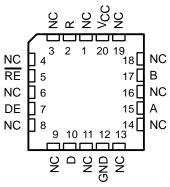

- Bidirectional Transceiver
- Suitable for Most EIA Standards RS-422-A and RS-485 Applications
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capability . . . ±60 mA Max
- Thermal Shutdown Protection
- Driver Positive- and Negative-Current Limiting
- Receiver Input Sensitivity . . . ±200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates From Single 5-V Supply
- Low Power Requirements

description


The SN95176B differential bus transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus transmission lines. The transceiver is suitable for most RS-422-A and RS-485 applications to the extent of the specified data sheet characteristics and operating conditions.

The SN95176B combines a 3-state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be externally connected together to function as a

FK PACKAGE (TOP VIEW)

NC - No internal connection

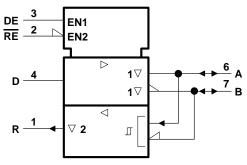
direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC} = 0$. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positive- and negative-current limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C. The receiver features a minimum input impedance of 12 k Ω , an input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mV.

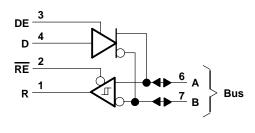
The SN95176B is characterized for operation from −40°C to 110°C.

Function Tables

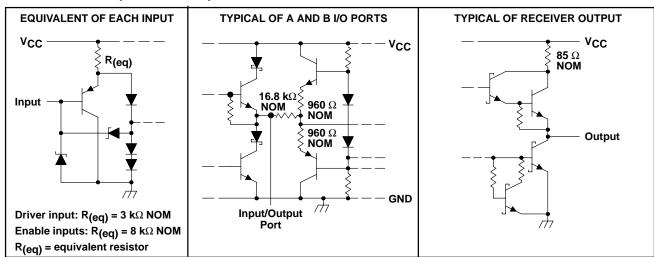
DRIVER


INPUT	ENABLE	OUTI	PUTS
D	DE	Α	В
Н	Н	Н	L
L	Н	L	Н
Х	L	Z	Z

RECEIVER


DIFFERENTIAL INPUTS A – B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 V$	L	L
X	Н	Z

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)


logic symbol†

logic diagram (positive logic)

schematics of inputs and outputs

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Terminal numbers shown are for the JG package.

SGLS026A - MARCH 1989 - REVISED JUNE 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	
Voltage at any bus terminal	
Enable input voltage, V _I	
Continuous total power dissipation	
Operating free-air temperature range, T _A	
Storage temperature range, T _{stg}	65°C to 150°C
Case temperature for 60 seconds, T _C : FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seco	nds: JG or W package 300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 110°C POWER RATING
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	440 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	336 mW
W	1000 mW	8.0 mW/°C	640 mW	520 mW	320 mW

recommended operating conditions

			MIN	TYP	MAX	UNIT
Supply voltage, V _{CC}			4.75	5	5.25	V
Voltage at any bus terminal (separately	oltage at any bus terminal (separately or common-mode), V _I or V _{IC}				12	٧
voltage at any bus terminal (separately					-7	
High-level input voltage, VIH	D, DE, and RE		2			V
Low-level input voltage, V _I L	D, DE, and RE				8.0	V
Differential input voltage, V _{ID} (see Note 2)				±12	V	
High level cutout current leve	Driver				-60	mA
High-level output current, IOH	Receiver				-400	μΑ
Low level output ourrent lev	Driver				60	mA
Low-level output current, IOL	Receiver				8	ША
Operating free-air temperature, TA			-40		110	°C

