register to $99
P-F9EE Y-FFFF X-F929 A-00 B-00 C-99 S..IN..C S-C014

>rm x<CR> Modify the X-register
P-F9EE Y-FFFF X-F929 A-00 B-00 C-99 S..IN..C S-C014
X-F929 4444<CR> Change X-register value to $4444

>

Error Message Possible Cause

Bad argument The only valid register names are P, Y, X, A, B, C, or S.

Only one hexadecimal <data> value is allowed.
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RUN Execute User Program from Reset Vector

5.2.20 Execute User Program from Reset Vector

RUN

Execute a user program from the address in the reset vector ($FFFE – $FFFF). The RUN
command executes identically to the GO command except that the user program start address is
loaded from the user reset vector.

Prior to user program execution, the current values of the user registers are loaded into the CPU
registers and breakpoints in the breakpoint table are set (if the EVB2LA is not set-up). The X bit
of the user C-register (condition code register) is cleared before user program execution. The
monitor program halts execution and the user program executes until one of these conditions
occurs:

1. A key is pressed on the terminal device

2. A breakpoint is encountered

3. The EVB2LA terminates a trace capture

When the monitor program regains control, the current CPU registers are saved in the user
registers and the breakpoints are removed from the user program. The user register values are
displayed and the EVB2LA status is displayed if it is present.

EXAMPLE

>run<CR> Execute program, press key to return to monitor

P-E017 Y-FD92 X-F929 A-FC B-00 C-80 S....... S-00FF
>

Error Message Possible Cause

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).
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SB/DB Single-Byte/Double-Byte Real-Time Trace

5.2.21 Single-Byte/Double-Byte Real-Time Trace

SB <addr> [$, &, %]
DB <addr> [$, &, %]

Parameters:

<addr> Execute a user program from the address in the reset vector ($FFFE –
$FFFF) and begin single-byte or double-byte real-time tracing of the
contents at <addr>.

$, &, % Specifies the numeric base for the display ($ = hexadecimal, & = decimal,
and % = binary). The default display format is hexadecimal.

Real-time tracing interrupts the user program with a non-maskable interrupt (XIRQ) once every
0.25 seconds and displays the requested data on the terminal device. The displayed data may be
the contents of any address in the MCU memory map; however, reading the MCU control
registers PIOC, SPSR, or SPCR may affect execution of the user program. The length of the user
program interruption needed to display the data value has been minimized, but this process in
itself may affect execution of the user program.

Prior to user program execution, breakpoints in the breakpoint table are set. The X bit of the
condition code register is cleared before user program execution. The monitor program halts
execution and the user program executes until one of these conditions occurs:

1. A key is pressed on the terminal device

2. A breakpoint is encountered

When the monitor program regains control of the MCU, the current CPU registers are saved in
the user registers and the breakpoints are removed from the user program.

EXAMPLE

>db fe<CR> Start real-time double-byte trace at $00FE with
hexadecimal display

Tracing address 00FE --> $ F817 Terminal screen is updated every 0.25 sec.
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SB/DB Single-Byte/Double-Byte Real-Time Trace

Error Messages Possible Cause

Bad argument Only one hex. address parameter is allowed followed by %, &,
or $.

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).

WARNING: reading this ad-
dress may affect execution
of your program

PIOC, SPSR, or SPCR register specified as <addr>.
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SP/PC Stack Pointer/Program Counter
Real-Time Trace

5.2.22 Stack Pointer/Program Counter Real-Time Trace

SP
PC

Execute a user program from the address in the reset vector ($FFFE – $FFFF) and begin real-
time tracing of the user stack pointer or program counter. The display format is hexadecimal.

Real-time tracing interrupts the user program with a non-maskable interrupt (XIRQ) once every
0.25 seconds and displays the requested data on the terminal device. The length of the user
program interruption needed to display the data value has been minimized, but this process may
affect user program execution.

Prior to user program execution, breakpoints in the breakpoint table are set in the user program.
The X bit of the condition code register is cleared before user program execution. The monitor
program halts execution and the user program executes until one of these conditions occurs:

1. A key is pressed on the terminal device

2. A breakpoint is encountered

When the monitor program regains control, the current CPU registers are saved in the user
registers and the breakpoints are removed from the user program.

EXAMPLE

>sp<CR> Start real-time stack pointer trace

Tracing stack pointer --> $ 00FD Terminal screen is updated every 0.25 sec.

Error Messages Possible Cause

Bad argument No additional parameters are permitted.

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).
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SPEED Set Host Port Baud Rate

5.2.23 Set Host Port Baud Rate

SPEED [<baud>]

Parameters:

<baud> Set the HOST port baud rate to <baud>. Valid <baud> values are 300,
1200, 2400, 4800, 9600, and 384 (The <baud> entry 384 specifies the
baud rate 38,400). If <baud> is not given, the current HOST port baud rate
is displayed.

The monitor program sets the HOST port baud rate to 9600 baud at power-on. When a new value
is specified, it is maintained until the next EVB2 power-on reset or a RESET T command is
issued.

EXAMPLES

>speed<CR> Display current HOST port baud rate

host port speed 9600
>speed 1200<CR> Set HOST port baud rate to 1200 baud

host port speed 1200
>

Error Message Possible Cause

Bad argument Only the valid baud rate values 300, 1200, 2400, 4800, 9600,
and 38,400 are accepted.
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STOPAT Single-Step Trace

5.2.24 Single-Step Trace

STOPAT [<address>]

Parameters:

<address> Single-step trace from the current user P-register (program counter)
address through the instruction at <address>. If <address> is zero or
undefined, one step is executed.

The address and disassembled user instruction are displayed prior to execution. Each user
instruction is executed individually and CPU control returns to the monitor program after each
user instruction. The new values of the user registers are displayed after the instruction is
executed.

The single-step trace places a software interrupt (SWI) instruction in the user program. The
monitor program places an SWI after the instruction to be executed. The SWI instruction returns
MCU control to the monitor program (refer to paragraph 4.4.1.3). This requires that all user
programs reside in RAM or internal EEPROM to use the PROCEED, STOPAT, and TRACE
commands. STOPAT execution is not in real time which may affect the operation of some user
programs.

NOTE

Do not include SWI instructions in user programs. An SWI may
return control to the monitor program at an inopportune time.

If <address> is not an instruction opcode address in the user program, the STOPAT command
may continue indefinitely. Single-step tracing can be aborted by pressing CNTL–A  or CNTL–X .

If STOPAT attempts to execute an illegal M68HC11 opcode, an error message is displayed and
further execution is aborted. Additionally, single-step tracing is not allowed when the EVB2LA
is set-up to capture a trace.

EXAMPLE

>stopat f805<CR> User P-register value is $F800

F800 LDS  #$10FF        P-F803 Y-FFFF X-4444 A-90 B-00 C-90 S..I.... S-10FF
F803 LDAA #$10          P-F805 Y-FFFF X-4444 A-10 B-00 C-90 S..I.... S-10FF
F805 STAA $103D         P-F808 Y-FFFF X-4444 A-10 B-00 C-90 S..I.... S-10FF
>
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STOPAT Single-Step Trace

Error Messages Possible Cause

Bad argument Only one hexadecimal address parameter is allowed.

ILLOP The instruction to be executed is not a legal M68HC11 opcode.

LA Set-up The EVB2LA is set-up for a trace (entering RESET clears the
logic analyzer trace).

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).
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TEST1/TEST2/TEST3 Execute External Command

5.2.25 Execute External Command

TEST1 [<parameters>]

TEST2 [<parameters>]

TEST3 [<parameters>]

Parameters:

<parameters> User-defined parameters.

The TEST1, TEST2, and TEST3 commands give you the ability to write and test new
BUFFALO commands without having to re-assemble the entire monitor program.

The external commands are treated identically to internal commands except that the command’s
address is found in RAM as opposed to the monitor command table. The addresses of the
external commands are found at these addresses:

TEST1 $C100

TEST2 $C102

TEST3 $C104

Individual commands are treated as subroutines of the monitor program. To return to the monitor
command line, a return from subroutine (RTS) instruction must be executed at the end of the
external command.

The RAM locations for the TEST1, TEST2, and TEST3 command addresses are not protected
from the LOAD command as monitor variables. An external command may be written and
downloaded into EVB2 RAM along with the address of the command at the proper RAM
location as shown above.

EXAMPLE

>test1<CR>

This output is from an external command
>

Error Messages Various, depending on the user-defined external command.
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TM Transparent Mode

5.2.26 Transparent Mode

TM

In transparent mode, the EVB2 TERMINAL port and HOST port are effectively connected for
direct communication between the terminal device and the HOST device. All data sent by either
device is ignored by the EVB2 except for the following subcommands from the TERMINAL
port:

CNTL–A Exit transparent mode

CNTL–B Send an RS-232 BREAK signal to the HOST

In order for characters sent from the terminal device to be displayed in transparent mode, the
HOST device must echo the data sent to it back to the EVB2.

EXAMPLES

>tm<CR> Enter transparent mode
<CR> Data sent to HOST device
$ xasm test.asm -l > test.lst Data sent to HOST device

...

$ CNTL–A Exit transparent mode
>
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TRACE Trace

5.2.27 Trace

TRACE [<n>]

Parameters:

<n> The number of single-step trace instructions from the current user P-
register (program counter) address. If <n> is not given, the value 1 is
assumed. The parameter <n> is a decimal number between 1 and 255.

The address and disassembled user instruction are displayed prior to execution. Each user
instruction is executed individually and MCU control returns to the monitor program after each
user instruction. The new values of the user registers are displayed after the instruction is
executed.

If TRACE attempts to execute an illegal M68HC11 opcode, an error message is displayed and
further execution is aborted. Single-step tracing can be manually aborted by pressing CNTL–A
or CNTL–X . Single-step tracing is not allowed when the EVB2LA is set-up to capture a trace.

The single-step trace places a software interrupt (SWI) instruction in the user program after the
instruction to be executed. If interrupts are enabled to the CPU (i.e., if the user’s I bit is cleared),
then the service routine for all pending interrupts will be executed as well as each traced
instruction. The SWI instruction returns MCU control to the monitor program (refer to paragraph
4.4.1.3). This requires that all user programs reside in RAM or internal EEPROM to use the
PROCEED, STOPAT, and TRACE  commands. TRACE  execution is not in real time which
may affect the operation of some user programs.

