Interfacing the TLV1549 10-Bit Serial-Out ADC to Popular 3.3-V Microcontrollers

SLAA005 August 1994

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Contents

Title

INTRODUCTION Interface Timing Use of Software Subroutines Data Format	1 1
TLV1549-TO-68HC05 INTERFACE	2
Microcontroller Features	2
Interface Circuit	2
Software Considerations	3
Serial Peripheral Control Register (SPCR)	3
Serial Peripheral Status Register (SPSR)	3
Serial Peripheral Data I/O Register (SPDR)	3
Program Listing	3
Program Listing for the TLV1549-to-MC68HC705 Interface	
TLV1549-TO-TMS7000 INTERFACE	_
Microcontroller Features	
Interface Circuit	
Serial I/O Mode	
Provision of TLV1549 Chip Select (\overline{CS})	
Data Reformatting and Storage	
Other Software Considerations	
Software Listing	
Program Listing for TLV1549-to-TMS70C02 Microcontroller Interface	
TLV1549-TO-80C51-L INTERFACE	
Microcontroller Features	
Serial I/O Mode 0	
Interface Circuit	
Software Listing	
Program Listing for the TLV1549-to-80C51-L Interface	10
ANALOG CONSIDERATIONS	11
Analog Reference for the TLV1549	
PCB Layout	
Grounding and Decoupling	
APPENDIX A	12

List of Illustrations

Figure	Title	Page
1	Timing for the 11- to 16-Clock Transfer Using $\overline{\text{CS}}$ (Serial Transfer Completed After 21 µs)	1
2	TLV1549 10-Bit Serial Out ADC-to-MC68HC705C8 Microcontroller Interface	2
3	Shift Register Operation of the Serial Peripheral Interface (SPI)	3
4	TLV1549 10-Bit Serial Out ADC-to-TMS70C02 Microcontroller Interface	5
5	TLV1549 10-Bit Serial Out ADC-to-80C51-L Microcontroller Interface	9
6	User-Adjustable 2.5-V Reference Circuit	11

INTRODUCTION

The TLV1549 is a 10-bit serial out analog-to-digital converter that operates from a 3.3-V (± 0.3 V) single supply. It uses a switched-capacitor successive-approximation method to perform the conversion in a maximum of 21 µs.

This application report describes how to interface the TLV1549 to three popular microcontrollers which operate from a single 3.3-V supply rail. These are the 68HC05, the TMS70C02, and the 80C51-L.

Interface Timing

The timing for each of the interfaces described in this application report is illustrated in Figure 1. One chip-select (CS) pulse is used for each 10-bit conversion and 16 CLOCK I/O pulses are between each \overline{CS} .

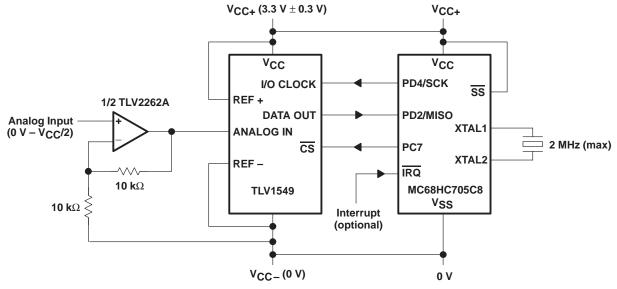
(Serial Transfer Completed After 21 μ s)

Use of Software Subroutines

The subroutines included in this application report have been developed as much as possible as relocatable pieces of software. They include a provision for setting the number of consecutive conversions to be performed. This is either set in the main program as in the TMS7000 and 80C51-L examples or inside the subroutine as used in the 68HC05 example, by programming the number of conversions into COUNT. It is recommended that at least two conversions are performed either after a power-up reset or after a protracted interval between the last conversion. This enables the TLV1549 on-board sample-and-hold to acquire the most recent signal level during the first conversion cycle before converting it into digital form during the second cycle.

