
An Introduction to Motorola’sAn Introduction to Motorola’s
68HC05 Family of 8-Bit68HC05 Family of 8-Bit Microcontrollers Microcontrollers

2

� Table of ContentsTable of Contents

Ç CPU Overview

Ç Instruction Set

Ç Addressing Modes

Ç Sample HC05 Code Example

Ç Smart Light Dimmer Application Example

Ç Bicycling Computer Application Example

Ç Other 68HC05 Family Peripherals

 98/06/23

3

�

 98/07/02

68HC05 Memory Organization68HC05 Memory Organization

$xxFF

$xxF0

$0100

$xx00

$0020

$0000
$0200

$0201

$0202

$0203

$0204

$0205

$0206

$0207

LDA $0400,X

STA $11

JSR $1120

 RESET VECTOR

($0100)

SWI VECTOR

($02F0)

IRQ VECTOR

($03CD)

I/O & CONTROL

REGISTERS

RAM

ROM/EPROM

BOOT ROM

VECTORS

$CD

$11

$20

$B7

$11

$D6

$04

$00

$xxFA

$xxFB

$xxFC

$xxFD

$xxFE

$xxFF

$03

$CD

$02

$F0

$01

$00

4

� 68HC05 Programmer’s Model68HC05 Programmer’s Model

Half Carry Flag

Interrupt Mask

Negative Flag

Zero Flag

Carry/Borrow Flag

Accumulator (A)
7 06 5 4 3 2 1

Index Register (X)
7 06 5 4 3 2 1

Stack Pointer (SP)
7

1

0

1

6 5 4 3 2 115

0

8

00

14

0

13

0

12

0

11

0

10

0

9

Program Counter (PC)
7 06 5 4 3 2 115 814 13 12 11 10 9

Condition Code Register (CCR)
7

1

0

C1

6

1

5

H

4

I

3

N

2

Z

1

 98/07/02

5

� Program Counter OperationProgram Counter Operation

Program Counte r Opcode /Ope rand Re ad Ins truction

$1000 $B6 LDA $80

$1001 $80

$1002 $47 ASRA

$1003 $47 ASRA

$1004 $4C I NCA

$1005 $B7 STA $80

$1006 $80

$1007 $CD J SR $13FE

$1008 $13

$1009 $FE

$13FE $4F CLRA

The program counter (PC) increments by one after each byte of an instruction or
operand is read. Jumps, branches, returns, and interrupts load the PC with a new value.

 98/05/29

6

� Stack Pointer OperationStack Pointer Operation

‘xx’ indicates that contents of memory location are not known

 98/07/06

xx$00FF

$00FE

$00FD

$00FC

before
JSR SUBROUTINE

SP

xx

xx

xx

Low Byte of
Return Address

xx

xx

$00FF

$00FE

$00FD

$00FC

High Byte of
Return Address

SP

after
JSR SUBROUTINE

Low Byte of
Return Address

xx

xx

High Byte of
Return Address

$00FF

$00FE

$00FD

$00FC

SP

after
RTS

xx$00FF

$00FE

$00FD

$00FC

before
INTERRUPT

SP

xx

xx

xx

Low Byte of
Return Address

Index
Register

Accumulator

$00FF

$00FE

$00FD

$00FC

High Byte of
Return Address

SP

after
INTERRUPT

Low Byte of
Return Address

High Byte of
Return Address

$00FF

$00FE

$00FD

$00FC

SP

after
RTI

xx
Condition Code

Register

xx

$00FB

$00FA xx

$00FB

$00FA

Index
Register

Accumulator

Condition Code
Register

xx

$00FB

$00FA

7

� 68HC05 Instruction Set — Part 168HC05 Instruction Set — Part 1

Memory Reads & Writes

LDA load the accumulator
LDX load the index register
STA store the accumulator
STX store the index register

Register Transfers

TAX transfer the accumulator to the index register
TXA transfer the index register to the accumulator

Clear Memory & Registers

CLR clear a memory location
CLRA clear the accumulator
CLRX clear the index register