NOTE

Do not include SWI instructions in user programs. An SWI may
return control to the monitor program at an inopportune time.

EXAMPLES

>trace 3<CR> User P-register value is $F800

F800 LDS  #$10FF        P-F803 Y-FCFD X-FAFB A-20 B-F8 C-90 S..I.... S-10FF
F803 LDAA #$10          P-F805 Y-FCFD X-FAFB A-10 B-F8 C-90 S..I.... S-10FF
F805 STAA $103D         P-F808 Y-FCFD X-FAFB A-10 B-F8 C-90 S..I.... S-10FF
>trace<CR>

F808 BSR  $F819         P-F819 Y-FCFD X-FAFB A-10 B-F8 C-90 S..I.... S-10FD
>
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TRACE Trace

Error Messages Possible Cause

Bad argument Only one parameter is allowed.

The parameter must be decimal, greater than 0, and less than
256.

ILLOP The instruction to be executed is not a legal M68HC11 opcode.

LA Set-up The EVB2LA is set-up for a trace (entering RESET clears the
logic analyzer trace).

Parameter Range Error Parameter <n> must be less than 256.

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).
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USER User-Reset Preparation

5.2.28 User-Reset Preparation

USER

A user-reset is accomplished by holding down the USER switch (SW2) while pressing and
releasing the RESET switch (SW3). This switch combination resets the MCU and causes it to
come out of reset in expanded multiplexed operating mode, fetching the reset vector from $FFFE
– $FFFF. A user program then has immediate control of the MCU and its operation may be fully
evaluated.

Use of the USER command prior to a user-reset permits returning to the monitor program when
any of these events occurs:

1. A key is pressed on the terminal device

2. A breakpoint is encountered

3. The EVB2LA terminates a trace capture

When the monitor program regains control, the current CPU registers are saved in the user
registers and any breakpoints are removed from the user program. The user register values are
displayed and the EVB2LA status is displayed if it is present.

In order to return control to the monitor program, the USER command alters the user program so
that three new instructions are executed immediately after the user-reset. These three instructions
are used to clear the X bit in the CPU condition code register and require seven E-clock cycles to
execute. These seven cycles encroach on the 64 cycle time-out limitation on changing some
MCU control registers.

The USER command may be aborted by pressing any key on the terminal device prior to
initiating a user-reset.
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USER User-Reset Preparation

EXAMPLE

>user<CR> Prepare for user-reset

Do USER RESET now, any key to abort Press USER and RESET switch (SW2 & SW3)
P-F80A Y-FD92 X-105B A-00 B-87 C-94 S..I.Z.. S-10FF
> Breakpoint encountered at $F80A

Error Message Possible Cause

rom-xxxx The EVB2 cannot be used to directly debug programs in ROM
(refer to paragraph 4.4.6).



MONITOR COMMANDS

5-46 M68HC11EVB2/D

VERIFY Verify S-Records

5.2.29 Verify S-Records

VERIFY T

VERIFY [<host download command>]

Parameters:

T Verify S-record from the TERMINAL port (P6) against memory contents.

<host download command> Verify S-record from the HOST port (P5) against memory
contents. The <host download command> parameter defines a command
to be executed by the host computer. The VERIFY [<host download
command>] is issued from the terminal device and tells the host computer
to download the S-record file to be checked against memory contents. If
no parameter is given, the VERIFY command performs as a TM
command.

The monitor program waits for S-record data from the specified port (refer to Appendix A for S-
record information). If all S-records are correctly received during VERIFY and all S-record data
agrees with the corresponding memory contents, the message done is displayed on the terminal
device. If an error is encountered during VERIFY or a mismatch is encountered, the monitor
program ceases verifying additional S-record information and waits for the S9 termination
record. An error message is then displayed.

The VERIFY command does not write any data into memory and can be used for verifying S-
record data against any type of memory. The current offset value as specified by the OFFSET
command is added to all S-record addresses before the verification.

Pressing CNTL–A  or CNTL–X  aborts the VERIFY  command. The <host download command>
may not contain the slash (/) character because it is a BUFFALO command.

EXAMPLES

>verify t<CR> Verify from TERMINAL port command
S-record file sent from terminal device

done
>verify cat program.s19<CR> Verify from HOST port command
cat program.s19 HOST’s download command is “cat program.s19”

E005-does not verify Data at address $E005 does not match
>
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VERIFY Verify S-Records

Error Messages Possible Cause

chksum error At least one S-record checksum test failed.

xxxx-does not verify The data at address $xxxx does not match the S-record data.



MONITOR COMMANDS

5-48 M68HC11EVB2/D

XBOOT Send Data to Another MCU

5.2.30 Send Data to Another MCU

XBOOT [<addr1> [<addr2>]]

Parameters:

<addr1> <addr2> Transmit the data between addresses <addr1> and <addr2> through the
MCU SCI to another M68HC11 MCU in special bootstrap mode. If
<addr2> is not given, 256 bytes are transmitted from <addr1>. If <addr1>
is not given, the default starting address is $E000.

The purpose of the XBOOT command is to download a user-written program to another
M68HC11 MCU operating in special bootstrap mode. The target MCU must be configured to
operate in special bootstrap mode and its SCI RXD line must be tied to the MCU TXD line. The
target MCU should be reset immediately prior to issuing the XBOOT command.

These EVB2 MCU control registers are modified:

PORTD[bit-1] → 1

DDRD[bit-1] → 1

BAUD → $22

SCCR2 → $0C

The resident bootloader program input requirements have minor differences among the various
M68HC11 family members. For instance, the MC68HC11A1 and A8 members require the
bootstrap program to be 256 bytes in length, while the MC68HC11E9 accepts variable length
downloads from 1 to 512 bytes.

Refer to the M68HC11 Reference Manual and Motorola Semiconductor Application Note
AN1060 – MC68HC11 Bootstrap Mode for additional information on special bootstrap mode
downloading.

EXAMPLE

>xboot e000 e1ff<CR> Send program at $E000 – $E1FF to MC68HC11E9

>
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XBOOT Send Data to Another MCU

Error Message Possible Cause

Bad argument Only two address parameters are allowed

Only hexadecimal values are allowed
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5.3 EVB2LA COMMANDS

This section describes the commands that are added to the BUFFALO command set for use with
the EVB2LA. For each command, the command line format is given with a description of the
command and examples of its use. Within the example boxes, bold text represents text entered
by the user. A carriage return is represented by a <CR>. Program monitor text
examples are in this distinctive typeface. Explanatory comments appear to
the right. Error messages along with possible explanations are also included for the each
command. Refer to paragraph 4.5 for a description of the EVB2LA.

This list defines the terms used to describe the EVB2LA operating characteristics:

• Trace instruction execution mode — captures every cycle of user program execution.

• Trigger — in trace instruction execution mode, an address in the user program that
causes the EVB2LA to start or stop capturing user-program-execution cycles. In trace
only mode, an address at which a read or write cycle is captured in the capture buffer.

• Trace only mode — captures only selected cycles during user program execution.

• Capture buffer — 32-bit wide by 8K RAM memory. Each 32-bit row of the buffer
holds data concerning one cycle of user program execution. This data includes the 16-
bit address bus, 8-bit data bus, and an 8-bit auxiliary byte.

• Auxiliary byte — 8 bits in the capture buffer. The byte is comprised of six user-
defined test points, the MARK bit, and the MCU R/W  signal.

• Test points — six user-defined TTL compatible inputs on the EVB2LA that are
captured in the capture buffer.

• MARK bit — control signal generated by the EVB2LA control circuitry and stored in
the capture buffer. In trace instruction execution mode, MARK is asserted during the
first cycle of each instruction executed by the MCU. In trace only mode, MARK is
asserted for all cycles captured in the capture buffer.

• Trigger offset — pointer used to indicate the current position in the capture buffer
from which data is displayed. The trigger offset value is relative to the trigger point
and is in units of instructions for data captured from trace instruction execution mode,
and units of cycles for trace only mode.

• Trace set-up command — BUFFALO command used to specify trigger addresses and
prepare the EVB2LA to capture a particular type of trace the next time the user
program is executed.

• Trace display command — BUFFALO command used to display data in the capture
buffer from a previous user program trace.
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</>/^ Move Capture Buffer Trigger Offset

5.3.1 Move Capture Buffer Trigger Offset

< Move trigger offset to the beginning of the capture buffer

> Move trigger offset to the end of the capture buffer

^ Move trigger offset to the capture buffer trigger point

EXAMPLES

><<CR> Move trigger offset to beginning of capture buffer

Trigger Offset Moved From :  0000
To End Of Capture Buffer : -0513

>^<CR> Move trigger offset to the trigger instruction

Trigger Offset Moved From : -0513
To :  0000

>

Error Message Possible Cause

Capture Buffer Empty Capture buffer was cleared by RESET or EVB2LA setup
command.
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ABOUT Set-Up Trace About Trigger

5.3.2 Set-Up Trace About Trigger

ABOUT <addr1> [[–] <addr2>]...

Parameters:

<addr1> Set-up the EVB2LA to trace before and after the instruction at the trigger
address defined by the value <addr1>. All addresses must be within $D000
– $FFFF.

<addr2> Set-up the EVB2LA to trace before and after the instruction at a second
trigger address defined by the value <addr2>. Any number of addresses
may be specified, separated by one or more space or tab characters.

– <addr1> and <addr2> separated by a hyphen (–) denotes a range of trigger
addresses.

The EVB2LA trace set-up commands prepare the EVB2LA to capture a trace during the next
user program execution via the GO, CALL, RUN, or USER commands. The message LA
Set-up indicates that the EVB2LA is prepared for the trace. A subsequent issuance of a new
trace set-up command aborts any previous trace set-up.

During user program execution, the ABOUT command captures as many as 4096 bus-cycles of
data before and after the trigger point. Once the capture buffer fills with data, a non-maskable
interrupt is generated, returning control to the monitor program. The trigger offset is set at the
trigger instruction.

If the capture buffer does not fill with data before execution returns to the monitor program, all
captured data is visible in the capture buffer. If a trigger instruction has not been reached, the
trigger offset is at the last instruction executed.