Data Format

In whatever format the data arrives at the microcontroller, it is important to ensure that any reformatting, if required, puts the data into a convenient final format. This application report places the most significant byte of the conversion result in one byte of random access memory (RAM) and the least significant byte in an adjacent byte of RAM. The two least significant bits of the 10-bit result are placed in the least significant bit locations of their RAM location.


This format gives the user the flexibility to use only 8-bit precision data, if so required, to add the MS and LS bytes together for use in 16 bit wide architectures, to view the two least significant bits of the result for fine tuning applications, or to reformat into another more convenient format.

TLV1549-TO-68HC05 INTERFACE

Microcontroller Features

The M68HC05 family of microcontrollers consists of several different product variants of the basic architecture. It is important that the correct product type is specified to ensure that it contains all the features and attributes necessary to fulfill all its eventual system requirements.

In the case of its suitability for interfacing to the TLV1549 serial out ADC, the M68HC05 product type should contain a serial peripheral interface (SPI). Several types contain this feature including the MC68HC705C8, which was chosen as the target for this ADC interface.

NOTE: For 68HC05 operating off 3.3 V dc supply: Maximum I/O clock frequency = maximum crystal clock frequency/4 = 0.5 MHz

Figure 2. TLV1549 10-Bit Serial Out ADC-to-MC68HC705C8 Microcontroller Interface

Interface Circuit

Figure 2 shows the circuit interconnections for the TLV1549 – MC68HC705C8 microcontroller interface. No glue logic is required. The positive reference to the TLV1549 is provided directly from the V_{CC+} supply. The analog signal is scaled by an appropriate factor (a gain of two in this case) and buffered by one half of a TLV2262A dual operational amplifier.

The three digital interface terminals, I/O CLOCK, DATA OUT, and \overline{CS} of the TLV1549 connect directly to the PD4/SCK, PD2/MISO, and PC7 terminals respectively of the microcontroller. When the SPI is enabled, PD4 becomes SCK, which is the serial clock output, and PD2 becomes the master in slave out (MISO) terminal. When programmed to be a master device, the microcontroller receives serial data at its MISO terminal.

Figure 3 shows the shift register operation of the SPI when connected to a serial output peripheral component such as the TLV1549. The MC68HC705C8 operates as the master device and the TLV1549 acts as the slave.

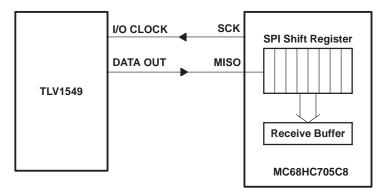


Figure 3. Shift Register Operation of the Serial Peripheral Interface (SPI)

Software Considerations

The three registers which are used for SPI communications are:

Serial peripheral control register (SPCR) Serial peripheral status register (SPSR) Serial peripheral data I/O register (SPDR)

Serial Peripheral Control Register (SPCR)

Bits 0 and 1 of the SPCR program the SPI master bit rate. With bits 0 and 1 set to 0, SCK runs at the internal processor clock/2. This means that SCK operates at one quarter of the microcontroller XTAL frequency.

Bit 2 determines the phase relationship between the clock transmitted at SCK and the data appearing on the MISO terminal. If a 0 is placed in bit 3, SCK idles low. This is the correct condition for the TLV1549. A 1 in bit 6 of the SPCR enables the SPI. A 0 in bit 6 disables the SPI. A 1 in bit 4 (MSTR) confers the status of master to the microcontroller.

Serial Peripheral Status Register (SPSR)

The most important bit of the SPSR is bit 7 (SPIF). When set to 1, it indicates that a data transfer between the TLV1549 and the microcontroller has been completed. The SPIF bit is automatically cleared when the SPSR is read and the SPI data register is accessed.

Serial Peripheral Data I/O Register (SPDR)

When the SPIF bit of the SPSR is 1, the SPDR contains the received byte of information from the converter. The contents of SPDR can then be read into a suitable register or location.

