An Introduction to Motorola’s
66HCO5 Family of 8-Bit Microcontrollers

@ MOTOROLA Table of Contents

= CPU Overview

= | nstruction Set

= Addressing Modes

= Sample HCO5 Code Example

= Smart Light Dimmer Application Example
= Bicycling Computer Application Example
= Other 68HCO05 Family Peripherals

(M) MmoToroLA 68H C05 Memory Organization

1/0 & CONTROL
REGISTERS

JSR $1120

L DA $0400,X

ROM/EPROM

IRQ VECTOR
($03CD)

BOOT ROM

VECTORS

98/07/02

@ MOTOROLA 68HCOS Programmer’s Model

7 6 5 4 3 2 1 0

LIT I T T 111 Accumulator (A)

7 6 5 4 3 2 1 0

LI T T T T T 1] IndexRegister (X)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

lofolofofofofofofs]a] [| [| | | Stack Pointer (SP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

LI PP PP T T T TTTTTT] Program Counter (PC)

7 6 5 4 3 2 1 0

[a[sa[n]r[nfz]c] Condition Code Register (CCR)

Half Carry Flag J
Interrupt Mask

Negative Flag ——
Zero Flag

Carry/Borrow Flag

98/07/02

(M) MmoToroLA Program Counter Operation

The program counter (PC) increments by one after each byte of an instruction or
operand is read. Jumps, branches, returns, and interrupts load the PC with a new value.

Program Counter | Opcode/Operand Read Instruction
$1000 $B6 LDA $80
$1001 $80
$1002 $47 ASRA
$1003 $47 ASRA
$1004 $4C | NCA
$1005 $B7 STA
$1006 $80
$1007 $CD JSR
$1008 $13
$1009 $FE
$13FE $4F

98/05/29

@ MOTOROLA

before
JSR SUBROUTI NE

XX

XX

before
| NTERRUPT

XX

XX

<«— 5P

after

JSR SUBROUTI NE

Low Byte of
Return Address

Stack Poeinter Operation

after
RTS

High Byte of
Return Address

Low Byte of
Return Address

XX

High Byte of
Return Address

XX

XX

after
| NTERRUPT

Low Byte of
Return Address

after
RTI

High Byte of
Return Address

Low Byte of
Return Address

Index
Register

High Byte of
Return Address

Accumulator

Index
Register

Condition Code
Register

Accumulator

XX

Condition Code
Register

XX

‘XX’ indicates that contents of memory location are not known

98/07/06

@ MOTOROLA

68HCO5 Instruction Set — Part 1

Memory Reads & Writes

L DA
D).
STA
STX

|oad the accumulator
load the index register
store the accumul ator
store the index register

Register Transfers

TAX
TXA

transfer the accumulator to the index register
transfer the index register to the accumulator

Clear Memory & Registers

CLR
CLRA
CLRX

clear amemory location
clear the accumulator
clear the index register

98/06/04

@ MOTOROLA

Arithmetic

ADD
ADC
SuB
SBC
MUL
N=E
NEGA
NEGX

68HCOS5 Instruction Set — Part 2

add to the accumulator

add to the accumulator with carry

subtract from the accumulator

subtract from the accumulator with borrow

multiply the accumulator by the index register

negate (take the 2’s complement of) a memory location
negate (take the 2's complement of) the accumulator
negate (take the 2’'s complement of) the index register

98/06/04

@ MOTOROLA 68HCO5 Instruction Set — Part 3

Decrement & Increment Memory & Registers

| NC increment amemory location by one
| NCA increment the accumulator by one

| NCX increment the index register by one
DEC decrement a memory location by one
DECA decrement the accumulator by one
DECX decrement the index register by one

Boolean L ogic

AND, logical AND of the accumulator and an operand

CRA inclusive OR of the accumulator and an operand

EOR exclusive OR of the accumulator and an operand

COMm take the one’s complement of (invert) a memory location
COVA take the one’s complement of (invert) the accumulator
COWX take the one’s complement of (invert) the index register