 98/06/04

8

� 68HC05 Instruction Set — Part 268HC05 Instruction Set — Part 2

Arithmetic

ADD add to the accumulator
ADC add to the accumulator with carry
SUB subtract from the accumulator
SBC subtract from the accumulator with borrow
MUL multiply the accumulator by the index register
NEG negate (take the 2’s complement of) a memory location
NEGA negate (take the 2’s complement of) the accumulator
NEGX negate (take the 2’s complement of) the index register

 98/06/04

9

� 68HC05 Instruction Set — Part 368HC05 Instruction Set — Part 3

Decrement & Increment Memory & Registers

INC increment a memory location by one
INCA increment the accumulator by one
INCX increment the index register by one
DEC decrement a memory location by one
DECA decrement the accumulator by one
DECX decrement the index register by one

Boolean Logic

AND logical AND of the accumulator and an operand
ORA inclusive OR of the accumulator and an operand
EOR exclusive OR of the accumulator and an operand
COM take the one’s complement of (invert) a memory location
COMA take the one’s complement of (invert) the accumulator
COMX take the one’s complement of (invert) the index register

 98/06/04

10

� 68HC05 Instruction Set — Part 468HC05 Instruction Set — Part 4

Shift Memory & Registers

ASL arithmetically shift a memory location left by one bit
ASLA arithmetically shift the accumulator left by one bit
ASLX arithmetically shift the index register left by one bit
ASR arithmetically shift a memory location right by one bit
ASRA arithmetically shift the accumulator right by one bit
ASRX arithmetically shift the index register right by one bit
LSL logically shift a memory location left by one bit
LSLA logically shift the accumulator left by one bit
LSLX logically shift the index register left by one bit
LSR logically shift a memory location right by one bit
LSRA logically shift the accumulator right by one bit
LSRX logically shift the index register right by one bit

 98/06/04

11

� 68HC05 Instruction Set — Part 568HC05 Instruction Set — Part 5

Rotate Memory & Registers

ROL rotate a memory location left by one bit
ROLA rotate the accumulator left by one bit
ROLX rotate the index register left by one bit
ROR rotate a memory location right by one bit
RORA rotate the accumulator right by one bit
RORX rotate the index register right by one bit

Test Registers & Memory

BIT bit test the accumulator and set the N or Z flags
CMP compare an operand to the accumulator
CPX compare an operand to the index register
TST test a memory location and set the N or Z flags
TSTA test the accumulator and set the N or Z flags
TSTX test the index register and set the N or Z flags

 98/06/04

12

� 68HC05 Instruction Set — Part 668HC05 Instruction Set — Part 6

Branches on Condition Code Register Bits

BCC branch if carry clear (C = 0)
BCS branch if carry set (C = 1)
BEQ branch if equal (Z = 0)
BNE branch if not equal (Z = 1)
BHCC branch if half carry clear (H = 0)
BHCS branch if half carry set (H = 1)
BHI branch if higher (C or Z = 0)
BHS branch if higher or same (C = 0)
BLS branch if lower or same (C or Z = 1)
BLO branch if lower (C = 1)
BMI branch if minus (N = 1)
BPL branch if plus (N = 0)
BMC branch if interrupts are not masked (I = 0)
BMS branch if interrupts are masked (I = 1)

 98/06/04

13

� 68HC05 Instruction Set — Part 768HC05 Instruction Set — Part 7

Other Branches

BIH branch if IRQ pin is high
BIL branch if IRQ pin is low
BRA branch always
BRN branch never
BSR branch to subroutine and save return address on stack

Single Bit Operations

BCLR clear the designated memory bit
BSET set the designated memory bit
BRCLR branch if the designated memory bit is clear
BRSET branch if the designated memory bit is set

 98/07/02

14

� 68HC05 Instruction Set — Part 868HC05 Instruction Set — Part 8

Jumps & Returns

JMP jump to specified address
JSR jump to subroutine and save return address on stack
RTS pull address from stack and return from subroutine
RTI pull registers from stack and return from interrupt

Miscellaneous Control

CLC clear the condition code register carry bit
SEC set the condition code register carry bit
CLI clear the condition code register interrupt mask bit
SEI set the condition code register interrupt mask bit
SWI software initiated interrupt
RSP reset the stack pointer to $00FF
NOP no operation
WAIT enable interrupts and halt the CPU
STOP enable interrupts and stop the oscillator

 98/06/04

15

� Addressing Modes — SummaryAddressing Modes — Summary

Several different addressing modes are available to support
the data requirements of different 68HC05 instructions.