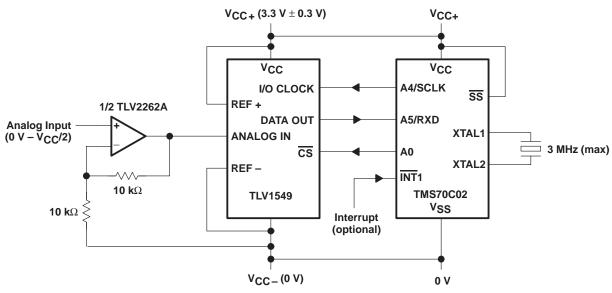
Program Listing

The program listing for the TLV1549-to-MC68HC705 interface shown in Figure 2 is included in the following section. COUNT has been set to 2; this ensures that two conversions are performed each time the ADC subroutine is used. The first conversion flushes out potentially erroneous data from the converter output registers. For test purposes, the main program simply performs continuous repeat jumps to the ADC subroutine.

The SPI expects the most significant bit of each received byte to arrive first which is compatible with the order of the TLV1549 output bit stream. This means that no reformatting of the most significant bit of the 10-bit conversion result is required. However, the least significant byte does need to be shifted right by 6 bits.

Program Listing for the TLV1549-to-MC68HC705 Interface

	0	0			
1			* * * * *	* * * * * * * *	* * * * * * * * * * * * * * * * * *
2			*		*
3				LV1549 - MC68HC	705C8 Interface Program *
4			*		*
5					a subroutine ADC which reads *
6					two conversions of the TLV1549 *
7					in address 50H and the LSByte *
8				lress 51H.	
9			1110 000		se conversion(pocentiariy
10			CIIOIIC		tten by the result from the *
11 12			* Second	l conversion.	*
13			* * * * *	* * * * * * * *	* * * * * * * * * * * * * * * * * *
	000A		SPCR	EQU OAH	* * * * * * * * * * * * * * * *
	000B		SPSR	EQU OBH	* *
	000C		SPDR	EQU OCH	* *
	0002		PORTC	EQU 02H	* Names, Peripheral, and *
	0006		DDRC	EQU 06H	* Control Registers *
	0011		SCDAT	EQU 11H	* *
20	000E		SCCR1	EQU OEH	* *
21	000F		SCCR2	EQU OFH	* *
22	0010		SCSR	EQU 10H	* * * * * * * * * * * * * * * * *
23	0050		MSBYTE	EQU 50H	* * * * * * * * * * * * * * * * * *
24	0051		LSBYTE	EQU 51H	* Names working RAM addresses *
25	1FFE		RESETH	EQU 1FFEH	* *
	1FFF		RESETL	EQU 1FFFH	* *
	0052		COUNT	EQU 52H	* * * * * * * * * * * * * * * * * *
	0160			ORG 160H	Start Program at 160H
	0160			LDA #01H	
		C71FFE		STA RESETH	Load Reset Vector High Byte
	0165	A660 C71FFF		LDA #60H	Lood Dogot Magtor Low Duto
		CD016F	START	STA RESETL JSR ADC	Load Reset Vector Low Byte
	016D		SIARI	BRA START	
	010D 016F		ADC	BSET 7, DDRC	
	0171		ADC	LDA #02H	
	0173			STA COUNT	
	0175		CONVERT	LDA #10H	
	0177		CSHIGH	BSET 7, PORTC	Set Port C bit 7 (TLV1549 CS) high
40	0179	4A		DECA	
41	017A	26FB		BNE CSHIGH	
42	017C	1F02		BCLR 7, PORTC	Reset TLV1549 CS (Low)
	017E			LDA #50H	Load accumulator with 50H
	0180			STA SPCR	Load SPI control register
	0182			LDA #00H	Load dummy data into accumulator
	0184			STA SPDR	Receive SPI data
		0F0BFD	HBYTE	BRCLR 7, SPSR,	HBAJE
	0189			LDA SPDR	Dut MODVER in Leastice FO
	018B			STA MSBYTE	Put MSBYTE in Location 50
	018D 018F			LDA #00H	Load dummy data into accumulator Receive SPI data
		OF00FD	τοντσ	STA SPDR BRCLR 7, 0B, LE	
	0191			LDA SPDR	
	0196			STA LSBYTE	Put LSBYTE in Location 51
	0198			DEC COUNT	The population of the population of
	019A			LDA COUNT	
	019C			BNE CONVERT	If COUNT = 1, do another conversion
	019E			LDA #06H	* * * * * * * * * * * * * * * * *
59	01A0	98	FORMAT	CLC	* *
	01A1			ROR LSBYTE	* Reformats LSBYTE *
	01A3			DECA	* *
	01A4			BNE FORMAT	* * * * * * * * * * * * * * * * * *
	01A6	81		RTS	
64	01A7			END	