Normally, breakpoints in the breakpoint table are installed in the user program when the user
program executes. However, when an EVB2LA trace is set-up, breakpoints are not installed.
Additionally, once an EVB2LA trace is set-up, executing a single-step trace via the PROCEED,
STOPAT, or TRACE commands is prohibited.
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ABOUT Set-Up Trace About Trigger

EXAMPLES

>about e0a0<CR> Set-up trace about trigger at address $E0A0
LA Set-up

>about e106-e112<CR> Abort previous set-up, and set-up trace about
LA Set-up trigger at any address between $E106 and $E112

>

Error Messages Possible Cause

Improper Parameter Specifi-
cation

At least one address parameter is required.

Only hexadecimal address parameters or a hyphen are
allowed.

Parameter Range Error Addresses must be within $D000 – $FFFF.

The second address of a range must be greater than the first
address.
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AFTER Set-up Trace After Trigger

5.3.3 Set-up Trace After Trigger

AFTER <addr1> [[–] <addr2>]...

Parameters:

<addr1> Set-up the EVB2LA to trace after the instruction at the trigger address
defined by the value <addr1>. All addresses must be within $D000 –
$FFFF.

<addr2> Set-up the EVB2LA to trace after the instruction at a second trigger
address defined by the value <addr2>. Any number of addresses may be
specified, separated by one or more space or tab characters.

– <addr1> and <addr2> separated by a hyphen (–) denotes a range of trigger
addresses.

The EVB2LA trace set-up commands prepare the EVB2LA to capture a trace during the next
user program execution via the GO, CALL, RUN, or USER commands. The message LA
Set-up indicates that the EVB2LA is prepared for the trace. A subsequent issuance of a new
trace set-up command aborts any previous trace set-up.

During user program execution, the AFTER command captures as many as 8192 bus-cycles of
data after the trigger. Once the capture buffer fills with data, a non-maskable interrupt is
generated, returning control to the monitor program. The trigger offset is set at the trigger
instruction.

If the capture buffer does not fill with data before execution returns to the monitor program by
some other means, all captured data are visible in the capture buffer. If a trigger instruction has
not been reached, the capture buffer will be empty.

Normally, breakpoints in the breakpoint table are installed in the user program when the user
program executes. However, when an EVB2LA trace is set-up, breakpoints are not installed.
Additionally, once an EVB2LA trace is set-up, executing a single-step trace via the PROCEED,
STOPAT, or TRACE commands is prohibited.
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AFTER Set-up Trace After Trigger

EXAMPLES

>after e0a0<CR> Set-up trace after trigger at address $E0A0
LA Set-up

>after e106-e112<CR> Abort previous set-up, and set-up trace after
LA Set-up trigger at any address between $E106 and $E112

>

Error Messages Possible Cause

Improper Parameter Specifi-
cation

At least one address parameter is required.

Only hexadecimal address parameters or a hyphen are
allowed.

Parameter Range Error Addresses must be within $D000 – $FFFF.

The second address of a range must be greater than the first
address.
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BEFORE Set-up Trace Before <n>th
Execution of Trigger

5.3.4 Set-up Trace Before <n>th Execution of Trigger

BEFORE <addr1> [[–] <addr2>]...[N <n>]

Parameters:

<addr1> Set-up the EVB2LA to trace before the <n>th execution of an instruction
at the trigger address defined by the value <addr1>. All addresses must be
within $D000 – $FFFF.

<addr2> Set-up the EVB2LA to trace before the <n>th execution of an instruction
at a second trigger address defined by the value <addr2>. Any number of
addresses may be specified, separated by one or more space or tab
characters.

– Two addresses separated by a hyphen (–) denote a range of trigger
addresses. All addresses must be within $D000 – $FFFF.

N <n> If the <n> parameter is not defined, the value 1 is assumed. <n> is a
decimal value between 1 and 4096.

The EVB2LA trace set-up commands prepare the EVB2LA to capture a trace during the next
user program execution via the GO, CALL, RUN, or USER commands. The message LA
Set-up indicates that the EVB2LA is prepared for the trace. A subsequent issuance of a new
trace set-up command aborts any previous trace set-up.

During user program execution, the BEFORE command captures as many as 8192 bus-cycles of
data before the <n>th execution of any trigger instruction, at which time a non-maskable
interrupt is generated, returning control to the monitor program. The trigger offset is set at the
trigger instruction.

If the <n>th trigger instruction has not been executed before control returns to the monitor
program by some other means, all captured data will be visible in the capture buffer and the
trigger offset will be set at the end of the buffer.

Normally, breakpoints in the breakpoint table are installed in the user program when the user
program executes. However, when an EVB2LA trace is set-up, breakpoints are not installed.
Additionally, once an EVB2LA trace is set-up, executing a single-step trace via the PROCEED,
STOPAT, or TRACE commands is prohibited.
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BEFORE Set-up Trace Before <n>th
Execution of Trigger

EXAMPLES

>before e0a0 N 5<CR> Set-up trace before 5th execution of instruction at
LA Set-up address $E0A0

>BEFORE E106-E112<CR> Abort previous set-up, and set-up trace before
LA Set-up first trigger at any address between $E106 and

$E112
>

Error Messages Possible Cause

Improper Parameter Specifi-
cation

At least one address parameter is required.

Only hexadecimal address parameters or a hyphen are
allowed.

Parameter Range Error Addresses must be within $D000 – $FFFF.

The second address of a range must be greater than the first
address.

<n> must be decimal, greater than 0, and less than 4096.
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DIS Disassemble Instructions in Buffer

5.3.5 Disassemble Instructions in Buffer

DIS [X] [<n>]

Parameters:

X Specifies extended disassembly and displays bus transactions.

<n> Number of instructions to disassemble from the capture buffer. <n> is a
decimal number between 1 and 8192. The default is 1.

The DIS command begins disassembly at the current trigger offset position and continues for
<n> instructions or until the end of the capture buffer is reached. At the completion of the
command, the trigger offset is positioned at the next instruction in the capture buffer.

The left column of the DIS output displays the offset of each instruction from the trigger
instruction. Disassembly follows the same format as the ASM command disassembly, rebuilding
the required data from the capture buffer. The DIS command can only be used to display data
captured from the trace instruction execution mode commands: ABOUT, AFTER, BEFORE,
and FAULT.

The additional information available from extended disassembly follows each disassembled
instruction. This information summarizes memory transactions that take place during the
instruction. Additionally, interrupt occurrences are indicated and the stacking of CPU registers is
displayed. Refer to Table 5-3 for special extended disassembly mnemonic codes and their
meaning:
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Table 5-3. Extended Disassembly Mnemonic Codes

Mnemonic Meaning

From read cycle

Into write cycle

Data 1-byte transaction

Low low byte of 2-byte transaction

High high byte of 2-byte transaction

Orig original (read cycle) of read-modify-write instruction

Rslt result (write cycle) of read-modify-write instruction

INTERRUPT indicates beginning of interrupt stacking

PCL Program Counter low byte

PCH Program Counter high byte

IYL Index Register Y low byte

IYH Index Register Y high byte

IXL Index Register X low byte

IXH Index Register X high byte

ACCA Accumulator A

ACCB Accumulator B

CCR Condition Code Register

V_HI interrupt vector high byte

V_LO interrupt vector low byte
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Examples

0 Pre-trigger Instructions Capture buffer contains data from AFTER
1889 Post-trigger Instructions
P-F8E1 Y-FD6C X-1000 A-FC B-00 C-80 S....... S-00FD
>dis 3<CR> Disassemble 3 instructions
 0000:  F800  LDS  #$00FF
+0001:  F803  LDAA #$10
+0002:  F805  STAA $1000

>dis x 4<CR> Extended disassemble 4 instructions
+0003:  F808  BSR  $F819
          Low :  #$0A Into $00FF
          High:  #$F8 Into $00FE
+0004:  F819  CLI
+0005:  F81A  STAA $1002
          Data:  #$10 Into $1002
        INTERRUPT
          PCL :  #$1D Into $00FD Interrupt stacking of CPU registers
          PCH :  #$F8 Into $00FC
          IYL :  #$92 Into $00FB
          IYH :  #$FD Into $00FA
          IXL :  #$5B Into $00F9
          IXH :  #$10 Into $00F8
          ACCA:  #$10 Into $00F7
          ACCB:  #$87 Into $00F6
          CCR :  #$80 Into $00F5
          V_HI:  #$FA From $FFF0
          V_LO:  #$5A From $FFF1
+0006:  FA5A  LDAA #$40 First instruction of interrupt subroutine

>

Error Messages Possible Cause

Capture Buffer Empty The capture buffer was cleared by Reset or an EVB2LA setup
command.

No TIME or DIS after ONLY The RAW command must be used to view data after ONLY
command.

Parameter Range Error Only decimal values between 1 and 8192 are allowed.

Syntax Error Only an X or a decimal value is allowed.
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5.3.6 Fault

FAULT

The EVB2LA identifies a fault condition as the occurrence of one of two events during user
program execution:

A write to user-program address fault — a write cycle at an address in the $C000 –
$FFFF range

An instruction fetch out-of-range fault — the fetch of an opcode from any address
outside of the $C000 – $FFFF range

The EVB2LA trace set-up commands prepare the EVB2LA to capture a trace during the next
user program execution via the GO, CALL, RUN, or USER commands. The message LA
Set-up indicates that the EVB2LA is prepared for the trace. A subsequent issuance of a new
trace set-up command aborts any previous trace set-up.

During user program execution, the FAULT command captures as many as 8192 bus-cycles of
data before a fault condition occurs, at which time a non-maskable interrupt is generated,
returning control to the monitor program. The trigger offset is set at the instruction attempting to
write to a user program address, or the instruction preceding an instruction fetched out-of-range.

If a fault condition does not occur before control returns to the monitor program, the capture
buffer will be empty.

Before a stack-write operation is performed, redefine the user S-register (stack pointer) so it does
not point to the user stack area: $C000 – $C014. Redefining the user S-register, either manually
or under program control, avoids an erroneous fault condition trigger.

Normally, breakpoints in the breakpoint table are installed in the user program when the user
program executes. However, when an EVB2LA trace is set-up, breakpoints are not installed.
Additionally, once an EVB2LA trace is set-up, executing a single-step trace via the PROCEED,
STOPAT, or TRACE commands is prohibited.

