2.5V / 3.3V 1:10 Differential ECL/PECL/HSTL Clock Driver

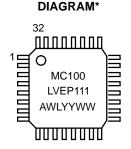
The MC100LVEP111 is a low skew 1-to-10 differential driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The PECL input signals can be either differential or single-ended (if the V_{BB} output is used). HSTL inputs can be used when the LVEP111 is operating under PECL conditions.

The LVEP111 specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device.

To ensure tightest skew, both sides of differential outputs identically terminate into $50~\Omega$ even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew.

The MC100LVEP111, as with most other ECL devices, can be operated from a positive V_{CC} supply in PECL mode. This allows the LVEP111 to be used for high performance clock distribution in +3.3 V or +2.5 V systems. Single–ended CLK input operation is limited to a $V_{CC} \! \geq \! 3.0$ V in PECL mode, or $V_{EE} \! \leq \! -3.0$ V in NECL mode. Designers can take advantage of the LVEP111's performance to distribute low skew clocks across the backplane or the board. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies. For more information on using PECL, designers should refer to Application Note AN1406/D.

- 85 ps Typical Device-to-Device Skew
- 20 ps Typical Output-to-Output Skew
- Jitter Less than 1 ps RMS
- Maximum Frequency >3 Ghz Typical
- V_{BB} Output
- 430 ps Typical Propagation Delay
- The 100 Series Contains Temperature Compensation
- PECL and HSTL Mode Operating Range: V_{CC} = 2.375 V to 3.8 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V
- Open Input Default State
- LVDS Input Compatible
- Fully Compatible with Motorola MC100EP111



ON Semiconductor

http://onsemi.com

32-LEAD TQFP FA SUFFIX CASE 873A

MARKING

A = Assembly Location

WL = Wafer Lot

YY = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC100LVEP111FA	TQFP-32	250 Units/Tray
MC100LVEP111FAR2	TQFP-32	2000 Tape & Reel

^{*}For additional information, refer to Application Note AND8002/D

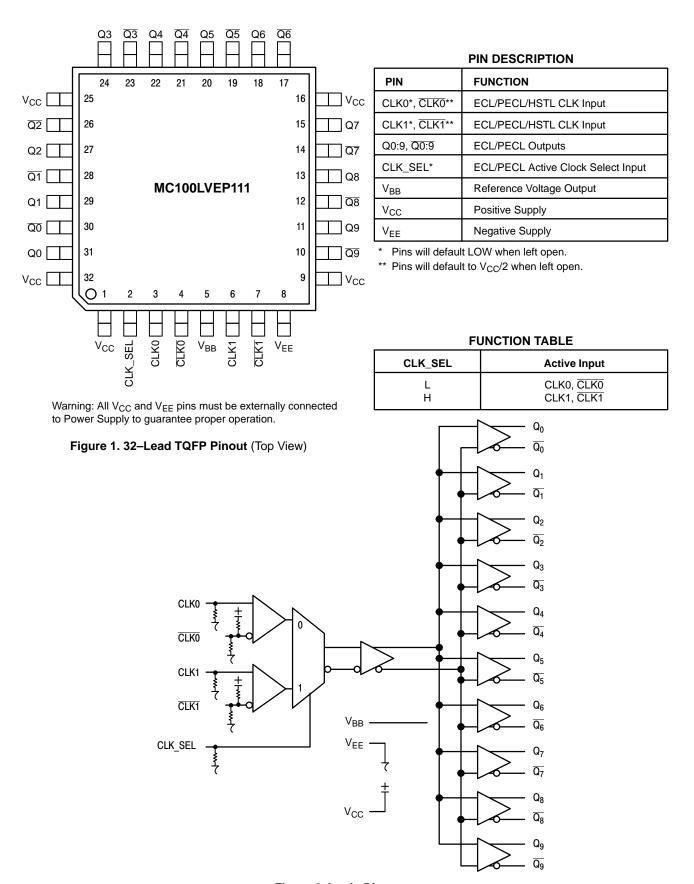


Figure 2. Logic Diagram

ATTRIBUTES

Characteris	etics	Value
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor		37.5 kΩ
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2 kV > 100 V > 2 kV
Moisture Sensitivity (Note 1.)		Level 2
Flammability Rating Oxygen Index		UL-94 code V-0 A 1/8" 28 to 34
Transistor Count	602 Devices	
Meets or exceeds JEDEC Spec EIA	JESD78 IC Latchup Test	

^{1.} For additional information, refer to Application Note AND8003/D.

MAXIMUM RATINGS (Note 2.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
V _I	PECL Mode Input Voltage	V _{EE} = 0 V	$V_{I} \leq V_{CC}$	6	V
	NECL Mode Input Voltage	$V_{CC} = 0 V$	$V_I \ge V_{EE}$	-6	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	32 TQFP 32 TQFP	80 55	°C/W °C/W
θЈС	Thermal Resistance (Junction to Case)	std bd	32 TQFP	12 to 17	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

^{2.} Maximum Ratings are those values beyond which device damage may occur.

PECL DC CHARACTERISTICS V_{CC} = 3.3 V; V_{EE} = 0 V (Note 3.)

		_40°C 25°C									
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	70	100	120	70	100	120	70	100	120	mA
V _{OH}	Output HIGH Voltage (Note 4.)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 4.)	1355	1480	1695	1355	1480	1695	1355	1480	1695	mV
V _{IH}	Input HIGH Voltage (Single Ended)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single Ended)	1490		1675	1490		1675	1490		1675	mV
V_{BB}	Output Reference Voltage (Note 5.)	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 6.)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

3. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary + 0.925 V to -0.5 V.

- 4. All loading with 50 ohms to V_{CC}-2.0 volts.
 5. Single ended input operation is limited V_{CC} ≥ 3.0 V in PECL mode.
- V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

PECL DC CHARACTERISTICS V_{CC} = 2.5 V; V_{EE} = 0 V (Note 7.)

			–40°C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	70	100	120	70	100	120	70	100	120	mA
V _{OH}	Output HIGH Voltage (Note 8.)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 8.)	555	680	895	555	680	895	555	680	895	mV
V _{IH}	Input HIGH Voltage (Single Ended) (Note 9.)	1335		1620	1335		1620	1275		1620	mV
V _{IL}	Input LOW Voltage (Single Ended) (Note 9.)	555		875	555		875	555		875	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 10.)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current CLK CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 7. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary + 0.125 V to -1.3 V.
- 8. All loading with 50 ohms to V_{EE} . 9. Do not use V_{BB} at VCC < 3.0 V.

NECL DC CHARACTERISTICS $V_{CC} = 0 \text{ V}$, $V_{EE} = -2.375 \text{ V}$ to -3.8 V (Note 11.)

			-40°C 25°C								
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	70	100	120	70	100	120	70	100	120	mA
V _{OH}	Output HIGH Voltage (Note 12.)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 12.)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1810		-1625	-1810		-1625	-1810		-1625	mV
V _{BB}	Output Reference Voltage (Note 13.)	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 14.)	V _{EE}	+ 1.2	0.0	V _{EE}	V _{EE} + 1.2		V _{EE}	+ 1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 11. Input and output parameters vary 1:1 with V_{CC}.
- 12. All loading with 50 ohms to V_{CC}-2.0 volts.
- 13. Single ended input operation is limited $V_{EE} \le -3.0V$ in NECL mode.
- 14. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential

HSTL DC CHARACTERISTICS $V_{CC} = 2.375$ to 3.8 V, $V_{EE} = 0$ V

			–40°C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage	1200			1200			1200			mV
V _{IL}	Input LOW Voltage			400			400			400	mV
V ₉₆	Input Crossover Voltage	680		900	680		900	680		900	mV
I _{CC}	Power Supply Current	70	100	120	70	100	120	70	100	120	mA

^{10.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential

 $\textbf{AC CHARACTERISTICS} \ \, \text{$V_{CC} = 0$ V; $V_{EE} = -2.375$ to -3.8 V} \quad \text{or} \quad \, \text{$V_{CC} = 2.375$ to 3.8 V; $V_{EE} = 0$ V (Note 15.) }$

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{maxPECL/HSTL}	Maximum Frequency (See Figure 3. F _{max} /JITTER)		> 3			> 3			> 3		GHz
t _{PLH} t _{PHL}	Propagation Delay (differential)	325	400	475	350	430	500	440	510	590	ps
t _{skew}	Within–Device Skew (Note 16.) Within–Device Skew @ 2.5 V (Note 16.) Device–to–Device Skew (Note 17.)		20 20 85	25 25 150		20 20 85	25 25 150		25 20 85	35 25 150	ps
[†] JITTER	Cycle–to–Cycle Jitter (See Figure 3. F _{max} /JITTER)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{PP}	Minimum Input Swing	150	800	1200	150	800	1200	150	800	1200	mV
t _r /t _f	Output Rise/Fall Time (20%–80%)	105	200	255	125	200	275	150	230	320	ps

^{15.} Measured with 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V_{CC}-2 V.

^{17.} Device–to–Device skew for identical transitions at identical V_{CC} levels.

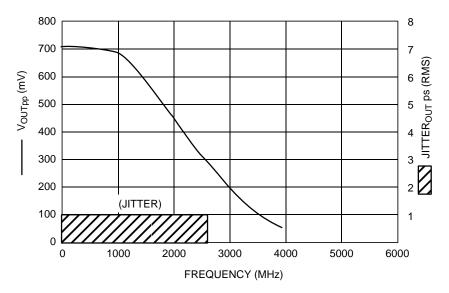


Figure 3. F_{max}/Jitter

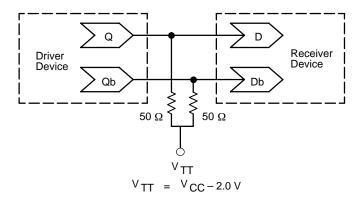


Figure 4. Typical Termination for Output Driver and Device Evaluation (Refer to Application Note AND8020 – Termination of ECL Logic Devices.)

^{16.} Skew is measured between outputs under identical transitions and conditions on any one device.

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1504 – Metastability and the ECLinPS Family

AN1568 – Interfacing Between LVDS and ECL

AN1650 – Using Wire-OR Ties in ECLinPS Designs

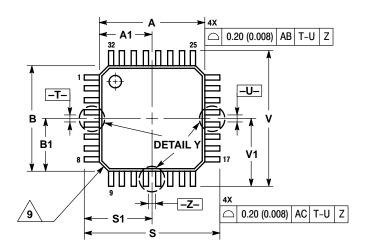
AN1672 – The ECL Translator Guide

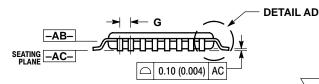
AND8001 – Odd Number Counters Design

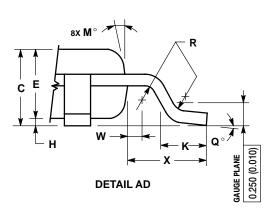
AND8002 – Marking and Date Codes

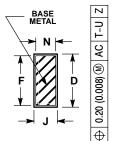
AND8009 - ECLinPS Plus Spice I/O Model Kit

AND8020 - Termination of ECL Logic Devices

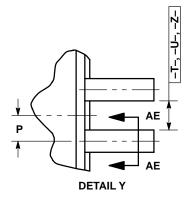

AND8033 - Method for AC Measurements


For an updated list of Application Notes, please see our website at http://onsemi.com.


PACKAGE DIMENSIONS


TQFP FA SUFFIX

32-LEAD PLASTIC PACKAGE CASE 873A-02 **ISSUE A**



SECTION AE-AE

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DATUM PLANE -AB- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD

- LEAD AND IS COINCIDENT WITH THE LEAD
 WHERE THE LEAD EXITS THE PLASTIC BODY AT
 THE BOTTOM OF THE PARTING LINE.
 DATUMS -T-, -U-, AND -Z- TO BE DETERMINED
 AT DATUM PLANE -AB-.
 DIMENSIONS S AND V TO BE DETERMINED AT
 SEATING PLANE -AC-.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD
 PROTRUSION. ALLOWABLE PROTRUSION IS
 0.250 (0.010) PER SIDE. DIMENSIONS A AND B
 DO INCLUDE MOLD MISMATCH AND ARE
 DETERMINED AT DATUM PLANE -AB-.
 DIMENSION D DOES NOT INCLUDE DAMBAR
- DITEMPT OF THE DAMBAR PROTRUSION DESCRIPTION OF THE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020).
- 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE
- 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION.

	MILLIN	METERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	7.000	BSC	0.276 BSC				
A1	3.500	BSC	0.138	BSC			
В	7.000	BSC	0.276	BSC			
B1	3.500	BSC	0.138	BSC			
С	1.400	1.600	0.055	0.063			
D	0.300	0.450	0.012	0.018			
E	1.350	1.450	0.053	0.057			
F	0.300	0.400	0.012	0.016			
G	0.800	BSC	0.031 BSC				
Н	0.050	0.150	0.002	0.006			
J	0.090	0.200	0.004	0.008			
K	0.500	0.700	0.020	0.028			
M	12°	REF	12°	REF			
N	0.090	0.160	0.004	0.006			
P	0.400	BSC	0.016	BSC			
Q	1°	5°	1°	5°			
R	0.150	0.250	0.006	0.010			
S	9.000	BSC	0.354	BSC			
S1	4.500	BSC	0.177	'BSC			
V	9.000	9.000 BSC		BSC			
V1	4.500	4.500 BSC		'BSC			
W	0.200) REF	0.008 REF				
Х	1.000	REF	0.039	REF			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 **Phone**: 81–3–5740–2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.