TLV1549-TO-TMS7000 INTERFACE

Microcontroller Features

The entire range of TMS7000 microcontrollers can be operated with a 3-V supply. However, the maximum crystal frequency they will tolerate at this supply voltage (over the full temperature range) is 3 MHz. The inherently longer instruction cycle times that this yields should be taken into account when deciding how many software delay loops are necessary to produce the required delay.

Within the family of TMS7000 microcontrollers, three types are available that have a serial port: TMS70Cx2, TMS77C82, and TMS70Cx8. This application report refers to the TMS70Cx2, but any one of these three types could be chosen to efficiently implement a serial interface to the TLV1549.

Three modes of serial communication are available for the serial port: asynchronous mode, isosynchronous mode, and the serial I/O mode. The most suitable of these for interfacing the TMS70Cx2 to the TLV1549 is the serial I/O mode.

Interface Circuit

The TLV1549-to-TMS70C02 interface circuit is shown in Figure 4. The chip select (\overline{CS}) of the TLV1549 is controlled

NOTE: Maximum I/O clock frequency = microcontroller crystal frequency/8

Serial I/O Mode

Four peripheral registers are used to set up and control the serial I/O mode of the microcontroller:

Serial mode register (SMODE) Serial control register 0 (SCTL0) Serial control register 1 (SCTL1) Serial port status register (SSTAT)

by the output from A0 (bit 0 of peripheral port A).

The contents of the SMODE register determine the data format and type of communication mode (serial I/O for example). In the serial I/O mode, the frame format of each character is five to eight data bits followed by a stop bit. Setting the number of bits to eight can simplify the software necessary to implement the interface.

SCTL0 enables either transmit or receive communication. SCTL1 determines the source of SCLK and programs the frequency of SCLK.

SSTAT is a read-only register that is used for checking the status of the serial port. Bit 1 (RXRDY) of SSTAT is 0 when the receive buffer (RXBUF) is empty and 1 when RXBUF is full.

Provision of TLV1549 Chip Select (CS)

On power-up and/or system reset, the TLV1549 chip-select terminal $\overline{(CS)}$ should be initialized to a high level. To provide this, one of the bidirectional peripheral port bits can be programmed as an output and set to a 1 for a period of at least 21 μ s. This period is provided by a delay loop at the beginning of the ADC subroutine. The number of times the loop is excuted in order to achieve at least 21 μ s is dependent on the clock frequency of the microcontroller and the number of instruction cycles contained within the delay loop. The example program listing shown in the section program listing for TLV1549-to-TMS70C02 microcontroller interface executes the loop 16 times, but the loop can be executed less times to optimize the conversion throughput rate.

On completion of this delay loop, the particular peripheral port bit is reset to 0, and the converter is now ready to send out data from the previously performed conversion.

Data Reformatting and Storage

After RXBUF is checked to verify it is full, its contents can be read to a suitable register for subsequent access and processing. In the case of the 10-bit conversion result from the TLV1549, two successive bytes of data are received and each are placed in RXBUF to be read consecutively into two convenient memory locations.