Inherent (INH)

Immediate (IMM)

Extended (EXT)

Direct (DIR)

Indexed, 16-Bit Offset (IX2)

Indexed, 8-Bit Offset (IX1)

Indexed, No Offset (IX)

Relative (REL)

Bit Set and Clear (BSC)

Bit Test and Branch (BTB)

 98/06/04

16

� Addressing Modes — INHAddressing Modes — INH

The operand of an instruction that uses inherent addressing is implied by or inherent in
the instruction’s opcode.

Some instructions explicitly name registers…

ASLA, CLRX, DECA, INCX, ROLA, RORX, RSP, TAX, TXA

Others explicitly name condition code register bits…

CLC, CLI, SEC, SEI

Still others affect one or more unnamed registers…

MUL, RTI, RTS, STOP, SWI, WAIT

And some have no operands whatsoever…

NOP

 98/06/04

17

� Addressing Modes — IMMAddressing Modes — IMM

The operand of an instruction that uses immediate addressing immediately follows the
instruction’s opcode in memory.

Immediate addressing is often using with LDA and LDX…

LDA #$40
LDX #$80

As well as with ADC, ADD, SBC, and SUB for arithmetic operations…

ADC #$01
SUB #$02

…CMP, CPX, and BIT for register comparison and testing…

BIT #$C4
CPX #$FF

And with AND, EOR, and ORA for combinatorial logic…

AND #$03
ORA #$FC

 98/06/10

18

� Addressing Modes — EXTAddressing Modes — EXT

Instructions that use extended addressing can read from or write to any location in the
68HC05 memory map.

Extended addressing is often used with LDA, LDX, STA, and STX…

LDA $4000
STX $0130

As well as with ADC, ADD, SBC, and SUB for arithmetic operations…

SBC $01F1

…CMP, CPX, and BIT for register comparison and memory testing…

CMP $08C3

…with AND, EOR, and ORA for combinatorial logic…

EOR $0325

And with JMP and JSR for program flow changes…

JMP $1200
JSR $3040

 98/06/10

19

� Addressing Modes — DIRAddressing Modes — DIR

Instructions that use direct addressing can only read from or write to memory locations
$00 to $FF.

All read-modify-write instructions support direct addressing…

ASL $00
ASR $FF
CLR $02
COM $FD
DEC $04
INC $FB
LSL $06
LSR $F9
NEG $08
ROL $F7
ROR $0A
TST $F5

All instructions that support extended addressing also support direct addressing.

 98/06/04

20

� Addressing Modes — IX2Addressing Modes — IX2

When indexed addressing with 16-bit offsets is used, target addresses are calculated by
taking the unsigned sum of the contents of the index register and the 16-bit offset.

Example instructions include loads and stores…

LDA $4000,X
STX $03F8,X

…arithmetic and combinatorial logic operations…

SBC $01F1,X
EOR $18FF,X

…CMP, CPX, and BIT for register comparison and memory testing…

CMP $08C3,X

And JMP and JSR for program flow changes…

JSR $0F4C,X

The same group of instructions that can use extended addressing is also the only group
of instructions that can use indexed addressing with 16-bit offsets.

 98/06/10

21

� Addressing Modes — IX1Addressing Modes — IX1

 98/06/05

Instructions that use indexed addressing with 8-bit offsets can read from or write to any
memory location between $0000 and $01FE inclusive.

All read-modify-write instructions support this addressing mode…

ASL $00,X
ASR $FF,X
CLR $02,X
COM $FD,X
DEC $04,X
INC $FB,X
LSL $06,X
LSR $F9,X
NEG $08,X
ROL $F7,X
ROR $0A,X
TST $F5,X

Likewise, all instructions that can use direct addressing can also use indexed addressing
with 8-bit offsets.