98/06/04

<::>IMK911JHK)LAI

68HCO5 Instruction Set — Part 4

Shift Memory & Registers

ASL
ASLA
ASLX
ASR
ASRA
ASRX
LSL
LSLA
LSLX
LSR
L SRA
L SRX

arithmetically shift amemory location left by one bit
arithmetically shift the accumulator left by one bit
arithmetically shift the index register left by one bit
arithmetically shift amemory location right by one bit
arithmetically shift the accumulator right by one bit
arithmetically shift the index register right by one bit
logically shift a memory location left by one bit
logically shift the accumulator |eft by one bit
logically shift the index register left by one bit
logically shift a memory location right by one bit
logically shift the accumulator right by one bit
logically shift the index register right by one bit

98/06/04

@ MOTOROLA 68HCO5 Instruction Set — Part 5

Rotate Memory & Registers

ROL rotate a memory location left by one bit
ROLA rotate the accumulator left by one bit
ROLX rotate the index register left by one bit
ROR rotate a memory location right by one bit
RORA rotate the accumulator right by one bit
RORX rotate the index register right by one bit

Test Registers& Memory

BIT bit test the accumulator and set the N or Z flags

CMWP compare an operand to the accumulator

CPX compare an operand to the index register
test amemory location and set the N or Z flags
test the accumulator and set the N or Z flags
test the index register and set the N or Z flags

98/06/04

@ MOTOROLA 68HCO5 Instruction Set — Part 6

Brancheson Condition Code Register Bits

BCC branch if carry clear (C = 0)

BCS branch if carry set (C = 1)

BEQ branch if equal (Z = 0)

\= branch if not equal (Z = 1)

BHCC branch if half carry clear (H = 0)
BHCS branch if half carry set (H = 1)

BHI branch if higher (C or Z =0)

BHS branch if higher or same (C = 0)

BLS branch if lower or same (C or Z = 1)
BLO branch if lower (C = 1)

BM branch if minus (N = 1)

BPL branch if plus (N = 0)

BMC branch if interrupts are not masked (I = 0)
BVS branch if interrupts are masked (I = 1)

98/06/04

@ MOTOROLA 68HCO5 Instruction Set — Part 7

Other Branches

Bl H branchif IRQ pinishigh

Bl L branch if IRQ pinislow

BRA branch always

BRN branch never

BSR branch to subroutine and save return address on stack

Single Bit Operations

BCLR clear the designated memory bit

BSET set the designated memory bit

BRCLR branch if the designated memory bit is clear
BRSET branch if the designated memory bit is set

98/07/02

@ MOTOROLA

68HCOS5 Instruction Set — Part 8

Jumps & Returns

JMP
JSR
RTS
RTI

jump to specified address

jump to subroutine and save return address on stack
pull address from stack and return from subroutine
pull registers from stack and return from interrupt

M iscellaneous Control

CLC
SEC
CLI
SEI
SW
RSP
NOP
VAI T
STOP

clear the condition code register carry bit

set the condition code register carry bit

clear the condition code register interrupt mask bit
set the condition code register interrupt mask bit
software initiated interrupt

reset the stack pointer to $00FF

no operation

enable interrupts and halt the CPU

enable interrupts and stop the oscillator

98/06/04

@ MOTOROLA Addressing Modes — Summary

Several different addressing modes are available to support
the data requirements of different 68HCO5 instructions.

|nherent (INH)
|mmediate (IMM)
Extended (EXT)
Direct (DIR)
Indexed, 16-Bit Offset (1X2)
Indexed, 8-Bit Offset (IX1)
Indexed, No Offset (1X)
Relative (=N
Bit Set and Clear (BSC)
Bit Test and Branch (BTB)

98/06/04

(M) MmoToroLA Addressing Modes — INH

The operand of an instruction that uses inherent addressing isimplied by or inherent in
the instruction’s opcode.

Some instructions explicitly name regqisters...

Others explicitly name condition code register bits...

Still others affect one or more unnamed registers...

And some have no operands whatsoever...

98/06/04

@ MOTOROLA

Addressing Modes — IMM

The operand of an instruction that uses immediate addressing immediately follows the
instruction’s opcode in memory.

Immediate addressing is often using wWifbA andLDX...

As well as withADC, ADD, SBC, andSUB for arithmetic operations...

...CMP, CPX, andBI T for register comparison and testing...

And with AND, EOR, andORA for combinatorial logic...

98/06/10

@ MOTOROLA Addressing Modes — EXT

| nstructions that use extended addressing can read from or write to any location in the
68HCO05 memory map.

Extended addressing is often used with LDA, LDX, STA, and STX...