EXAMPLE

>fault<CR> Set-up trace before a fault condition
LA Set-up

>
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5.3.7 Find Data in Capture Buffer

FIND [A,I [%] <address>] [D [%] <data>] [X [%] <aux>] [–] [<n>]

FIND O [–] <offset>

Parameters:

A, I % <address> Find a specific 16-bit address in the capture buffer. The A parameter
specifies a search for an address, the I parameter specifies a search for an
address with the MARK bit in the auxiliary byte equal to 1. If the percent
sign (%) precedes an <address> value, the value is interpreted bitwise, in
which case only 0, 1, and X characters may be included in the value (X =
“don’t care” bit). Otherwise, the value is interpreted in hexadecimal.

D % <data> Find a specific 8-bit data value in the capture buffer. If the percent sign
(%) precedes a <data> value, the value is interpreted bitwise, in which
case only 0, 1, and X characters may be included in the value (X = “don’t
care” bit). Otherwise, the value is interpreted in hexadecimal.

X % <aux> Find a specific value in the capture buffer which matches a value in the
auxiliary byte. If the percent sign (%) precedes a <data> value, the value is
interpreted bitwise, in which case only 0, 1, and X characters may be
included in the value (X = “don’t care” bit). Otherwise, the value is
interpreted in hexadecimal.

T6 T5 T4 T3 T2 T1 RW MK

T6-T1 User test points

RW R/W 

MK MARK Bit

– Searched backward in the capture buffer.

<n> The <n> parameter is a decimal value between -8192 and 8192. The
default is 1.

O Find an offset value in the capture buffer defined by the value <offset>.

At least one of the parameters A, I, D, X, or O must be given. One of each parameter A or I, D,
and X may be included in one command (in the order shown).

The A and I parameters are identical except that the I search is automatically qualified to find
only the first cycle of an instruction (with the MARK bit set).
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If the capture buffer contains data from one of the trace instruction execution commands
(ABOUT, AFTER, BEFORE, or FAULT), the trigger offset is placed at the instruction which
contains the <n>th cycle which matches the specified criteria.

As FIND moves through the capture buffer, if either end of the buffer is encountered before the
specified criteria is found, FIND halts, displays an error message, and returns the trigger offset to
its previous position.

FIND displays the trigger offset location before and after execution of the command.

EXAMPLES

312 Pre-trigger Instructions Capture buffer contains data from ABOUT
921 Post-trigger Instructions
P-F80C Y-FD6C X-0C0C A-04 B-00 C-84 S....Z.. S-00FF
>find o -312<CR> Move trigger offset to offset -312

Trigger Offset Moved From :  0000
To : -0312

>find a 1 x %xxxxxxx0<CR> Find first address bus=$0001, with R/W =0
(i.e. next write to address $0001)

Trigger Offset Moved From : -0312
To : -0207

>dis x<CR> Disassemble instruction found
-0207:  F8A4  STAA $01
          Data:  #$00 Into $0001

>find i f805<CR> Find next instruction starting at address $F805

Trigger Offset Moved From : -0206
To :  0000

>dis x<CR> Disassemble instruction found
 0000:  F805  CLI
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Error Messages Possible Cause

Capture Buffer Empty The capture buffer was cleared by Reset or an EVB2LA setup
command.

Currently At That Position The trigger offset is currently at the specified <offset>.

Improper Parameter
Specification

With FIND O, only decimal parameters are allowed. With %,
only 0, 1 or X values are allowed otherwise, only hexadecimal
parameters are allowed.

Parameter Range Error Valid ranges are <address>: $0000 – $FFFF
<data>: $00 – $FF
<aux>: $00 – $FF

<n>: 1 – 8192

Syntax Error Only designators A, I, D, X, and O are allowed.

Parameters must be defined in this order: A or I, D, and X.

<offset> must be a decimal number between -8192 and 8192.

Trigger offset restored to
previous position

Search criteria not found in buffer.
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5.3.8 Display Logic Analyzer Commands Help Menu

LA

Refer to the HELP command to display primary commands and the MEM command for the
memory commands help menu.

EXAMPLE

>la<CR>

********** LOGIC ANALYZER OPTIONS MENU ************************************
***  CAPTURE  ***
AFTER <addr1> [-] [...<addrn>]          :trace after
ABOUT <addr1> [-] [...<addrn>]          :trace before & after
BEFORE <addr1> [-] [...<addrn>] [N <n>] :trace before nth execution
ONLY [R,W,A,E] <addr1> [-] [...<addrn>] :capture Rd, Wrt or Acc to RAM/REG
ONLY V [[-] <addr>...]                  :capture reads of interrupt Vectors
FAULT :trace before instr fetch out-of-range or write to user pgm address
***  RETRIEVAL  ***
SKIP [-] [<n>] :move trigger offset n instructions
FIND [A,I [%] <addr1>] [D [%] <val1>] [X [%] <val2>] [-] [<n>]
    :move trigger offset to instr containing nth occurrence of srch pattern
FIND O [-] <offst> :load trigger offset with the value specified
TIME [A,I [%] <addr1>] [D [%] <val1>] [X [%] <val2>] [-] [<n1>]
  [: [A,I [%] <addr2>] [D [%] <val3>] [X [%] <val4>] [-] [<n2>]]
TIME O [-] <offst1> [: [-] <offst2>]
    :calculate time between events
RAW [<n>]      :dump n instructions / cycles from trigger offset
DIS [<n>]      :disassemble n instructions from trigger offset
DIS X [<n>]    :extended dissassembly - displays bus activity by cycle

< : skip to top             ^ : skip to trigger          > : skip to bottom
***************************************************************************
>
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5.3.9 Set-up Trace of Only Trigger Addresses

ONLY [R,W,A,E] <addr1> [[–] <addr2>]...

ONLY V [[–] <addr1> [<addr2>...]]

Parameters:

R Set-up the EVB2LA to capture only reads of any trigger address in the list
given

W Set-up the EVB2LA to capture only writes to any trigger address in the list
given

A Set-up the EVB2LA to capture only accesses (reads or writes) to any
trigger address in the list given

E Set-up the EVB2LA to capture only EEPROM write cycles to any trigger
address in the list given.

<addr1> Set-up the EVB2LA to trace the instruction at the trigger address defined
by the value <addr1>. All addresses must be within $D000 – $FFFF.

<addr2> Set-up the EVB2LA to trace the instruction at a second trigger address
defined by the value <addr2>. Any number of addresses may be specified,
separated by one or more space or tab characters.

– Two addresses separated by a hyphen denote a range of trigger addresses.
Refer to the table below for the allowable address ranges (R, W, A, and E
options).

V If no additional parameters follow the V option, a trigger is set at all
interrupt vector addresses (except the XIRQ and SWI interrupt vectors,
which are used by the monitor program, refer to paragraph 4.3). If a minus
sign precedes the address list, a trigger is set at all interrupt vector
addresses except those in the list. If no minus sign is present, a trigger is
set only at those addresses in the list given.
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Only one of the parameters R, W, A, E, or V may be specified. Any number of addresses may be
specified separated by one or more space or tab characters.

Designator Capture Allowable addresses

R Read cycles $0000-1FFF

W Write cycles $0000-1FFF

A Read or write cycles $0000-1FFF

E EEPROM cell writes $B600-B7FF

V Interrupt vector fetches $FFC0-FFFE (even addresses)

The EVB2LA trace set-up commands prepare the EVB2LA to capture a trace during the next
user program execution via the GO, CALL, RUN, or USER commands. The message LA
Set-up indicates that the EVB2LA is properly prepared for the trace. A subsequent issuance of
a new trace set-up command aborts any previous trace set-up.

During user program execution, the ONLY command captures as many as 8192 bus-cycles of
data. Once the capture buffer fills with data, a non-maskable interrupt is generated, returning
control to the monitor program. The trigger offset is set at the beginning of the capture buffer.

If the capture buffer does not fill with data before execution returns to the monitor program, all
captured data is visible in the capture buffer. If a trigger instruction has not been reached, the
capture buffer is empty.

Because the product of the ONLY command is bus-cycle data captured over an arbitrarily long
period of time, the DIS and TIME commands are not allowed following ONLY.

The product of the V option is a list of the even addresses of interrupt vectors in the order in
which they were fetched. This data is useful for monitoring interrupt sequencing, although no
timing data is available.

The E option is not allowed if the EVB2 MCU does not contain 512 bytes of internal EEPROM
at $B600 – $B7FF.

Normally, breakpoints in the breakpoint table are installed in the user program when the user
program executes. However, when an EVB2LA trace is set-up, breakpoints are not installed.
Additionally, once an EVB2LA trace is set-up, executing a single-step trace via the PROCEED,
STOPAT, or TRACE commands is prohibited.
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EXAMPLES

>only a 4<CR> Set-up to trace read and write cycles to address $0004
LA Set-up

>only e b7f0<CR> Abort previous set-up, and set-up to trace write
LA Set-up cycles to address $B7F0 (EEPROM cell)

>only v - fff0<CR> Abort previous set-up, and set-up to trace all
LA Set-up interrupt vectors except the real time interrupt

>only v<CR> Abort previous set-up, and set-up to trace all
LA Set-up interrupt vector fetches

>

Error Messages Possible Cause

Improper Parameter
Specifi-cation

At least one parameter, R, W, A, E, or V, and one address
parameter is required.

Only hexadecimal address parameters or a hyphen are
allowed.

The E option cannot be used with the MC68HC811E2
MCU.

Parameter Range Error Addresses must be within $0000 – $1FFF when using the
R, W, and A options.

When using the E option, addresses must be within
$B600 – $B7FF.

When using the V option, addresses must be even
addresses between $FFC0 – $FFFE.

The second address of a range must be greater than the
first.
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5.3.10 Display Bus-Cycle Data from Buffer

RAW [<n>]

Parameter:

<n> Number of instructions to display (for data captured ABOUT, AFTER,
BEFORE, or FAULT command) or number of cycles (for data captured
from ONLY) in bus-cycle format from the capture buffer. The parameter
<n> is a decimal number and defaults to 1.

The RAW command begins at the current trigger offset position and continues for <n>
instructions (or cycles) or until the end of the capture buffer is reached. At the completion of the
command, the trigger offset is left at the next position in the capture buffer.

For each offset displayed from the buffer, RAW shows a column header, the offset value, and the
cycle-count for instructions (see the example). For each bus-cycle displayed, the address bus,
data bus, and auxiliary byte values are shown. The auxiliary byte is displayed in binary format.
The column heading may be used to determine the bit definitions as follows:

T6-T1 User test points (same as EVB2LA connector P1)

MK MARK Bit (refer to paragraph 4.5.1)

RW R/W  line



MONITOR COMMANDS

5-70 M68HC11EVB2/D

RAW Display Bus-Cycle Data from Buffer

EXAMPLE

312 Pre-trigger Instructions Capture buffer contains data from ABOUT
924 Post-trigger Instructions
P-FA2F Y-FD6C X-0A0A A-01 B-00 C-80 S....... S-00FC
>raw 2<CR> Display 2 instructions

                          TTTTTTMR
Offset   Address   Data   654321KW
 0000:    F805      0E    11111111
          F806      BD    11111101
Cycles:  2

                          TTTTTTMR
Offset   Address   Data   654321KW
+0001:    F806      BD    11111111 Interrupt generated during this instruction
          F807      F8    11111101
          F808      DE    11111101
          F8DE      CE    11111101
          00FF      09    11111100
          00FE      F8    11111100 End-cycle of instruction
          F8DE      CE    11111101 Beginning of interrupt
          F8DF      10    11111101
          00FD      DE    11111100
          00FC      F8    11111100
          00FB      6C    11111100
          00FA      FD    11111100
          00F9      5B    11111100
          00F8      00    11111100
          00F7      00    11111100
          00F6      6D    11111100
          00F5      84    11111100
          00F5      84    11111101
          FFF0      FA    11111101
          FFF1      46    11111101
Cycles:  20

>

Error Messages Possible Cause

Capture Buffer Empty The capture buffer was cleared by RESET or an EVB2LA setup
command.

Parameter Range Error Valid parameter values are 1 – 8192.

Improper Parameter Specifi-
cation

Only one decimal parameter is allowed.
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5.3.11 Move the Trigger Offset in Buffer

SKIP [–] [<n>]

Parameters:

<n> Number of instructions to move the trigger offset (for data captured from
ABOUT, AFTER, BEFORE, or FAULT), or number of cycles (for data
captured from ONLY) in the capture buffer. The parameter <n> is a
decimal number and defaults to 1.

– Defines direction of the move (forward or backward) in the capture buffer.

If the end of the capture buffer is encountered before the specified distance has been skipped, the
trigger offset is set at the end of the capture buffer.

EXAMPLES

312 Pre-trigger Instructions Capture buffer contains data from ABOUT
924 Post-trigger Instructions
P-FA2F Y-FD6C X-0A0A A-01 B-00 C-80 S....... S-00FC
>skip -312<CR> Move trigger offset to beginning of buffer

Trigger Offset Moved From :  0000
To : -0312

>dis<CR> Disassemble instruction
-0312:  F800  LDS  #$00FF

>skip 10<CR> Move trigger offset forward 10 instructions

Trigger Offset Moved From : -0311
To : -0301

>

Error Messages Possible Cause

Capture Buffer Empty The capture buffer was cleared by RESET or an EVB2LA setup
command.

Parameter Range Error Only values between -8192 and 8192 are allowed.

Syntax Error Only one decimal parameter is allowed.
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5.3.12 Display Cycle Count Between Events in Buffer

TIME [A,I [%] <addr1>] [D [%] <data1>] [X [%] <aux1>] [–] [<n1>] :
[A,I [%] <addr2>] [D [%] <data2>] [X [%] <aux2>] [–] [<n2>]

TIME O [–] <offset1> : [[–] <offset2>]

Parameters:

A, I % <addr1> : A, I % <addr2> Find a specific 16-bit address in the capture buffer. The A
parameter specifies a search for an address, the I parameter specifies a
search for an address with the MARK bit in the auxiliary byte equal to 1. If
the percent sign (%) precedes an <address> value, the value is interpreted
bitwise, in which case only 0, 1, and X characters may be included in the
value (X = “don’t care” bit). Otherwise, the value is interpreted in
hexadecimal.

D % <data1> : D % <data2> Find a specific 8-bit data value in the capture buffer. If the
percent sign (%) precedes a <data> value, the value is interpreted bitwise,
in which case only 0, 1, and X characters may be included in the value (X
= “don’t care” bit). Otherwise, the value is interpreted in hexadecimal.

X % <aux1> : X % <aux1> Find a specific value in the capture buffer which matches a value
in the auxiliary byte. If the percent sign (%) precedes a <data> value, the
value is interpreted bitwise, in which case only 0, 1, and X characters may
be included in the value (X = “don’t care” bit). Otherwise, the value is
interpreted in hexadecimal.

T6 T5 T4 T3 T2 T1 RW MK

T6-T1 User test points

RW R/W 

MK MARK Bit

– Searched backward in the capture buffer.

<n> The <n> parameter is a decimal value between -8192 and 8192. The
default is 1.

O Find an offset value in the capture buffer defined by the value <offset>.

<n> The <n> parameter is a decimal value between -8192 and 8192 and
defaults to 1.

O Find an offset value in the capture buffer defined by the values <offset1>
and <offset2>.
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Display the number of cycles between two events in the capture buffer. If the second event is not
specified, the number of cycles between the current trigger offset and the first event is displayed.
The rules for parameter entry are the same as for the FIND command, with a colon separating the
two events.

The TIME command effectively performs two FIND commands, counting the number of cycles
between each event found. The trigger offset is moved as the TIME command executes and is
left at the last event found. If either end of the capture buffer is encountered as TIME executes,
the command is aborted and the trigger offset is positioned at the original trigger offset position.

EXAMPLES

312 Pre-trigger Instructions Capture buffer contains data from ABOUT
924 Post-trigger Instructions
P-FA2F Y-FD6C X-0A0A A-01 B-00 C-80 S....... S-00FC
>time i fff0 : i fff0 2<CR> Display cycle-count between the next 2 RTI

interrupts
Trigger Offset Moved From :  0000
To : +0001
To : +0497

Cycles Between Events:  2237 1.1185 ms @ 2 MHz between interrupts

>
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Error Messages Possible Cause

Capture Buffer Empty The capture buffer was cleared by RESET or an EVB2LA setup
command.

Improper Parameter Specifi-
cation

With TIME O, only decimal parameters are allowed. With %,
only 0, 1 or X values are allowed otherwise, only hexadecimal
parameters are allowed.

Parameter Range Error Valid ranges are <addr1,2>: 0000 through FFFF
<data1,2>: 00 through FF
<aux1,2>: 00 through FF

<n1,2>: 1 through 8192

Syntax Error Only designators A, I, D, X, and O are allowed.

A or I, D, and X parameters must be given in that order.

<offset> must be a decimal number between -8192 and 8192.

TIME display aborted One of the events or offsets was not found in the capture
buffer.

Trigger offset restored to
previous position

One of the events or offsets was not found in the capture
buffer.



SUPPORT INFORMATION

M68HC11EVB2/D 6-1

CHAPTER 6

SUPPORT INFORMATION

6.1 INTRODUCTION

This chapter provides the connector signal descriptions, parts lists, and schematic diagrams of the
M68HC11EVB2 Evaluation Board components (EVB2CPU and EVB2LA).

6.2 I/O CONNECTOR SIGNAL DESCRIPTIONS

The tables in this section list each EVB2CPU and EVB2LA input/output connector with the
signal descriptions for each pin.

Table 6-1.  MCU I/O Port Connector (EVB2CPU P1) Pin Assignments

Pin Number Signal Mnemonic Signal Name and Description

1 GND GROUND

2, 3 — Not connected.

4 STRA STROBE A — Bi-directional control line used to latch data
into ports B and C.

5 E EXTERNAL CLOCK — Internally generated output clock
signal used as a timing reference.  The frequency of E clock
is 1/2 the input frequency of the signal on the OSC1 pin.

6 STRB STROBE B — An output control line used to control data
into ports B and C.

7 EXTAL EXTAL — MCU clock input line.

8 — Not connected.

9 – 16 PC0 – PC7 PORT C (bits 0-7) — General purpose input/output (I/O)
lines.

17 RESET RESET — An active low bi-directional control line used to
initialize the MCU.

18 XIRQ X INTERRUPT REQUEST — An active low input line used
to request MCU asynchronous non-maskable interrupts.
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Table 6-1.  MCU I/O Port Connector (EVB2CPU P1) Pin Assignments (continued)

Pin Number Signal Mnemonic Signal Name and Description

19 IRQ INTERRUPT REQUEST — An active low input line used to
request MCU asynchronous interrupts.

20 – 25 PD0 – PD5 PORT D (bits 0-5) — General purpose input/output (I/O)
lines.

26 VCC SYSTEM POWER SUPPLY – +5 Vdc power source used by
the EVB2 logic circuits. The signal on this pin is determined
by the setting of jumper header J8 (refer to paragraph
2.3.2.2)

27 – 34 PA7 – PA0 PORT A (bits 0-7) — General purpose input/output (I/O)
lines.

35 – 42 PB7 – PB0 PORT B (bits 0-7) — General purpose output lines.

43 PE0/AN0 PORT E (bit 0) — General purpose input or A/D channel
input line.

44 PE4/AN4 PORT E (bit 4) — General purpose input or A/D channel
input line.

45 PE1/AN1 PORT E (bit 1) — General purpose input or A/D channel
input line.

46 PE5/AN5 PORT E (bit 5) — General purpose input or A/D channel
input line.

47 PE2/AN2 PORT E (bit 2) — General purpose input or A/D channel
input line.

48 PE6/AN6 PORT E (bit 6) — General purpose input or A/D channel
input line.

49 PE3/AN3 PORT E (bit 3) — General purpose input or A/D channel
input line.

50 PE7/AN7 PORT E (bit 7) — General purpose input or A/D channel
input line.

51 VRL VOLTAGE REFERENCE LOW — Input  reference supply
voltage (low) line for the MCU analog-to-digital (A/D)
converter. Increases accuracy of the A/D conversion.



SUPPORT INFORMATION

M68HC11EVB2/D 6-3

Table 6-1.  MCU I/O Port Connector (EVB2CPU P1) Pin Assignments (continued)

Pin Number Signal Mnemonic Signal Name and Description

52 VRH VOLTAGE REFERENCE HIGH — Input  reference supply
voltage (high) line. Increases accuracy of the A/D
conversion.

53 – 59 — Not connected.

60 MODB EVB2 control circuitry output of MCU MODB signal.
(not for use as input to control MCU)

Table 6-2. EVB2CPU/EVB2LA Connector P2 Pin Assignments

Pin Number
Signal

Mnemonic Signal Name and Description

1,2 GND GROUND

3,4 VCC SYSTEM POWER SUPPLY – +5 Vdc power source,
EVB2LA input signal

5 – 20 A0 – A15 ADDRESS BUS A0 – A15 — MCU address bus,
EVB2LA input signals

21 RTEST READ TEST BYTE — EVB2LA input signal

22 WTRIG WRITE TO TRIGGER RAM — EVB2LA input signal

23 WNIB NIBBLE SHIFT OUTPUT — EVB2LA input signal

24 RLA READ LOGIC ANALYZER — EVB2LA input signal

25 PTRESET PT COUNTER RESET — EVB2LA input signal

26 LAMODE LOGIC ANALYZER MODE — EVB2LA input signal

27 – 32 T1 – T6 TEST POINTS 1 – 6 — User-selectable EVB2LA input
lines. These test points are not connected to the EVB2.

33 S16 STATE_16 — EVB2LA input signal

34 XIRQ X INTERRUPT REQUEST — An active low EVB2LA
output line used to request MCU asynchronous non-
maskable interrupts.

35 AS ADDRESS STROBE – Active-high output signal which
indicates that a valid address is on the address bus.
EVB2LA input signal.
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Table 6-2. EVB2CPU/EVB2LA Connector P2 Pin Assignments (continued)

Pin Number
Signal

Mnemonic Signal Name and Description

36 LIR LOAD INSTRUCTION REGISTER — An active low
output line used to signify the first E-clock cycle of each
instruction cycle and remains low for the duration of
cycle (opcode fetch).— EVB2LA input signal

37 E MCU E-CLOCK SIGNAL — EVB2LA input signal

38 R/W READ/WRITE  — EVB2LA input signal from the MCU

39 – 46 D0 – D7 DATA/ADDRESS BUS (A0/D0 – A7/D7) — EVB2LA
input signals from the MCU

47 – 48 VCC SYSTEM POWER SUPPLY – +5 Vdc power source,
EVB2LA input signal

49 – 50 GND GROUND

Table 6-3. RS-232 HOST Port EVB2CPU P5 Pin Assignments

Pin Number
Signal

Mnemonic Signal Name and Description

1,4,6 – 9 — Not connected.

2 RXD RECEIVE DATA — Serial data input line.

3 TXD TRANSMIT DATA — Serial data output line.

5 SIG-GND SIGNAL GROUND — This line provides signal ground
or common return connection between the EVM and
RS-232 compatible terminal. This line establishes the
common ground reference potential between the EVM
and RS-232 compatible terminal circuitry.
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Table 6-4. RS-232 TERMINAL Port EVB2CPU P6 Pin Assignments

Pin Number
Signal

Mnemonic Signal Name and Description

1 GND FRAME GROUND

2 TXD TRANSMIT DATA — Serial data output line.

3 RXD RECEIVE DATA — Serial data input line.

4 RTS REQUEST TO SEND — An input signal used to
request  permission to transfer data.

5 CTS CLEAR TO SEND — An output signal used to indicate
a ready-to-transfer data status.

6 DSR DATA SET READY — An output signal (held high)
used to indicate an on-line/in-service/active status.

7 SIG-GND SIGNAL GROUND — This line provides signal ground
or common return connection between the EVM and
RS-232 compatible terminal. This line establishes the
common ground reference potential between the EVM
and RS-232 compatible terminal circuitry.

8 DCD DATA CARRIER DETECT — An output  signal (held
high) used to indicate an acceptable carrier signal has
been detected.

20 DTR DATA TERMINAL READY — An output  line (held
high) used to indicate an on-line/in-service/active
status.

9 – 19,
21 – 25

— Not connected.

Table 6-5. EVB2LA Connector P1 Test Point Pin Assignments

Pin Number
Signal

Mnemonic Signal Name and Description

T1 – T6 T1 – T6 TEST POINTS 1 – 6 — User-selectable EVB2LA input
lines. These test points are not connected to the EVB2.

GND GND Ground
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6.3 PARTS LISTS

Tables 6-11 and 6-12 are parts lists for the EVB2CPU and EVB2LA.

Table 6-6. EVB2CPU Parts List

Reference Designation Component Description

C1, C2 Capacitor, tantalum, 22µF, ±10%, @ 25 Vdc

C3, C4 Capacitor, 22pF, ±10%, @50 Vdc

C5, C8, C9, C10, C11, C16, C17, C18,
C19, C20, C21

Capacitor, 0.1µF, ±10%, @25 Vdc

C6 Capacitor, .01µF, ±10%, @ 25 Vdc

C7, C101 Capacitor, 1.0µF, ±10%, @ 50 Vdc

C12, C13, C14, C15 Capacitor, tantalum, 10µF, ±10%, @ 16 Vdc

C22 Capacitor, 10pF, ±10%, @ 50 Vdc

GG1 Ground grabber (1" bare solid tinned #18 wire)

J1, J4, J11, J12, J13, J14, J15, J16 Header, 3-pin, single row

J2, J3, J5, J6, J7, J9, J10, J18, J19 Header 2-pin, single row

L1 Low current red LED lamp, T-1 package

P1 Header, double row post, 60 pin

P2 Header, double row post, 50 pin

P3(1) 3.5 mm PCB-mount phone jack, Mouser #16PJ528

P3A(1) AC-to-DC adaptor, 9V @ 200 mA, Digi-Key #T401-ND

P4 Power terminal, Augat RDI 2SV-02, 25 Volts, with red and
black levers

P5 DB9S connector surface mount, female, ultra short body, AMP
#745781-1 or -2, or AMP #745131-1 or -2

P6 DB25S connector surface mount, female, AMP # 206584-2
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Table 6-6. EVB2CPU Parts List (continued)

Reference Designation Component Description

Q1 MC34064 low-voltage detection circuit

R1, R6 Resistor, 1K ohms, ±5%, @1/4W

R2, R3, R4 Resistor, 4.7K ohms, ±5%, @1/4W

R5 Resistor, 10M ohms, ±5%, @1/4W

R7, R8, R10, R11, R12, R13 Resistor, 10K ohms, ±5%, @1/4W

R9 Resistor, 3.3K ohms, ±5%, @1/4W

SW1 Switch, SPDT, miniature slide , C&K #1101

SW2, SW3 Switch, SPDT, momentary, C&K 8125-R2/7527

U1 I.C. MC68HC24FN Port Replacement Unit

U2 I.C. MC68HC11E1FN Microcontroller

U3, U4 I.C. 74HC138 decoder

U5 I.C. MC145407P RS-232 chip

U6 I.C. 74HC30 NAND gate

U7 I.C. 74HC04 inverter

U8 I.C. 74HC373 latch

U9 I.C. 27C128 (250 ns)

U10 I.C. 27C256 (250 ns)

U11 I.C. MCM60256 CMOS static 32K x 8 RAM chip, Motorola

U12 I.C. MC2681P

VR1(1) AN7805, 5 Vdc, 1 Amp voltage regulator

Y1 8 MHz ceramic resonator

Y2 3.6864 MHz crystal

Circuit board supports, four, SPC Tech #TPCS-4

Threaded spacers, four, 1 inch, 8-32 tapped

1. User-supplied optional parts
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Table 6-6. EVB2CPU Parts List (continued)

Reference Designation Component Description

Fabricated jumper, Aptronics # 929955-00 (use with jumper
headers J15 and J16)

I.C. socket, 44-pin PLCC , AMP 641747-2 (for U1)

I.C. socket, 52-pin PLCC , AMP 641748-2 (for U2)

I.C. socket, 20-pin DIP (for U5)

I.C. socket, 28-pin DIP (for U9, U10, and U11)

I.C. socket, 40-pin DIP (for U12)

Heat sink(1), AAVID #5772B (for VR1)

Screw(1), 4-40 x 1/4" (for VR1)

Hex nut(1), 4-40 (for VR1)

1. User-supplied optional parts
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Table 6-7.  EVB2LA Parts List

Reference Designation Component Description

C1, C2, C3, C5, C6, C7, C8, C9, C10,
C11, C12, C13, C14, C15, C16, C17,

C18, C19, C20, C21, C22, C23

Capacitor, 0.1µF, ±10%, @25 Vdc

C4 Capacitor, 4.7µF, ±10%, @ 10 Vdc

C24 Capacitor, 22pF, ±10%, @ 50 Vdc

GG1 Ground grabber (1" bare solid tinned #18 wire)

P1 Header, pin-7, 100 mil. center, right-angle

P2 Header, double row post, 50 pin

R2 Resistor, 2K ohms, ±5%, @ 1/4W

RN1, RN4 Resistor network, 8-pin SIP, 10K ohms

RN2, RN3 Resistor network, 6-pin SIP, 10K ohms

RN5 Resistor network, 10-pin SIP, 3.3K ohms

R100 Resistor, 10K ohms, ±5%, @ 1/4W

U1, U2, U3, U4, U10, U11, U12 74HC541 three-state buffer

U5, U6, U7, U8 6264AP-12 8Kx8 CMOS RAM

U9 6267P-45 16Kx1 CMOS RAM

U13 74HC139 Decoder

U14 74HC00 NAND gate

U15 74HC09 Open collector AND gate

U16 74HC4020 13-bit counter

U17, U19, U20, U21, U22 MC74AC169P 4-bit counter, Motorola

U18 Gould/AMI PEEL273 (30ns) CMOS FPLA

Cable Assembly:
AMP 50-pin socket connector

3" long 50-conductor ribbon cable

I.C. socket, 28-pin DIP, (for U5, U6, U7, and U8)

I.C. socket, 24-pin DIP, 300 mil, (for U18)

I.C. socket, 20-pin DIP (for U4 and U9)
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6.4  SCHEMATIC DIAGRAMS

Figure 6-1 is the EVB2CPU schematic and Figure 6-2 is the EVB2LA schematic.
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Figure 6-1. M68HC11EVB2CPU Schematic Diagrams (1 of 6)
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Figure 6-1. M68HC11EVB2CPU Schematic Diagrams (2 of 6)
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Figure 6-1. M68HC11EVB2CPU Schematic Diagrams (3 of 6)
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Figure 6-1. M68HC11EVB2CPU Schematic Diagrams (4 of 6)



SUPPORT INFORMATION

6-18 M68HC11EVB2/D



SUPPORT INFORMATION

M68HC11EVB2/D 6-19

Figure 6-1. M68HC11EVB2CPU Schematic Diagrams (5 of 6)
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Figure 6-1. M68HC11EVB2CPU Schematic Diagrams (6 of 6)
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Figure 6-2. M68HC11EVB2LA Schematic Diagrams (1 of 6)
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Figure 6-2. M68HC11EVB2LA Schematic Diagrams (2 of 6)
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Figure 6-2. M68HC11EVB2LA Schematic Diagrams (3 of 6)
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Figure 6-2. M68HC11EVB2LA Schematic Diagrams (4 of 6)
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Figure 6-2. M68HC11EVB2LA Schematic Diagrams (5 of 6)
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Figure 6-2. M68HC11EVB2LA Schematic Diagrams (6 of 6)
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APPENDIX A

S-RECORD INFORMATION

A.1 INTRODUCTION

The S-record format for output modules was devised for the purpose of encoding programs or
data files in a printable format for transportation between computer systems.  The transportation
process can thus be visually monitored and the S-records can be more easily edited.