22

� Addressing Modes — IXAddressing Modes — IX

 98/06/05

The target address for an instruction that uses indexed addressing without an offset is
simply the contents of the index register zero extended to 16 bits.

All read-modify-write instructions support this addressing mode…

ASL ,X
ASR ,X
CLR ,X
COM ,X
DEC ,X
INC ,X
LSL ,X
LSR ,X
NEG ,X
ROL ,X
ROR ,X
TST ,X

All instructions that can use direct addressing and indexed addressing with 8-bit offsets
can also use indexed addressing without offsets.

23

� Addressing Modes — RELAddressing Modes — REL

Relative addressing is used only by branch instructions to calculate the target address of
a change in program flow relative to the value of the program counter (PC).

Each branch instruction requires two bytes of storage — one for the branch opcode and
one for the signed two’s complement 8-bit relative offset.

This offset is relative to the address of the next instruction, which is the address of the
branch instruction plus two.

Consider the following line of code…

HERE BEQ THERE

If the label HERE equates to address $1000 and this is a FORWARD branch, the target
address can be between $1002 (offset of $00) and $1081 (offset of $7F).

Similarly, if the label HERE equates to address $1000 and this is a REVERSE branch,
the target address can be between $0F82 (offset of $80) and $1000 (offset of $FE).

 98/06/09

24

� Bit Set and Clear — BSCBit Set and Clear — BSC

The bit set and clear (BSC) addressing mode is used only by the BSET and BCLR
instructions. Like other read-modify-write instructions, BSET and BCLR take a direct
address. There are eight BSET and BCLR opcodes, one for each bit in a byte.

Consider the following line of code…

BSET n, $00

In this example, 0 ≤ n ≤ 7 and denotes one of the eight bits in a byte. This assembles to
one of the BSET opcodes (calculated at $10 + 2n) and the direct address $00.

BCLR instructions are formed the same way…

BCLR n, $00

As above, 0 ≤ n ≤ 7 and denotes one of the eight bits in a byte. This assembles to one
of the BCLR opcodes (calculated at $11 + 2n) and the direct address $00.

 98/06/10

25

� Bit Test and Branch — BTBBit Test and Branch — BTB

The bit test and branch (BTB) addressing mode is used only by the BRSET and BRCLR
instructions. BRSET and BRCLR take a direct address and have eight opcodes to denote
each bit in a byte, just like BSET and BCLR.

Consider the following line of code…

BRSET n, $00, TARGET

In this example, 0 ≤ n ≤ 7 and denotes one of the eight bits in a byte. This assembles to
one of the BRSET opcodes (calculated at $00 + 2n), the direct address $00, and an
offset to TARGET relative to the address of the instruction that follows BRSET.

BRCLR instructions are formed the same way…

BRCLR n, $00, TARGET

As above, 0 ≤ n ≤ 7 and denotes one of the eight bits in a byte. This assembles to one
of the BRCLR opcodes (calculated at $01 + 2n) , the direct address $00, and an offset to
TARGET relative to the address of the instruction that follows BRCLR.

 98/06/10

26

� A Sample 68HC05 ProgramA Sample 68HC05 Program

The sample function that follows finds the cosine of an angle between 0 and 180
degrees inclusive by interpolating the result from a look up table.

The table consists of 46 elements representing the cosine of every fourth degree, again,
from 0 to 180 degrees inclusive, scaled by 127.

A simple linear interpolation is performed using these standardized equations:

Cosine of Given θ = Cosine of Known θ - DELTA

DELTA =

Cosine of Known Lower θ - Cosine of Known Upper θ
Known Upper θ - Known Lower θ

× (Given θ - Known Lower θ)

 98/06/05

27

� Sample Program Listing — Part 1Sample Program Listing — Part 1

* The function begins by reading the given angle, THETA, from
* on-chip RAM (using direct mode addressing) and dividing it by
* four. This is used as an offset into the look up table.

FIND_COSINE ldx THETA
lsrx
lsrx

* Using indexed addressing with a 16-bit offset, the cosine of
* the known lower angle is loaded into the accumulator, and the
* cosine of the known upper angle is subtracted from it. This
* difference is then divided by four, which is the difference
* between the known upper angle and the known lower angle. Save
* this result in the index register to take the delta product.

lda COSINE_TABLE,X
sub COSINE_TABLE + 1,X
lsra
lsra
tax

 98/06/10

28

� Sample Program Listing — Part 2Sample Program Listing — Part 2

* Take the difference between the given angle and the known lower
* angle by logically ANDing the given angle with three. Now take
* the product of the two DELTA terms. MUL stores its product MSB
* in the index register and LSB in the accumulator.

lda THETA
and #$03
mul

* Because this product is always a small number, it will reside
* only in the accumulator; the index register will be zero. Once
* again, use the given angle to look up the cosine of the known
* lower angle. Negating the accumulator and adding the cosine of
* the known lower angle returns the cosine of the given angle.

ldx THETA
lsrx
lsrx
nega
add COSINE_TABLE ,X
sta THETA_COSINE

 98/06/10

29

� Sample Program Listing — Part 3Sample Program Listing — Part 3

* This is the look up table used for the cosine interpolation
* function.

* 0, 4, 8, 12, 16, 20, 24, 28, 32
COSINE_TABLE fcb $7F, $7E, $7D, $7C, $7A, $77, $74, $70, $6B

* 36, 40, 44, 48, 52, 56, 60, 64, 68

fcb $66, $61, $5B, $54, $4E, $47, $3F, $37, $2F

* 72, 76, 80, 84, 88, 92, 96, 100, 104
fcb $27, $1E, $16, $0D, $04, $FC, $F3, $EA, $E2

* 108, 112, 116, 120, 124, 128, 132, 136, 140
fcb $D9, $D1, $C9, $C1, $B9, $B2, $AC, $A5, $9F

* 144, 148, 152, 156, 160, 164, 168, 172, 176
fcb $9A, $95, $90, $8C, $89, $86, $84, $83, $82

* 180
fcb $81

 98/06/10

30

� Smart Light Dimmer ApplicationSmart Light Dimmer Application

Ç Smart Light Dimmer

Õ MC68HC705KJ1 Overview

Õ Schematics

Õ Input & Output Ports

Õ Multifunction Timer

 98/06/11

31

� MC68HC705KJ1 FeaturesMC68HC705KJ1 Features

 98/07/02

Ç 16-Pin Plastic DIP, Ceramic DIP, and SOIC Packages

Ç 4 MHz Maximum Operating Frequency at 5 Volts

Ç 1240 Bytes of EPROM

Ç 64 Bytes of RAM

Ç Multifunction Timer with 15-Stage Ripple Counter

Ç Computer Operating Properly (COP) Watchdog Timer

Ç 10 Bidirectional I/O Pins

Õ Software Programmable Pulldown Devices on All I/O Pins

Õ 10 mA Current Sink Capability on All I/O Pins

Õ Optional Active High Interrupt Capability on 4 I/O Pins

Ç Selectable Sensitivity on External Interrupt Request Line

Ç On-Chip Oscillator for Crystal, Ceramic Resonator, or Resistor-Capacitor Network

Ç Internal Steering Diode and Pullup Device from RESET Pin to VDD

32

� Smart Light Dimmer SchematicSmart Light Dimmer Schematic

 98/07/06

D4
zener
5.6V

C3
100 µF

+5 vdc

common
D6

1N914

C2
0.22 µF

R16
820 Ω
0.5 W

light
bulb

hot
terminal

neutral
terminal

R5
100 kΩ

R8
220 kΩ

R6
100 kΩ

R7
220 kΩ common

R9
22 kΩ

FIRE_TRIAC

NEGATIVE_ZERO_CROSSING

POSITIVE ZERO CROSSING

MC68HRC705KJ1

VDD

IRQ

PA0

VSS

PA7

PA6 OSC1 OSC2

M1 M2
R17

47 kΩ

R4
100 Ω

33

� BiBi-directional Port Pin Logic-directional Port Pin Logic

 98/07/02

MASK-SPECIFIED PULLUP LOGIC

DATA
DIRECTION

OUTPUT
DATA

PULLDOWN
INHIBIT LOGIC

READ DATA DIRECTION

WRITE DATA DIRECTION

WRITE PORT DATA

READ PORT DATA

RESET

PULLUP
INHIBIT LOGIC

68
H

C
05

 I
N

T
E

R
N

A
L

 D
A

T
A

 B
U

S

MASK-SPECIFIED PULLDOWN LOGIC

I/O PIN

34

� Multifunction Timer (MFT)Multifunction Timer (MFT)

 98/07/02

TIMER STATUS/CONTROL
REGISTER (TSCR)

TMR0TMR1TMR2TMR3TMR4TMR5TMR6TMR7

OVERFLOW
DETECT

˜2˜2˜2˜2˜2˜2˜2

RT0RT1RTIFRTOFRRTIETOIERTIFTOF

RTI RATE
SELECT

lower 8 bits of 15-bit ripple counter

upper 7 bits of 15-bit ripple counter

TIMER COUNTER

REGISTER (TCR)

TIMER INTERRUPT ENABLE,
REQUEST, AND CLEAR LOGIC

INTERRUPT
REQUEST

˜4
INTERNAL
MCU CLOCK

35

� Bicycling Computer ApplicationBicycling Computer Application

ÇBicycling Computer

Õ MC68HC705P6A Overview

Õ Block Diagram

Õ Analog-to-Digital Converter

Õ 16-bit Capture/Compare Timer

Õ Serial Input/Output Port

36

� MC68HC705P6A FeaturesMC68HC705P6A Features

 98/06/12

Ç 28-Pin Plastic DIP, Ceramic DIP, and SOIC Packages

Ç 2.1 MHz Maximum Operating Frequency at 5 Volts

Ç 4672 Bytes of EPROM

Ç 176 Bytes of RAM

Ç 16-Bit Timer with Input Capture, Output Compare, and Counter Overflow

Ç Computer Operating Properly (COP) Watchdog Timer

Ç Full Duplex, Bidirectional Serial Input/Output Port (SIOP) with 4 Baud Rates

Ç 4-Channel, 8-Bit Analog-to-Digital Converter

Ç 21 Discrete Input/Output Pins

Õ 20 Bidirectional Pins (Port A[7:0], Port C[7:0], Port D5)

Õ 1 Input Only Pin (Port D7)

Õ Software Programmable Pullup Devices on Port A[7:0]

Õ Optional Active High Interrupt Capability on Port A[7:0]

Õ 10 mA Current Sink Capability on Port C[1:0]

37

� Cycling Computer Block DiagramCycling Computer Block Diagram

EKG
CONTACTS

TEMPERATURE
SENSOR

HUMIDITY
SENSOR

SERIAL LCD

WHEEL SPEED
SENSOR

MC68HC705P6A

SERIAL INPUT/OUTPUT PORT

A-TO-D CONVERTER

CAPTURE/COMPARE TIMER

MENU
PUSHBUTTONS

PORT A INPUTS

 98/07/02

38

� Analog-to-Digital Converter (ADC)Analog-to-Digital Converter (ADC)

 98/07/02

VRL is not bonded on the
MC68HC705P6A, but instead,
is tied directly to VSS.

AN0

AN1

AN2

AN3

VRH

VRL

(VRH+VRL)/2

A/D Result

Register (ADDATA)

A/D Status & Control

Register (ADSTAT)

VRH

VRL
capacitor array and 8-bit

DAC with sample and hold

successive approximation
register (SAR) and control

AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

CC ADRC ADON 0 CH3 CH2 CH1 CH0C
ha

nn
el

 S
el

ec
tio

n
A

na
lo

g
M

ul
tip

le
xe

r

AN4

AN5

AN6

AN7

These inputs are
not present on the
MC68HC705P6A.