As well as withADC, ADD, SBC, andSUB for arithmetic operations...

...CMP, CPX, andBI T for register comparison and memory testing...

...with AND, EOR, andCORA for combinatorial logic...

And with JMP andJ SR for program flow changes...

98/06/10

(M) MmoToroLA Addressing Modes — DIR

Instructions that use direct addressing can only read from or write to memory locations
$00 to $FF.

All read-modify-write instructions support direct addressing...

All instructions that support extended addressing also support direct addressing.

98/06/04

(M) MmoToroLA Addressing Modes — IX2

When indexed addressing with 16-bit offsetsis used, target addresses are calculated by
taking the unsigned sum of the contents of the index register and the 16-bit offset.

Example instructions include loads and stores...

...arithmetic and combinatorial logic operations...

...CMP, CPX, andBI T for register comparison and memory testing...

And JMP andJ SR for program flow changes...

The same group of instructions that can use extended addressing is also the only gro

of instructions that can use indexed addressing with 16-bit offsets.

98/06/10

(M) MmoToroLA Addressing Modes — IX1

| nstructions that use indexed addressing with 8-bit offsets can read from or write to any
memory location between $0000 and $01FE inclusive.

All read-modify-write instructions support this addressing mode...

Likewise, all instructions that can use direct addressing can also use indexed addresg
with 8-bit offsets.

98/06/05

@ MOTOROLA Addressing Modes — IX

The target address for an instruction that uses indexed addressing without an offset is
simply the contents of the index register zero extended to 16 bits.

All read-modify-write instructions support this addressing mode...

All instructions that can use direct addressing and indexed addressing with 8-bit offse
can also use indexed addressing without offsets.

98/06/05

(M) MmoToroLA Addressing Modes — REL

Relative addressing is used only by branch instructions to calculate the target address of
a change in program flow relative to the value of the program counter (PC).

Each branch instruction requires two bytes of storage — one for the branch opcode a
one for the signed two’s complement 8-bit relative offset.

This offset is relative to the address of the next instruction, which is the address of the
branch instruction plus two.

Consider the following line of code...

If the labelHERE equates to address $1000 and thisRO®&RWARD branch, the target
address can be between $1002 (offset of $00) and $1081 (offset of $7F).

Similarly, if the labeHERE equates to address $1000 and thisRE®¥ ERSE branch,
the target address can be between $0F82 (offset of $80) and $1000 (offset of $FE).

98/06/09

@ MOTOROLA Bit Set and Clear — BSC

The bit set and clear (BSC) addressing mode is used only by the BSET and BCLR
instructions. Like other read-modify-write instructions, BSET and BCLR take a direct
address. There are eight BSET and BCLR opcodes, one for each bit in a byte.

Consider the following line of code...

In this example, & n < 7 and denotes one of the eight bits in a byte. This assembles
one of theBSET opcodes (calculated at $10 m)2and the direct address $00.

BCLR instructions are formed the same way...

As above, & n < 7 and denotes one of the eight bits in a byte. This assembles to one
of theBCLR opcodes (calculated at $11 w)2and the direct address $00.

98/06/10

@ MOTOROLA Bit Test and Branch — BTB

The bit test and branch (BTB) addressing mode is used only by the BRSET and BRCLR
Instructions. BRSET and BRCLR take a direct address and have eight opcodes to denote
each bit in abyte, just like BSET and BCLR.

Consider the following line of code...

In this example, & n < 7 and denotes one of the eight bits in a byte. This assembles
one of theBRSET opcodes (calculated at $00 r)2the direct address $00, and an
offset toTARGET relative to the address of the instruction that foll BRSET.

BRCLR instructions are formed the same way...

As above, (& n < 7 and denotes one of the eight bits in a byte. This assembles to one
of theBRCLR opcodes (calculated at $01 r)2 the direct address $00, and an offset to
TARGET relative to the address of the instruction that foll@RELR.

98/06/10

(M) MmoToroLA A Sample 68HC05 Program

The sample function that follows finds the cosine of an angle between 0 and 180
degrees inclusive by interpolating the result from alook up table.

The table consists of 46 elements representing the cosine of every fourth degree, again,
from O to 180 degrees inclusive, scaled by 127.

A simple linear interpolation is performed using these standardized equations:

Cosine of Given 8 = Cosine of Known 6 - DELTA

DELTA =

Cosine of Known Lower 0 - Cosine of Known Upper 6
Known Upper 8 - Known Lower 06

x (Given 0 - Known Lower 0)

98/06/05

@ MOTOROLA Sample Program Listing — Part 1

The function begins by reading the given angle, THETA, from
on-chip RAM (usi ng direct node addressing) and dividing it by
four. This is used as an offset into the | ook up table.

Usi ng i ndexed addressing with a 16-bit offset, the cosine of
the known | ower angle is |oaded into the accunul ator, and the
cosi ne of the known upper angle is subtracted fromit. This
difference is then divided by four, which is the difference
bet ween t he known upper angle and the known | ower angle. Save
this result in the index register to take the delta product.

98/06/10

@ MOTOROLA Sample Program Listing — Part 2

Take the difference between the given angle and the known | ower
angle by logically ANDing the given angle with three. Now take
the product of the two DELTA terns. MJL stores its product MSB
in the index register and LSB in the accunul at or.

Because this product is always a small nunber, it will reside
only in the accunul ator; the index register will be zero. Once
again, use the given angle to | ook up the cosine of the known

| ower angle. Negating the accunul ator and addi ng the cosi ne of
the known | ower angle returns the cosine of the given angle.

98/06/10

@ MOTOROLA Sample Program Listing — Part 3

This is the | ook up table used for the cosine interpol ation
functi on.

0, 4, 8, 12, 16, 20, 24, 28,

36, 40, 44, 48, 52, 56, 60, 64,

/2, (6, 80, 84, 88, 92,

98/06/10

@ MOTOROLA Smart Light Dimmer Application

= Smart Light Dimmer
< MC68HC705K J1 Overview
< Schematics
< Input & Output Ports

< Multifunction Timer

98/06/11

@ MOTOROLA MIC68HIC705KJ1 Features

16-Pin Plastic DIP, Ceramic DIP, and SOIC Packages
4 MHz Maximum Operating Freguency at 5 Volts
1240 Bytes of EPROM

64 Bytes of RAM

Multifunction Timer with 15-Stage Ripple Counter
Computer Operating Properly (COP) Watchdog Timer
10 Bidirectional 1/0O Pins

~ Software Programmable Pulldown Devices on All I/0 Pins
<~ 10 mA Current Sink Capability on All I/0 Pins
«~ Optional Active High Interrupt Capability on 4 1/0O Pins

Selectable Sensitivity on External Interrupt Request Line
On-Chip Oscillator for Crystal, Ceramic Resonator, or Resistor-Capacitor Network
Internal Steering Diode and Pullup Device from RESET Pinto VDD

98/07/02

@ MOTOROLA Smart Light Dimmer Schematic

+5 vdc

s

NEGATIVE ZERO CROSSING

POSITIVE ZERO CROSSING

v

MC68HRC705KJ1

R8
220 kQ

M1|>| M2

v

common

| —

1

o7
0.22 uF

AN AN
hot neutral
terminal terminal

98/07/06

@ MOTOROLA Bi-directional Port Pin Logic

MASK-SPECIFIED PULLUP LOGIC

~ PULLUP
" LINHIBIT LOGIC

D>

_READ DATA DIRECTION

WRITE DATA DIRECTION

»
» DATA I l
DIRECTION

WRITE PORT DATA o
<O @END)

_READ PORT DATA

n
2
oM
<C
-
<
(@)
-
<
pzd
@
LLI
—
pzd
Lo
Q
O
I
[ce]
(o)

<

r

RESET —

MASK-SPECIFIED PULLDOWN LOGIC

98/07/02

@ MOTOROLA

TIMER COUNTER
REGISTER (TCR)

Multifunction Timer (MET)

TMR6

TMRS

TMR4

TMR3

TMR2

TMR1

lower 8 bits of 15-bit ripple counter

upper 7 bits of 15-bit ripple counter

2

2

2

2

2 2

TIMER STATUS/CONTROL
REGISTER (TSCR)

) V. V Y

RTI RATE
SELECT

A A

TIMER INTERRUPT ENABLE,
REQUEST, AND CLEAR LOGIC

INTERNAL
MCU CLOCK

» INTERRUPT

" REQUEST

98/07/02

@ MOTOROLA Bicycling Computer Application

= Bicycling Computer
< MC68HC705P6A Overview
< Block Diagram
<~ Analog-to-Digital Converter
< 16-bit Capture/Compare Timer
< Serial Input/Output Port

@ MOTOROLA MICBSHC705P6A Features

28-Pin Plastic DIP, Ceramic DIP, and SOIC Packages

2.1 MHz Maximum Operating Frequency at 5 Volts

4672 Bytes of EPROM

176 Bytes of RAM

16-Bit Timer with Input Capture, Output Compare, and Counter Overflow
Computer Operating Properly (COP) Watchdog Timer

Full Duplex, Bidirectional Seria Input/Output Port (SIOP) with 4 Baud Rates
4-Channel, 8-Bit Anaog-to-Digital Converter

21 Discrete Input/Output Pins
«~ 20 Bidirectional Pins (Port A[7:0], Port C[7:0], Port D5)
<~ 1 Input Only Pin (Port D7)
~ Software Programmable Pullup Devices on Port A[7:0]
«~ Optional Active High Interrupt Capability on Port A[7:0]
<~ 10 mA Current Sink Capability on Port C[1:0]

98/06/12

@ MOTOROLA

r A

HUMIDITY

SENSOR

TEMPERATURE

Cycling Computer Block Diagram

PORT A INPUTS

PUSHBUTTONS

T —— |

SENSOR

EKG

MC68HC705P6A

SERIAL INPUT/OUTPUT PORT

r

YVvVYy

CONTACTS

WHEEL SPEED

CAPTURE/COMPARE TIMER

SERIAL LCD

- 1

98/07/02

@ MOTOROLA

Analog-to-Digital Converter (ADC)

(VRH+VRL)/2—>

VRL—P

These inputs are
not present on the
MC68HC705P6A.

Channel Selection Analog Multiplexer

giin

successive approximation
register (SAR) and control

<

l

capacitor array and 8-bit
DAC with sample and hold

A/D Result
Register (ADDATA)

| VRL is not bonded on the
VRL ; MC68HC705P6A, but instead,

L 11

istied directly to VSS.

A/D Status & Control
Register (ADSTAT)

98/07/02

@ MOTOROLA EKG Signal Conditioning for the ADC

HIGH PASSFILTER

(Y1 T ES NETE) S A) INSTRUMENTATION AMPLIFIER
(gain = 2000)

RIGHT b CHEBYSHEV LOW PASSFILTER
HANDLEBAR @ (cut off frequency = 10 Hz, 90 dB attenuation per decade)
GRIP

LEFT el
HANDLEBAR (&)—]
GRIP

R2

(@D,

98/07/02

@ MOTOROLA 16-Bit Timer Overflow

TIMER REGISTER TIMER REGISTER

INTERNAL HIGH (TRH) LOW (TRL)
 —
MCU CLOCK ALTERNATE TIMER ALTERNATE TIMER

REGISTER HIGH (ATRH)| REGISTER LOW (ATRL)

TIMER CONTROL REGISTER (TCR) TIMER STATUS REGISTER (TSR) i

ICIE |OCIE|TOIE| O (0] (0] (0] (0] (0] (0] (0] ICF

TIMER OVERFLOW
INTERRUPT REQUEST

98/07/02

MOTOROLA

INTERNAL

16-Bit Timer Output Compare

TIMER REGISTER
HIGH (TRH)

TIMER REGISTER
LOW (TRL)

MCU CLOCK

PIN
CONTROL
A

ALTERNATE TIMER
REGISTER HIGH (ATRH)

ALTERNATE TIMER
REGISTER LOW (ATRL)

16-BIT COMPARATOR

{}

OUTPUT COMPARE
REGISTER HIGH (OCRH)

OUTPUT COMPARE
REGISTER LOW (OCRL)

TIMER CONTROL REGISTER (TCR)

ICIE |OCIE|TOIE| O (0] (0]

TIMER STATUS REGISTER (TSR)

(0] (0] (0] (0]

(0] ICF

OUTPUT COMPARE
INTERRUPT REQUEST

<4+——O0

98/07/02

@ MOTOROLA 16-Bit Timer | nput Capture

INTERNAL
MCU CLOCK

D —

TIMER REGISTER TIMER REGISTER
HIGH (TRH) LOW (TRL)

+5 vdc

ALTERNATE TIMER ALTERNATE TIMER
REGISTER HIGH (ATRH) REGISTER LOW (ATRL)

10kQ
10kQ
EDGE INPUT CAPTURE INPUT CAPTURE
DETECTOR REGISTER HIGH (ICRH) REGISTER LOW (ICRL)
A
m&mﬁm
switch

M C68HC705P6A

TIMER STATUS REGISTER (TSR)

(0] (0] (0] (0]

TIMER CONTROL REGISTER (TCR)

ICIE | OCIE | TOIE (0] (0]

INPUT CAPTURE ¢ O
INTERRUPT REQUEST

dOSN4S d43dS T33aHM

98/07/02

(M) MmoToroLA Seriall Input/Output Port (SIOP)

INTERNAL
MCU CLOCK

!

SHIFT CLOCK
GENERATOR

l A 4 SCK/PB7

PIN
8-BIT BI-DIRECTIONAL SHIFT REGISTER CONTROL SDI/PB6

LOGIC
SDO/PB5

SERIAL INPUT/OUTPUT PORT DATA REGISTER (SDR)

98/07/02

@ MOTOROLA S|OP to LCD I nterface

BACKPLANES1to4

SCK/PB7
SDO/PB5

PLANAR STANDISH 8-DIGIT LCD MODEL 4228

MC145LC003

FRONTPLANES 1 to 32

98/07/02

@ MOTOROLA Other 68HCO05 Family Peripherals

= Serial Peripheral Interface

= Serlal Communications | nterface

= Enhanced Serial Communications Interface
» Pulse Length Modulation Timer

= Liquid Crystal Display Driver

98/06/16

MOTOROLA Serial Peripheral Interface (SPI)

SPI DATA REGISTER (SPDR)

INTERNAL

MCU CLOCK {}
A4

MISO/PD2
l MSB LSB

8-BIT SHIFT REGISTER
T MOSI/PD3
DIVIDER READ DATA BUFFER

+2 +4 +16 +32

{1 i

SELECT SPICLOCK (MASTER) CLOCK

A A CONTROL
LOGIC

AAA

SCK/PD4

PIN CONTROL LOGIC

SSIPD5

A 4

SPIINTERRUPT
REQUEST

SPICONTROL

(U]
[a
(%]

| w !l []|

SPI STATUS REGISTER (SPSR) SPI CONTROL REGISTER (SPCR)

98/07/02

@ MOTOROLA Serial Communications | nterface (SCI)

The serial communications interface (SCI) isthe universal asynchronous
receiver/transmitter (UART) on 68HCO5 devices. It has the following features:

Full duplex operation

32 baud rate selections

8- or 9-bit character lengths

Separately enabled receiver and transmitter
Wake up on idle line or address mark

Optional interrupt generation upon transmit data register empty,
transmission compl ete, receive data register full, receiver over-run,
and idle line conditions

Detection of receiver framing, noise, and over-run errors

98/06/15

@ MOTOROLA An Enhanced SCI — The SCI+

In addition to the capabilities of the standard SCI, the enhanced serial
communications interface (SCI+) supports...

Separate transmitter and receiver baud rates
Output of the transmitter clock on the dedicated SCLK pin
SCLK phase and polarity control

Output-only, least significant bit first, synchronous transfers

The SCI+ essentially adds a simple, master mode, SPI-like, synchronous
transfer capabillity to the standard SCI's UART features.

98/07/28

(M) MmoToroLA Pulse Length Modulation Timer

PLMA
BUFFER COMPARATOR
REGISTER

PLMA SLOWI/FAST] SLOW/FAST :> ZERO
SELECT BIT (SFA) SELECT MUX DETECTOR

PN

INTERNAL
MCU CLOCK|

16-BIT TIMER COUNTER

v
PLMB SLOWI/FAST] SLOW/FAST i ZERO
SELECT BIT (SFB) SELECT MUX DETECTOR
PLMB
BUFFER COMPARATOR
REGISTER

98/06/23

(M) MmoToroLA Liquid|Crystal Display (LCD) Driver

Tl

DISPLAY RAM

Iyt

FRONTPLANE
DRIVERS

ADDRESS BUS A A

CONTROL
LOGIC

DATA BUS

BACKPLANE
DRIVERS

98/07/02