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

NOTE 1: All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS†	MIN	TYP‡	MAX	UNIT
٧ıK	Input clamp voltage	I _I = -18 mA				-1.5	V
۷o	Output voltage	IO = 0		0		6	V
V _{OD1}	Differential output voltage	I _O = 0		1.5		6	V
1)/1	Differential output valtere	$R_L = 100 \Omega$	See Figure 1	2			V
IVOD2I	Differential output voltage	$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	See Note 3			4		V
ΔIVODI	Change in magnitude of differential output voltage§					±0.2	٧
Vос	Common-mode output voltage	$R_L = 54 \Omega$, See Fig	See Figure 1			3	V
∆IVocI	Change in magnitude of common-mode output voltage§					±0.2	٧
l a	Output surrent	Output disabled,	V _O = 12 V			1	mA
Ю	Output current	See Note 4	$V_0 = -7 \text{ V}$			-0.8	IIIA
lіН	High-level input current	V _I = 2.4 V				20	μΑ
I _{IL}	Low-level input current	V _I = 0.4 V				-400	μΑ
		V _O = -7 V				-250	
1	Chart aircuit autaut aurrent	VO = 0				-150	A
los	Short-circuit output current	Vo = Vcc				250	mA
		V _O = 12 V				250	
loo	Supply surrent (total package)	No load	Outputs enabled		42	70	mA
Icc	Supply current (total package)	INU IUAU	Outputs disabled		26	35	IIIA

[†] The power-off measurement in EIA Standard RS-422-A applies to disabled outputs only and is not applied to combined inputs and outputs.

NOTES: 3. See EIA Standard RS-485 Figure 3.5, Test Termination Measurement 2.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST COI	MIN	TYP	MAX	UNIT	
td(OD)	Differential output delay time	$R_L = 54 \Omega$,	See Figure 3		15	22	ns
t _t (OD)	Differential output transition time		See Figure 3		20	30	ns
^t PZH	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 4		85	120	ns
tPZL	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 5		40	60	ns
^t PHZ	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 4		150	250	ns
^t PLZ	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 5		20	30	ns

[‡] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

[§] $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

^{4.} This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions. The RS-422-A limit does not apply for a combined driver and receiver terminal.

SYMBOL EQUIVALENTS

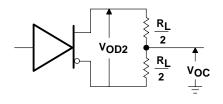
DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	V_{oa}, V_{ob}	V _{oa,} V _{ob}
IVOD1I	Vo	V _O
IV _{OD2} I	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
IVOD3I	None	V _t (Test Termination Measurement 2)
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	V _{os}
∆ VOC	$ V_{OS} - \overline{V}_{OS} $	$ V_{OS} - \overline{V}_{OS} $
los	I _{sa} , I _{sb}	None
lo	$ I_{xa} , I_{xb} $	I _{ia} , I _{ib}

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST C	ONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	V _O = 2.7 V,	$I_{O} = -0.4 \text{ mA}$			0.2	V
V_{IT-}	Negative-going input threshold voltage	$V_0 = 0.5 V$,	I _O = 8 mA	-0.2‡			V
V _{hys}	Input hysteresis voltage (V _{IT+} - V _{IT-})				50		mV
VIK	Enable clamp voltage	I _I = -18 mA				-1.5	V
Vон	High-level output voltage	V _{ID} = 200 mV, See Figure 2	$I_{OH} = -400 \mu A,$	2.7			V
V _{OL}	Low-level output voltage	V _{ID} = -200 mV, See Figure 2	I _{OL} = 8 mA,			0.45	V
loz	High-impedance-state output current	V _O = 0.4 V to 2.4 V				±20	μΑ
	Line in most assument	Other input = 0 V,	V _I = 12 V			1	A
11	Line input current	See Note 5	V _I = -7 V	1		-0.8	mA
lіН	High-level enable input current	V _{IH} = 2.7 V				20	μΑ
Ι _Ι L	Low-level enable input current	V _{IL} = 0.4 V				-100	μΑ
rį	Input resistance	V _I = 12 V		12			kΩ
los	Short-circuit output current			-15		-85	mA
1	Cumply assessed (total pagings)	Nolood	Outputs enabled		42	70	A
ICC	Supply current (total package)	No load	Outputs disabled		26	35	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


NOTE 5: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

[‡] The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

switching characteristics, V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	V _{ID} = 0 to 3 V, See Figure 6		21	35	ns
tPHL	Propagation delay time, high- to low-level output	VID = 0 to 3 V, See Figure 6		23	35	ns
^t PZH	Output enable time to high level	See Figure 7		10	20	ns
tPZL	Output enable time to low level	See Figure 7		12	20	ns
tPHZ	Output disable time from high level	See Figure 7		20	35	ns
t _{PLZ}	Output disable time from low level	See Figure 7		17	25	ns