A.2 S-RECORD CONTENT

When viewed by the user, S-records are essentially character strings made of several fields which
identify the record type, record length, memory address, code/data, and checksum.  Each byte of
binary data is encoded as a 2-character hexadecimal number: the first character representing the
high-order 4 bits, and the second the low-order 4 bits of the byte.

The 5 fields which comprise an S-record are shown below:

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM

where the fields are composed as follows:

Field Printable Characters Contents

Type 2 S-record type - S0, S1, etc.

Record length 2 The count of the character pairs in the record, excluding the type and
record length.

Address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data field is to be loaded into
memory.

Code/data 0-2n From 0 to n bytes of executable code, memory loadable data, or
descriptive information. For compatibility with teletypewriters, some
programs may limit the number of bytes to as few as 28 (56 printable
characters in the S-record).

Checksum 2 The least significant byte of the one’s complement of the sum of the
values represented by the pairs of characters making up the record
length, address, and the code/data fields.
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Each record may be terminated with a CR/LF/NULL.  Additionally, an S-record may have an
initial field to accommodate other data such as line numbers generated by some time-sharing
systems.

Accuracy of transmission is ensured by the record length (byte count) and checksum fields.

A.3 S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of the encoding,
transportation, and decoding functions.  The various Motorola upload, download, and other
record transportation control programs, as well as cross assemblers, linkers, and other file-
creating or debugging programs, utilize only those S-records which serve the purpose of the
program.  For specific information on which S-records are supported by a particular program, the
user manual for that program must be consulted.

NOTE

The EVB2 monitor supports only the S1 and S9 records.  All data
before the first S1 record is ignored.  Thereafter, all records must
be S1 type until the S9 record terminates data transfer.

An S-record format module may contain S-records of the following types:

S0 The header record for each block of S-records.  The code/data field may contain any
descriptive information identifying the following block of S-records.  The address field is
normally zeroes.

S1 A record containing code/data and the 2-byte address at which the code/data is to
reside.

S2-S8 Not applicable to EVB2.

S9 A termination record for a block of S1 records.  The address field may optionally contain
the 2-byte address of the instruction to which control is to be passed.  If not  specified,
the first entry point specification encountered in the object module input will be used.
There is no code/data field.

Only one termination record is used for each block of S-records.  Normally, only one header
record is used, although it is possible for multiple header records to occur.
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A.4 S-RECORD CREATION

S-record format programs may be produced by several dump utilities, debuggers, or several cross
assemblers or cross linkers.  Several programs are available for downloading a file in S-record
format from a host system to an 8-bit or 16-bit microprocessor-based system.

A.5 S-RECORD EXAMPLE

Shown below is a typical S-record format module, as printed or displayed:

S00600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC

The above module consists of an S0 header record, four S1 code/data records, and an S9
termination record.

The S0 header record is comprised of the following character pairs:

S0 S-record type S0, indicating a header record.

06 Hexadecimal 06 (decimal 6), indicating six character pairs (or ASCII bytes) follow.

00
00

Four-character 2-byte address field, zeroes.

48
44
52

ASCII H, D, and R - "HDR".

1B Checksum of S0 record.

The first S1 code/data record is explained as follows:

S1 S-record type S1, indicating a code/data record to be loaded/verified at a 2-byte
address.

13 Hexadecimal 13 (decimal 19), indicating 19 character pairs, representing 19 bytes of
binary data, follow.

00 Four-character 2-byte address field; hexadecimal address 0000, indicates location
where the following data is to be loaded.
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The next 16 character pairs are the ASCII bytes of the actual program code/data.  In this
assembly language example, the hexadecimal opcodes of the program are written in sequence in
the code/data fields of the S1 records:

OPCODE INSTRUCTION

28 5F BHCC $0161

24 5F BCC $0163

22 12 BHI $0118

22 6A BHI $0172

00 04 24 BRSET 0,$04,$012F

29 00 BHCS $010D

08 23 7C BRSET 4,$23,$018C

. (Balance of  this  code  is  continued  in  the  code/data fields of the

. remaining  S1 records, and  stored in  memory location 0010, etc..)

.

2A Checksum of the first S1 record.

The second and third S1 code/data records each also contain $13 (19) character pairs and are
ended with checksums 13 and 52, respectively.  The fourth S1 code/data record contains 07
character pairs and has a checksum of 92.

The S9 termination record is explained as follows:

S9 S-record type S9, indicating a termination record.

03 Hexadecimal 03, indicating three character pairs (3 bytes) follow.

00
00

Four-character 2-byte address field, zeroes.

FC Checksum of S9 record.

Each printable character in an S-record is encoded in hexadecimal (ASCII in this example)
representation of the binary bits which are actually transmitted.  For example, the first S1 record
above is sent as shown below.

0101 0011 0011 0001 0011 0001

TYPE

0011 0011 0011 0000 0011 0000 0011 0000 0011 0000 0011 0010 0011 1000 0011 0101 0100 0110 ••• 0011 0010 0100 0001

5 3 3 1 3 1 3 3 0 3 0 3 0 3 0 3 2 3 8 3 5 4 6 ••• 3 2 4 1

S 1 1 3 0 0 0 0 2 8 5 F ••• 2 A

LENGTH ADDRESS CODE/DATA CHECKSUM

3
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APPENDIX B

PROGRAMMABLE ARRAY LOGIC FLOW DIAGRAMS

B.1 TRACE ONLY INTERRUPT VECTORS
Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect even addresses between $FFDE – $FFFE

INITIALIZE STATE TO $00

PT8192 = 1?

MARK; WRITE; LACOUNT; PTCLOCK

XIRQ

COUNT (PTUP) = E = 1?

PTCLOCK

STATE = 0,0000 (0)

A15 = A14 = TRIGGER = R/W = E = 1?

YES

NO

P0 

YES

NO

P8 P1

YES

NO

Trace ONLY Interrupt Vectors      

P0 -  Causes return to monitor when capture RAM full

P1 -  Causes capture of one bus state

P8 -  Used to initialize post-trigger counter
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B.2 TRACE ONLY READS OF RAM OR REGISTERS
Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect addresses in the range…
$0000 – $0FFF  or  $1000 – $1FFF  or  $0000 – $1FFF

INITIALIZE STATE TO $01

PT8192 = 1?

MARK; WRITE; LACOUNT; PTCLOCK

XIRQ

STATE = 0,0001 (1)

A15 = A14 = 0 & TRIGGER = R/W = E = 1?

YES

NO

P0    

P2    

YES

NO

Trace ONLY RAM and/or Reg Reads     

P0 -  Causes return to monitor when capture RAM full

P2 -  Causes capture of one bus state
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B.3 TRACE ONLY WRITES TO RAM OR REGISTERS
Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect addresses in the range…
$0000 – $0FFF  or  $1000 – $1FFF  or  $0000 – $1FFF

INITIALIZE STATE TO $02

PT8192 = 1?

MARK; WRITE; LACOUNT; PTCLOCK

XIRQ

STATE = 0,0010 (2)

A15 = A14 = R/W = 0 & TRIGGER = E = 1?

YES

NO

P0    

P3    

YES

NO

Trace ONLY RAM and/or Reg Writes       

P0 -  Causes return to monitor when capture RAM full

P3 -  Causes capture of one bus state
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B.4 TRACE ONLY ACCESSES OF RAM OR REGISTERS
Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect addresses in the range…
$0000 – $0FFF  or  $1000 – $1FFF  or  $0000 – $1FFF

INITIALIZE STATE TO $03

PT8192 = 1?

MARK; WRITE; LACOUNT; PTCLOCK

XIRQ

STATE = 0,0011 (3)

A15 = A14 = 0 & TRIGGER = E = 1?

YES

NO

P0     

P4     

YES

NO

Trace ONLY RAM and/or Reg Accesses   

P0 -  Causes return to monitor when capture RAM full

P4 -  Causes capture of one bus state
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B.5 TRACE ONLY WRITES TO EEPROM
Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect addresses in the range $B600 – $B7FF

INITIALIZE STATE TO $04

PT8192 = 1?

MARK; WRITE; LACOUNT; PTCLOCK

XIRQ

STATE = 0,0100 (4)

A14 = R/W = 0 & A15 = TRIGGER = E = 1?

YES

NO

P5      

P6      

YES

NO

Trace ONLY EEPROM Writes        

P5 -  Causes return to monitor when capture RAM full

P6 -  Causes capture of one bus state
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B.6 INITIALIZE LOGIC ANALYZER STATE
Write xx to "PTRESET" to reset post-trigger counter.
Write $00 or $01 to "TRRAM" through "TRRAM + 16383" to load trigger RAM
(1=Trigger). 16K trigger RAM mirrors due to A14 and A15 not connected.
By remaining in this state for more than 4.1 milliseconds, all 8192 "MARK" bits will be written
to zero.

INITIALIZE STATE TO $05

STATE = 0,0101 (5)

Initialize Logic Analyzer State     

WRITE; LACOUNTP7     

E = 1?

YES

NO

P7 -  Performs writes to capture buffer with "MARK" = 0
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B.7 TRACE ABOUT EXECUTION OF SELECTED USER
INSTRUCTION
Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect address of selected User Instruction
Initialize post-trigger counter to 4095

INITIALIZE STATE TO $06

STATE = 0,0110 (6)

Trace ABOUT Instruction - Wait for User Prog    

A15 = A14 = R/W = LIR = E = 1?