39

� EKG Signal Conditioning for the ADCEKG Signal Conditioning for the ADC

 98/07/02

+

-

+

-
LEFT

HANDLEBAR
GRIP

R3
100 Ω

R5
8.2 kΩ

R6
680 Ω

C2
4.7 µF

-

+

C3
1 µF

R2
4.7 kΩ

C4
0.02 µF

-

+

+

-

+

-

+5 vdc
PC6/AN0

2.5 VDC OFFSET

INSTRUMENTATION AMPLIFIER
(gain = 2000)

CHEBYSHEV LOW PASS FILTER
(cut off frequency = 10 Hz, 90 dB attenuation per decade)

HIGH PASS FILTER
(cut off frequency = 7.2 Hz)

RIGHT
HANDLEBAR

GRIP

C1
4.7 µF

R1
4.7 kΩ

R4
8.2 kΩ

R7
680 Ω

+

-

R9
8.2 kΩ

R8
8.2 kΩ

R10
100 kΩ

R11
100 kΩ

R12
100 kΩ

C6
0.2 µF

C5
0.47 µF

R13
100 kΩR14

20 kΩ

R15
10 kΩ

R16
20 kΩ

R17
20 kΩ

R18
10 kΩ

R19
10 kΩ

R20
20 kΩ

40

� 16-Bit Timer Overflow16-Bit Timer Overflow

 98/07/02

˜4
INTERNAL

MCU CLOCK

TIMER CONTROL REGISTER (TCR) TIMER STATUS REGISTER (TSR)

TIMER OVERFLOW
INTERRUPT REQUEST

ICIE OCIE TOIE IEDG OLVL0 0 0 ICF OCF TOF0 0 0 0 0

TIMER REGISTER
HIGH (TRH)

ALTERNATE TIMER
REGISTER HIGH (ATRH)

ALTERNATE TIMER
REGISTER LOW (ATRL)

TIMER REGISTER
LOW (TRL)

41

� 16-Bit Timer Output Compare16-Bit Timer Output Compare

 98/07/02

OUTPUT COMPARE
INTERRUPT REQUEST

OUTPUT COMPARE
REGISTER HIGH (OCRH)

OUTPUT COMPARE
REGISTER LOW (OCRL)

16-BIT COMPARATOR
PIN

CONTROL
TCMP

˜4
INTERNAL

MCU CLOCK

TIMER REGISTER
HIGH (TRH)

ALTERNATE TIMER
REGISTER HIGH (ATRH)

ALTERNATE TIMER
REGISTER LOW (ATRL)

TIMER REGISTER
LOW (TRL)

TIMER CONTROL REGISTER (TCR) TIMER STATUS REGISTER (TSR)

ICIE OCIE TOIE IEDG OLVL0 0 0 ICF OCF TOF0 0 0 0 0

42

� 16-Bit Timer Input Capture16-Bit Timer Input Capture

 98/07/02

+5 vdc

SW1
magnetic

switch

C1
0.1 µF

TIMER CONTROL REGISTER (TCR)

ICIE OCIE TOIE IEDG OLVL0 0 0

INPUT CAPTURE
INTERRUPT REQUEST

EDGE
DETECTOR

TCAP
INPUT CAPTURE

REGISTER HIGH (ICRH)
INPUT CAPTURE

REGISTER LOW (ICRL)

TIMER STATUS REGISTER (TSR)

ICF OCF TOF0 0 0 0 0

TIMER REGISTER
HIGH (TRH)

ALTERNATE TIMER
REGISTER HIGH (ATRH)

ALTERNATE TIMER
REGISTER LOW (ATRL)

TIMER REGISTER
LOW (TRL)

INTERNAL
MCU CLOCK

˜4

R2
10 kΩ

R1
10 kΩ

M
C

68
H

C
70

5P
6A

W
H

E
E

L
 S

PE
E

D
 S

E
N

S
O

R

43

� Serial Input/Output Port (SIOP)Serial Input/Output Port (SIOP)

 98/07/02

INTERNAL
MCU CLOCK

SHIFT CLOCK
GENERATOR

SERIAL INPUT/OUTPUT PORT DATA REGISTER (SDR)