The TLV1549 sends the digital result of each conversion with the most significant bit first and the least significant bit last. This is the reverse of the order that the TMS70C02 expects. A few software instructions are therefore inserted near the end of the conversion subroutine that reformat the data into the correct order for interpretation by the microcontroller.

Other Software Considerations

The subroutine that services the TLV1549 conversion should be located in a convenient area of memory that is compatible with the rest of the system. For example, all serial port versions of the TMS7000 family have 8K bytes of EPROM. This EPROM is located between addresses E000H (hex) and FFFFH. A converter subroutine start address at the midpoint of this EPROM memory space may be convenient in that it leaves the first half of this space for the location of the main program. The example program listing in the section Program Listing for TLV1549-to-TMS70C02 Microcontroller Interface uses a start location of F006 which is convenient for the emulation system it was developed on.

On system reset, the stack pointer is at location 0001H. In programs that include nested subroutines where the number of RAM locations taken up by the stack becomes large, the stack can interfere with other useful or even critical RAM locations. It is therefore prudent to reposition the stack pointer, immediately after reset, at a higher address in RAM such as 0060H. This allows the stack plenty of room to grow and avoids interference with lower address RAM locations.

Software Listing

The following program listing reads in the results of two 10-bit conversions from the TLV1549. The software routine ADC actually reads in the results from N conversions, where N is the contents of the register COUNT. The first conversion in a sequence of conversions may be erroneous because the data received is derived from a previous (probably invalid) sample of the analog signal. It is often useful to flush out this first spurious reading before receiving a second valid conversion result. The setting of the contents of COUNT is performed within the main program and should normally be set to a minimum of two.

Program Listing for TLV1549-to-TMS70C02 Microcontroller Interface

•		•		
0001				* * * * * * * * * * * * * * * * * * *
0002 0003		*	TLV1549 - T	MS70C02 Interface Program *
0003			his program conta	ins a subroutine ADC which reads in *
0005				om two conversions of the TLV1549. The *
0006				erroneous) from the first conversion *
0007				the data from the second conversion. *
0008				nt byte is placed in register 16. The *
0009 0010			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	byte is placed in register 17. *
0011	000		EOU P4	* * * * * * * * * * * * * * * * * *
0012	000		EQU P5	* *
0013	001		EQU P20	* *
0014	001		EQU P21	* * *
0015 0016	001 001		EQU P22 EQU P24	* Name Peripheral Registers *
0010	001		EQU P25	* *
0018	001		EQU P26	* *
0019	000		EQU R9	* Name Count and Result Registers *
0020	001		EQU R16	* * * * * * * * * * * * * * * * * * * *
0021	001 F006	1 LSBYTE	EQU R17 AORG >F006	* * * * * * * * * * * * * * * * * * *
		2 START	MOV %>60,B	Set start address of program Set stack register
0025		0	110 0, 00 00 12	See Seden register
0024	F008 0	D	LDSP	
0025	F009 A		MOVP %>11,ADDR	Set up Port A Data Direction Register
	F00A 1			
0026	F00B 0 F00C A		MOVP %>00 SMODE	Set up Serial Mode Register
0020	F00D 0		MOVE 820C, SHODE	See up Seriar Mode Register
		4		
0027		2	MOV %>02,COUNT	Set COUNT = 2
		2		
0028	F011 0 F012 8		CALL @ADC	Call Subroutine ADC
0020	F012 F01		CALL GADC	
0029	F015 E	0	JMP START	On return from Subroutine ADC, jump to START
	F016 E			
0030	F017 2 F018 0	2 ADC	MOV %>03,A	Put 03 in register A
0031	F018 0 F019 A		MOVP %>01.APORT	TLV1549 Chip Select goes high
0001		1		1201019 Chilp Sciecco 3000 high
	F01B 0	4		
	F01C B		DEC A	Decrement the contents of Register A by 1
0033	F01D E F01E F	6 A	JNZ CSHIGH	and jump to CSHIGH if result is not zero
0034	FOIE F		MOVP %>00.APORT	TLV1549 Chip Select goes low
	F020 0			
		4		
0035	F022 A		MOVP %>16,SCTL0	Set up Serial Control Register O
		.6 5		
0036	F024 I		MOVP %>C0.SCTL1	Set up Serial Control Register 1
	F026 C			
	F027 1			
0037			MOVP SSTAT,A	Put contents of Serial Status Register in A
0020		6 6	ישמגז ג 2~ אידיים	L2 If bit 1 of A is 1, jump to LABEL2
0030	F02A 2 F02B 0		DIUC %~Z,A,LABE	IN IT NIC I OF A ID I, JUMP CO DADEDZ
		2		
0039	F02D E		JMP LABEL1	and if not, jump to LABEL1
0040	FO2E F			
0040		0 LABEL2 9	MOVP RABUF, A	Put contents of RXBUF (MSByte) in A
0041	F030 I F031 D		MOV A,R10	Put contents of A into Register 10
		A		
0042	F033 A		MOVP %>16,SCTL0	Set up Serial Control Register 0
		6		
	F035 1	5		

7

0043	F036 F037 F038	A2 C0 18		MOVP %>C0,SCTL1	Set up Serial Control Register 1
0044	F038 F039 F03A	10 80 16	LABEL3	MOVP SSTAT,A	Put contents of Serial Status Register in A
0045	F03B F03C F03D	26 02 02		BTJO %>2,A,LABEI	14 If bit 1 of A is 1, jump to LABEL1
0046	F03E F03F	E0 F9		JMP LABEL3	and if not, jump to LABEL3
0047	F040 F041	80 19	LABEL4	MOVP RXBUF,A	Put contents of RXBUF (LSByte) in A
0048	F042 F043	D0 0B		MOV A,R11	Put contents of A in Register 11
0049	F044 F045	D2 09		DEC COUNT	(COUNT) - 1
0050	F046 F047	E6 CF		JNZ ADC	If COUNT is not zero do another conversion
	F048 F049	B0 DD		CLRC RRC R11	clear carry bit * * * * * * * * * * * * * * * * * * *
0053	F04A F04B F04C	0B E7 03		JNC LSBIT0	* Reformats Least Significant Byte *
0054	F04D F04E	74 02		OR %>2,R11	* * * * * * * * * * * * * * * * * * *
0055	F04F F050 F051	0B 42 0B	LSBIT0	MOV R11,LSBYTE	Put reformatted LSByte in LSBYTE
0056	F052 F053 F054	11 D5 0C		CLR R12	clear register 12
0057	F054 F055 F056	D5 0E		CLR R14	and register 14
0058	F057 F058	22 08		MOV %>8,A	Set contents of A to 8
0059	F059 F05A F05B	42 0A 0C		MOV R10,R12	Put contents of register 10 in register 12
	F05C F05D	B0 DD	FORMAT	CLRC RRC R12	* * * * * * * * * * * * * * * * * * * *
0062	F05E F05F F060	OC DF OE		RLC R14	* Reformats Most Significant Byte *
0063	F061	B2		DEC A	* *
	F062	E6		JNZ FORMAT	* * * * * * * * * * * * * * * * * *
0001	F063	F8		01.0 I 010.011	
0065	F064	42		MOV R14, MSBYTE	Put reformatted MSByte into MSBYTE
	F065	0E		-	-
	F066	10			
	F067	0A		RETS	Return from subroutine ADC
0067				AORG >FFFE	Configure Reset vector
0068 0069	FFFE	F.000		DATA START END	to point to START

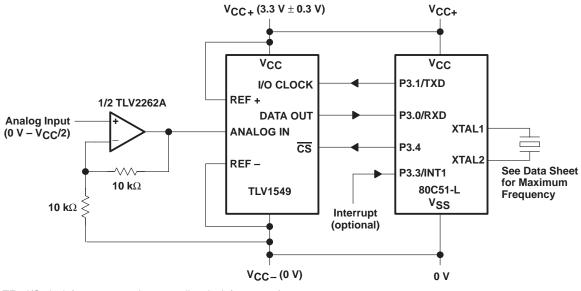
TLV1549-TO-80C51-L INTERFACE

Microcontroller Features

The 80C51-L is the 3.3-V supply version of the 80C51 family of microcontrollers. Various 3.3-V supply versions of the 80C51 architecture are available from different manufacturers. Individual data sheets should be consulted to establish at which maximum crystal frequency each specific device type can operate.

As indicated for the previously described interfaces, the most suitable method of receiving the serial output from the TLV1549 is to configure the serial port of the microcontroller to perform like an 8-bit shift register. The same is true for the 80C51-L.

Serial I/O Mode 0


The type of serial communication to and from the 80C51-L is determined by the data inserted into the serial port control register (SCON). The contents of the most significant bits of SCON (bits 7 and 6) determine the operating mode (modes 0, 1, 2, and 3) of the serial port.

Mode 0 is the shift register mode and is programmed by placing a 0 in each of bits 7 and 6 of the SCON. Bit 4 (REN) of the SCON is the receive enable bit. This bit is set to 1, while bit 1 (RI) of the SCON is 0, to receive serial data. In this configuration, data is received at bit 0 of port 3 (P3.0). The synchronizing signal for clocking in this data is output at TXD, which is bit 1 of port 3 (P3.1).

When configured for mode 0, eight bits are received with no trailing stop bit for each enabling of serial reception. The data is received with the least significant bit expected first, the reverse of the order in which the TLV1549 serial data arrives. Reformatting of the received data is therefore necessary.

Interface Circuit

Figure 5 shows the interconnections necessary to implement the interface of the TLV1549 to the 80C51-L microcontroller. \overline{CS} of the TLV1549 is driven by bit 4 of port 3 (P3.4) of the 80C51-L.

NOTE: I/O clock frequency = microcontroller clock frequency/12

Software Listing

Similar to the previously described program listings, the following listing contains the subroutine ADC that reads into the 80C51-L ten bits of serial data resulting from a single conversion of the TLV1549. The number of consecutive conversions performed for each jump to subroutine ADC is equal to the number placed in COUNT. The result of each conversion is overwritten by that of the next conversion in the sequence.

Program Listing for the TLV1549-to-80C51-L Interface

LOC	OBJ	LINE 1	SOURCE ;* * * *	* * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
		2 3	; * ; *	TT V15/19 _ 90	C51-L Interface Program *
		4	;*		*
		5		is program contai	.ns a subroutine ADC which reads *
		6			from the TLV1549 10-bit ADC *
		7			significant byte in address 20H *
		8 9	;* and	d least significa	nt byte in address 21H *
		10	;* * * *	* * * * * * * * *	* * * * * * * * * * * * * * * * * *
		11	,		
0020		12	MSBYTE	EQU 20H	;* * * * * * * * * * * * * * * * * *
0021		13	LSBYTE	EQU 21H	;* Name data destinations *
REG		14 15	COUNT	EQU R3	;* and COUNT register * ;* * * * * * * * * * * * * * * * * *
0022		15		ORG 22H	;Set start address
0022	7B02	17	START:		;Set COUNT=2 (Do 2 conversions)
0024	020029	18		JMP ADC	;Jump to subroutine ADC
0027	80F9	19		JMP START	Repeat above again
0029	D2B4	20	ADC:	SETB P3.4	;* * * * * * * * * * * * * * * * * * *
002B 002D	7410 14	21 22	DELAY:	MOV A, #10H DEC A	;* Set Port3 (bit 4) high * ;* (Sets CS of TLV1549 high) *
002D 002E	70FD	23	DELIAI ·	JNZ DELAY	:* * * * * * * * * * * * * * * * * * *
0030	C2B4	24		CLR P3.4	
0032	759810			MOV SCON, #10H	
0035	3098FD		LABEL1:	JNB SCON.0, LABE	
0038 003A	C298 A899	27 28		CLR SCON.0 MOV R0,SBUF	;most significant ;byte, place in R0
003C	3098FD		LABEL2:	JNB SCON.0, LAB	
003F	C29C	30		CLR SCON.4	;least significant
0041	C298	31		CLR SCON.0	;byte,
0043	A999	32		MOV R1, SBUF	;place in R1
0045 0046	1B EB	33 34		DEC COUNT MOV A, COUNT	;COUNT-1 ;
0040	70E0	35		JNZ ADC	; If COUNT not = 0,
		36			;do another conversion
0049	7C08	37		MOV R4, #08H	;Put 08H in R4
004B	AA00	38		MOV R2, 00H	
004D 004E	C3 E8	39 40	LOOP:	CLR C MOV A, RO	:* * * * * * * * * * * * * * * * * * *
004E 004F	13	41		RRC A	;* *
0050	F8	42		MOV R0, A	;* Reformats MSByte *
0051	EA	43		MOV A, R2	;*
0052	33	44		RLC A	;* * :* *
0053 0054	FA 1C	45 46		MOV R2, A DEC R4	;* * *
0055	EC	47		MOV A, R4	;* *
0056	70F5	48		JNZ LOOP	;* * * * * * * * * * * * * * * * * * *
0058	EA	49		MOV A, R2	i
0059	F520	50		MOV 20H, A	; ;* * * * * * * * * * * * * * * * * * *
005B 005C	E9 13	51 52		MOV A, R1 RRC A	;* * * * * * * * * * * * * * * * *
005D	F521	53		MOV 21H, A	;* Reformats LSByte *
005F	9209	54		MOV 21H.1, C	;* *
0061	C20F	55		CLR 21H.7	;* * * * * * * * * * * * * * * * * * *
0063	22	56		RET	;Return from subroutine
		57		END	

ANALOG CONSIDERATIONS

Analog Reference for the TLV1549

The REF+ terminal of the TLV1549 can be directly connected to the V_{CC} rail of the device. This produces accurate results for analog input signals right up to the supply rail. However, if the operational amplifier driving the input is supplied from the same single supply as the ADC, the output of the operational amplifier could possibly be nonlinear up to the rail voltage. If this is a concern, a lower reference voltage as shown in Figure 6 can be applied to REF+ providing more headroom for the amplifier.

The output of the TL2262A 3-V single-supply operational amplifier can swing to within 10 mV of its positive supply rail. This effectively loses only two least significant bits (LSBs) off the top of the digital output range of the TLV1549 when both the amplifier and ADC are powered from the same 3-V supply. The circuit shown in Figure 6 provides a 2.5-V reference to the converter, which restores those bits to the digital output of the TLV1549 while the maximum analog input swing is reduced to 2.5 V.

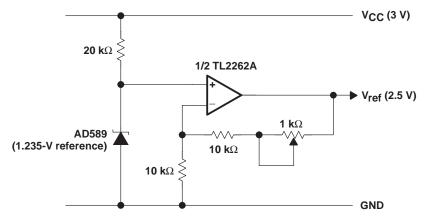


Figure 6. User Adjustable 2.5-V Reference Circuit

PCB Layout

As with all precision analog components, care should be taken in laying out the printed-circuit board (PCB) on which the TLV1549 and chosen microcontroller are placed. The interaction between digital and analog signal paths should be minimized by keeping them as far apart as is physically possible within the constraints of the dimensions of the PCB.

Grounding and Decoupling

Each supply terminal to both the TLV1549 and the microcontroller should be decoupled by a ceramic capacitor of approximately 100 nF in value, situated close to the terminal of the device. Digital and analog ground return paths should be kept separate to prevent any digitally generated currents from corrupting the analog signal.

APPENDIX A

References

MC68HC705C8 Technical Data Manual (1990) M68HC05 Applications Guide TLV1549 Data Sheet TMS7000 Family Data Manual (1991) Embedded Microcontrollers and Processors Vol. 1 Motorola Motorola Texas Instruments Incorporated Texas Instruments Incorporated Intel Corporation