PARAMETER MEASUREMENT INFORMATION

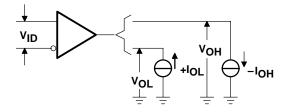
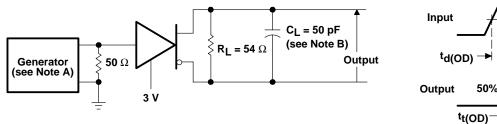
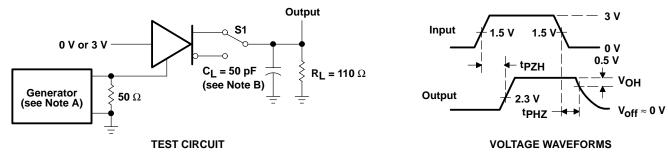



Figure 1. Driver V_{OD} and V_{OC}

Figure 2. Receiver VOH and VOL

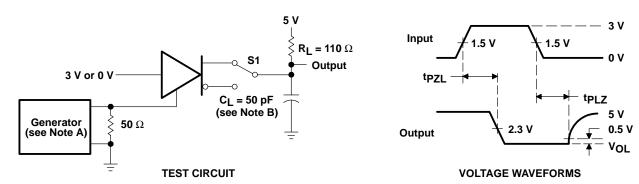


td(OD) **VOLTAGE WAVEFORMS**

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{f} \leq$ 6 ns, $Z_O = 50 \Omega$.
 - B. CL includes probe and jig capacitance.

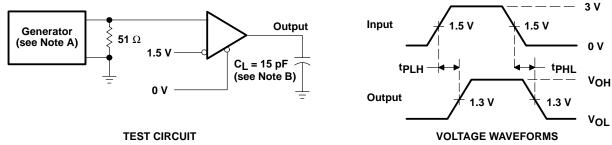
TEST CIRCUIT

Figure 3. Driver Test Circuit and Voltage Waveforms



- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_{O} = 50 \Omega$.
 - B. CL includes probe and jig capacitance.

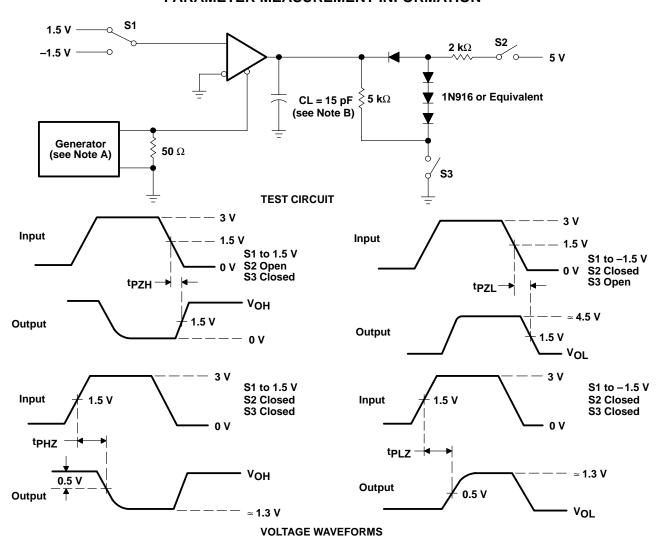
Figure 4. Driver Test Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{\Gamma} \leq$ 7 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 9 ns, $t_$

B. C_L includes probe and jig capacitance.

Figure 5. Driver Test Circuit and Voltage Waveforms

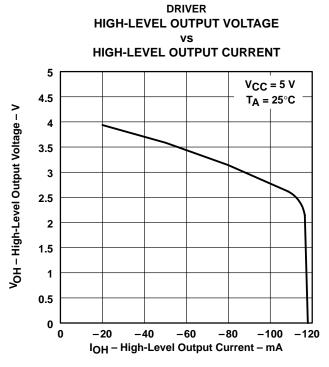


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns, t_f

B. C_I includes probe and jig capacitance.

Figure 6. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{\Gamma} \leq$ 7 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 9 ns, $t_$