YES

NO

MARK; WRITE; LACOUNT; STCOUNTP9     

TRIGGER = 1? PTCLOCK

NO

P10    
YES

WRITE; LACOUNTP11      

PT4096 = 1?
NO

YES

PTCLOCK; STCOUNTP14     PTCLOCK; STCOUNTP13      

LIR = 1?

YES

NO

MARKP12      

A15 = A14 = TRIGGER = R/W = E = 1?

YES

NO

STATE = 0,0111 (7)

Capture While Waiting for Trigger    

STATE = 0,1000 (8)

Capture 4096 After Trigger      

PT8192 = 1?
YES

NO

LIR = 1?

YES

NO

MARKP17      

WRITE; LACOUNT; PTCLOCKP16       

XIRQP15     

E = 1?

YES

NO

E = 1?

YES

NO
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B.7 TRACE BEFORE "INSTRUCTION FETCH OUT-OF-RANGE"
FAULT OR "WRITE TO USER PROGRAM ADDRESS" FAULT
Before calling…
Initialize MARK bits, Reset LA and PT counters,
Advance post-trigger counter to 8191

INITIALIZE STATE TO $09

MARK; WRITE; LACOUNT; STCOUNT

XIRQ

PTCLOCK

STATE = 0,1001 (9)

A15 = A14 = R/W = LIR = E = 1?

YES

P19          

P23        

P18         

NO

Trace BEFORE Fault - Wait for User Prog        

WRITE; LACOUNTP20         

PT8192 = 1?
YES

NO

LIR = 1?

YES

NO

MARKP21        

A15 = 0  &  R/W = 1?

NO

YES

Capture Until Fault          

R/W = 0  &  A15 = A14 = E = 1?

YES

NO

A14 = 0  &  A15 = R/W = 1?

NO

YES

PTCLOCKP22        

PTCLOCK; XIRQP24       

STATE = 0,1010 (10)

E = 1?

YES

NO

P19 -  Causes return to monitor when a failure is detected

P22 -  Detects attempt to fetch an opcode from below 8000

P23 -  Detects attempt to fetch an opcode from 8000 – BFFF

P24 -  Detects an attempt to write to program memory space and forces return to
monitor
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B.8 TRACE AFTER EXECUTION OF SELECTED USER
INSTRUCTION
Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load trigger to detect selected user instruction

INITIALIZE STATE TO $0B

MARK; WRITE; LACOUNT; STCOUNT; PTCLOCK

XIRQ

STATE = 0,1011 (11)

A15 = A14 = TRIGGER = LIR = E = 1?

YES

P5     

P25    

NO

Trace AFTER Instruction - Wait for User Prog     

PT8192 = 1?
YES

NO

STATE = 0,1100 (12)

Capture 8192 After Trigger     

WRITE; LACOUNT; PTCLOCKP16     

LIR = 1?

YES

NO

MARKP26       

E = 1?

YES

NO

P5 -  Causes return to monitor when capture buffer full
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B.9 TRACE BEFORE <n>TH EXECUTION OF SELECTED USER
INSTRUCTION

Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect address of selected User Instruction
Initialize post-trigger counter to (8192 – N)

INITIALIZE STATE TO $0D

STATE = 0,1101 (13)

Trace BEFORE Instruction - Wait for User Prog     

A15 = A14 = R/W = LIR = E = 1?

YES

NO

MARK; WRITE; LACOUNT; STCOUNTP18     

TRIGGER = 1? PTCLOCK

NO

P27    
YES

WRITE; LACOUNTP28    

NO

YES

PT8192 = 1? MARKP21     

A15 = A14 = TRIGGER = R/W = E = 1?

YES

NO

STATE = 0,1110 (14)

Capture While Waiting for Nth Trigger

STATE = 0,1111 (15)

Ready for Capture Buffer Dump       

LIR = 1?

YES

NO

STCOUNTP30     

PTCLOCKP29     

E = 1?

YES

NO
PT8192 = 1?

NO

YES

XIRQP19    

P19 -  Causes return to monitor after N occurrences of user instruction
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B.10 DUMP CAPTURED DATA

INITIALIZE STATE TO $0F

STATE = 0,1111 (15)

Ready for Capture Buffer Dump     

COUNT (LAUP or LADOWN) = E = 1?

YES

NO

LACOUNTP31    

Read "LADATA" to read data bus byte pointed to by LA counter

Read "LALOADD" to read low address byte pointed to by LA counter

Read "LAHIADD" to read high address byte pointed to by LA counter

Read "LAAUX" to read auxiliary byte pointed to by LA counter

Read "LADOWN" to decrement LA counter

Read "LAUP" to increment LA counter

Write to "PTRESET" to reset post-trigger counter

Enter and exit the "nibble serial mode" from this state (0F)

Write $80 to "NIBMODE"

Read "SHIFT" to read TRIGGER, PT8192, PT4096, PTCLOCK; S8, S4, S2, S1

Write new initial state to "SHIFT"; shifts in one nibble

Read "SHIFT" to read LA count bits 3, 2, 1, 0

Write new LACOUNT bits 3, 2, 1, 0 to "SHIFT"

Read LACOUNT bits 7, 6, 5, 4 from "SHIFT"

Write new LACOUNT bits 7, 6, 5, 4 to "SHIFT"

Read LACOUNT bits 11, 10, 9, 8 from "SHIFT"

Write new LACOUNT bits 11, 10, 9, 8 to "SHIFT"

Read LACOUNT bit 12 from "SHIFT"

Write new (ENABLE T, ENABLE A, 0, LACOUNT bit 12) to "SHIFT"

Write $80 to "NIBMODE"
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B.11 TRACE BEFORE <n>TH READ OF SELECTED RAM OR
REGISTER(S)

Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect address(s) in the range $0000-$1FFF
Initialize post-trigger counter to (8192 – N)

INITIALIZE STATE TO $10

STATE = 1,0000 (16)

Trace BEFORE READ of RAM or Register(s)     

A15 = A14 = R/W = LIR = E = 1?

YES

NO

MARK; WRITE; LACOUNT; STCOUNTP32     

NO

WRITE; LACOUNTP33    

NO

YES

PT8192 = 1?

MARKP37     

A15 = A14 = 0 & TRIGGER = R/W = 1?

YES

NO

STATE = 1,0001 (17)

Capture While Waiting for Nth READ     

STATE = 1,0010 (18)

Ready for Capture Buffer Dump      

YES

NO
LIR = 1?

STCOUNTP35    

PTCLOCKP36   

E = 1?

YES

NO
PT8192 = 1?

NO

YES

XIRQP34    

YES

NO

LIR = 1?

XIRQP50     
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B.12 TRACE BEFORE <n>TH WRITE OF SELECTED RAM OR
REGISTER(S)

Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect address(s) in the range $0000-$1FFF
Initialize post-trigger counter to (8192 – N)

INITIALIZE STATE TO $14

STATE = 1,0100 (20)

Trace BEFORE WRITE of RAM or Register(s)     

A15 = A14 = R/W = LIR = E = 1?

YES

NO

MARK; WRITE; LACOUNT; STCOUNTP38    

NO

WRITE; LACOUNTP39    

NO

YES

PT8192 = 1?

MARKP43     

A15 = A14 = R/W = 0 & TRIGGER = 1?

YES

NO

STATE = 1,0101 (21)

Capture While Waiting for Nth READ     

STATE = 1,0110 (22)

Ready for Capture Buffer Dump      

YES

NO
LIR = 1?

STCOUNTP41     

PTCLOCKP42     

E = 1?

YES

NO
PT8192 = 1?

NO

YES

XIRQP40    

YES

NO

LIR = 1?

XIRQP50     
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B.13 TRACE BEFORE <n>TH ACCESS OF SELECTED RAM OR
REGISTER(S)

Before calling…
Initialize MARK bits, Reset LA and PT counters,
Load Trigger RAM to detect address(s) in the range $0000-$1FFF
Initialize post-trigger counter to (8192 – N)

INITIALIZE STATE TO $18

STATE = 1,1000 (24)

Trace BEFORE Access of RAM or Register(s)     

A15 = A14 = R/W = LIR = E = 1?

YES

NO

MARK; WRITE; LACOUNT; STCOUNTP44     

NO

WRITE; LACOUNTP45    

NO

YES

PT8192 = 1?

MARKP49    

A15 = A14 = 0 & TRIGGER = 1?

YES

NO

STATE = 1,1001 (25)

Capture While Waiting for Nth Access       

STATE = 1,1010 (26)

Ready for Capture Buffer Dump      

YES

NO
LIR = 1?

STCOUNTP47     

PTCLOCKP48    

E = 1?

YES

NO
PT8192 = 1?

NO

YES

XIRQP46     

YES

NO

LIR = 1?

XIRQP50      
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APPENDIX C

USING AN UNREGULATED POWER SUPPLY

C.1 INTRODUCTION

This appendix is the procedure for using an unregulated power supply with EVB2. An
unregulated power supply lets you cut cost of your evaluation system by offering a low-cost
alternative to a regulated power supply. The optional parts covered in this appendix, e.g. VR1,
heat sink, phone jack, and unregulated power supply, are user-supplied. Refer to Table C-1 for
the unregulated power supply specifications.

Table C-1. Unregulated Power Supply Specifications

Equipment Supplier Connector Voltage Amps

Unregulated supply DigiKey #T401-ND P3 +9 Vdc 200 mA

Voltage regulator
Heat Sink
3.5mm jack

MC7805CT
AAVID #5772B
Mouser #16PJ528

+5 Vdc 1A

C.2 VOLTAGE REGULATOR INSTALLATION PROCEDURE
1. Solder the 3.5mm phone jack to the board at location P3 with the plug facing off the

top of the board as shown in Figure C-1. Solder the MC7805CT voltage regulator at
location VR1. Care should be taken to properly orient the voltage regulator as shown
in Figure C-1.
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7805

SW1

V1P1

VR1

P3 

Figure C-1. Voltage Regulator and Phone Jack Installation

2. Bend the voltage regulator down against the board. Install the heat sink under it and
secure the two with a 4-40x1/4” machine screw and hex nut as shown in Figure C-2.

SW1

V1

7805

P1

HEX NUT 

HEAT SINK MACHINE SCREW 

Figure C-2.  Heat Sink Installation

After the preceding changes have been made, connect an unregulated power supply to the 3.5mm
phone jack connector P3.
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