8-BIT BI-DIRECTIONAL SHIFT REGISTER
SCK

SDI

SDO

MSTR

SPIF

DCOL

LSBF

PIN
CONTROL

LOGIC
SDI/PB6

SDO/PB5

SCK/PB7

SPR1

SPR0

44

� SIOP to LCD InterfaceSIOP to LCD Interface

 98/07/02

PLANAR STANDISH 8-DIGIT LCD MODEL 4228

A2

A1

A0

DCLK

DIN

ENB

OSC1

OSC2

VLCD

+5 vdc

VSS

FRONTPLANES 1 to 32

BACKPLANES 1 to 4

SCK/PB7

PC2

SDO/PB5

R1
470 kΩ

VDD

R2
10 kΩ

M
C

14
5L

C
00

3

45

� Other 68HC05 Family PeripheralsOther 68HC05 Family Peripherals

Ç Serial Peripheral Interface

Ç Serial Communications Interface

Ç Enhanced Serial Communications Interface

Ç Pulse Length Modulation Timer

Ç Liquid Crystal Display Driver

 98/06/16

46

� Serial Peripheral Interface (SPI)Serial Peripheral Interface (SPI)

 98/07/02

S

M

SP
E

M
ST

R

CLOCK

INTERNAL

MCU CLOCK

SPI STATUS REGISTER (SPSR)

DIVIDER

÷2 ÷4 ÷16 ÷32

SELECT

SPI DATA REGISTER (SPDR)

SPI INTERRUPT

REQUEST
SPI CONTROL

SP
IF

W
C

O
L

M
O

D
F

8-BIT SHIFT REGISTER

READ DATA BUFFER

MSB LSB

SPI CLOCK (MASTER)
CLOCK

CONTROL

LOGIC

SPI CONTROL REGISTER (SPCR)

SP
IE

C
PO

L

C
PH

A

SP
R

1

SP
R

0

SP
R

1

SP
R

0

M
ST

R

SP
E

PI
N

 C
O

N
TR

O
L

LO
G

IC

S

M

M

S

MISO/PD2

MOSI/PD3

SCK/PD4

SS/PD5

47

� Serial Communications Interface (SCI)Serial Communications Interface (SCI)

The serial communications interface (SCI) is the universal asynchronous
receiver/transmitter (UART) on 68HC05 devices. It has the following features:

Ç Full duplex operation

Ç 32 baud rate selections

Ç 8- or 9-bit character lengths

Ç Separately enabled receiver and transmitter

Ç Wake up on idle line or address mark

Ç Optional interrupt generation upon transmit data register empty,
transmission complete, receive data register full, receiver over-run,
and idle line conditions

Ç Detection of receiver framing, noise, and over-run errors

 98/06/15

48

� An Enhanced SCI — The SCI+An Enhanced SCI — The SCI+

 98/07/28

In addition to the capabilities of the standard SCI, the enhanced serial
communications interface (SCI+) supports…

Ç Separate transmitter and receiver baud rates

Ç Output of the transmitter clock on the dedicated SCLK pin

Ç SCLK phase and polarity control

Ç Output-only, least significant bit first, synchronous transfers

The SCI+ essentially adds a simple, master mode, SPI-like, synchronous
transfer capability to the standard SCI’s UART features.

49

� Pulse Length Modulation TimerPulse Length Modulation Timer

 98/06/23

COMPARATORBUFFER LATCH PLMB

ZERO

DETECTOR

PLMB SLOW/FAST

SELECT BIT (SFB)

PLMB

REGISTER

INTERNAL

MCU CLOCK
÷4 16-BIT TIMER COUNTER

ZERO

DETECTOR

SLOW/FAST

SELECT MUX

SLOW/FAST

SELECT MUX

PLMA SLOW/FAST

SELECT BIT (SFA)

PLMALATCHCOMPARATORBUFFER
PLMA

REGISTER

50

� Liquid Crystal Display (LCD) DriverLiquid Crystal Display (LCD) Driver

 98/07/02

CONTROL
LOGIC

BACKPLANE

DRIVERS

BP0

BP1

BP2

BP3

VDD

FRONTPLANE
DRIVERS

FP0

FP1

FP38

•
•
•

DISPLAY RAM

ADDRESS BUS

DATA BUS

VLCD1

VLCD2

VLCD3