B. C_L includes probe and jig capacitance.

Figure 7. Receiver Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

DRIVER
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT

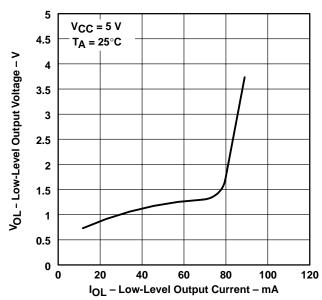


Figure 8 Figure 9

DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs

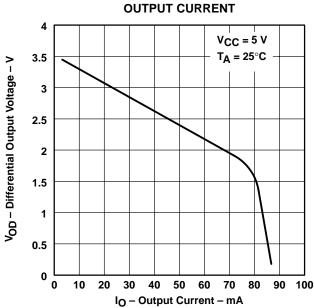


Figure 10

TYPICAL CHARACTERISTICS

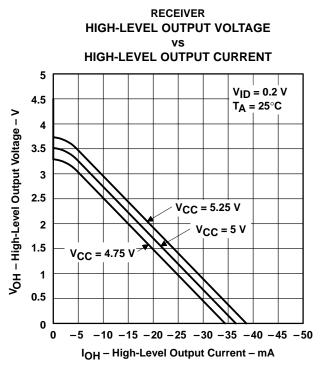


Figure 11

RECEIVER

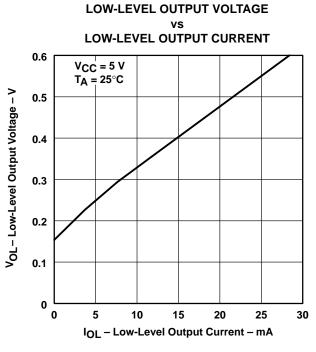


Figure 13

RECEIVER HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

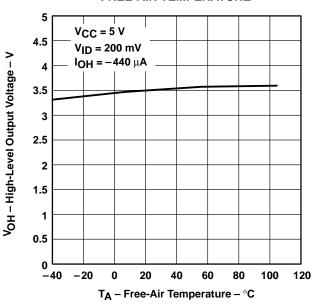


Figure 12

RECEIVER LOW-LEVEL OUTPUT VOLTAGE vs

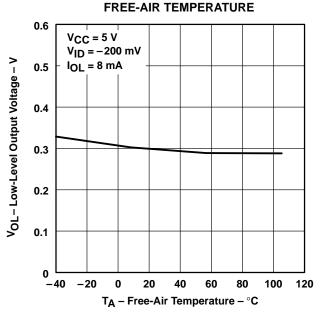
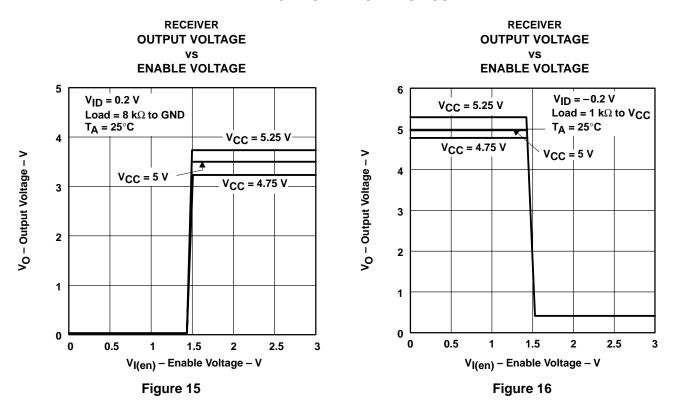
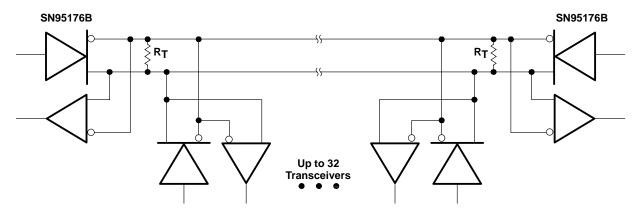




Figure 14

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

Figure 17. Typical Application Circuit

NOTE A: The line should terminate at both ends in its characteristic impedance (R_T = Z_O). Stub lengths off the main line should be kept as short as possible.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated