
i

Interfacing the TLV1544 and TLV1548
A/D Converters to Digital Processors

Author: Heinz-Peter Beckemeyer
Nicholas Holland
Richard Oed

Literature Number: SLAA022
Date: December, 97

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its
customers to obtain the latest version of relevant information to verify, before placing
orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the
specifications applicable at the time of sale in accordance with TI’s standard warranty.
Testing and other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Specific testing of all parameters of each device is
not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT
APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the
customer. Use of TI products in such applications requires the written approval of an
appropriate TI officer. Questions concerning potential risk applications should be
directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design
and operating safeguards should be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI
warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used.

Copyright © 1982, 1997, Texas Instruments Incorporated

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors iii

Contents
1. Introduction.. 1

2. The Analog-to-Digital Converter... 2
2.1 Introducing the TLV1544/8 .. 2
2.2 Serial Port Interface Pin Description.. 2

2.2.1 Chip Select... 2
2.2.2 I/O CLK .. 3
2.2.3 DATA IN... 3
2.2.4 DATA OUT... 3
2.2.5 FS .. 3
2.2.6 EOC... 3

2.3 Features of the TLV1544/8.. 4

3. The ADC to TMS320C542 DSP Interface .. 5
3.1 Hardware Interface.. 5
3.2 Software Interface ... 6

3.2.1 Source Code .. 6
3.3 Software Flowchart.. 18
3.4 Measured Timing Diagram .. 19

4. The ADC to MC68B11E9 EBLP Interface .. 20
4.1 Hardware Interface.. 20
4.2 Software Interface ... 20

4.2.1 Source Code .. 21
4.2.2 Setting up the Register List .. 26
4.2.3 Setting up the Memory Map ... 26
4.2.4 Setting up the Vector Table .. 26
4.2.5 Defining Variables and the Software-Programmable Operation Mode

Bytes.. 26
4.3 The Program ... 27

4.3.1 Setting up PortD... 27
4.3.2 Setting up the EOC Interrupt on PORTA .. 28

4.4 Software Flowchart.. 30
4.5 Measured Timing Diagram .. 31

5. Summary ... 32

6. Appendix ... 33

Literature Number: SLAA022iv

List of Figures
1 Typical Digital System Interface ... 1
2 TLV1544/8 Functional Block Diagram .. 2
3 ADC to ‘C542 DSP Circuit Diagram.. 5
4 Timing Diagram for the TLV1544/8 .. 6
5 TSPC Register Layout ... 13
6 TDM Transmit Register.. 17
7 ADC Interface Program Flowchart .. 18
8 Timing Waveforms from the Digital Oscilloscope.. 19
9 ADC to MC68B11E9 Circuit Diagram ... 20
10 Timing Diagram for TLV1544/8 .. 21
11 Microcontroller Transmit Register... 27
12 DDRD Register Configuration .. 27
13 SPCR Register Configuration... 28
14 TCTL2 Register Configuration.. 29
15 TMSK1 Register Configuration... 29
16 TFLG1 Register Configuration.. 29
17 Main Program Flowchart .. 30
18 Timing Waveforms from the Digital Oscilloscope.. 31

Software Listings
1 Main Program Source Code... 11
2 Timer.asm File Source Code.. 12
3 TDM.asm File Source Code ... 14
4 Vectors.asm File Source Code... 15
5 Values.asm File Source Code .. 17
6 Main Program Source Code... 26

Tables
1 Software-Programmed Operation Modes Values ... 4
2 TMS320C542 Signal Description.. 5
3 TMS320C542 Timer Registers ... 11
4 TMS320C542 TDM Port Registers ... 13

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 1

Interfacing the TLV1544 and the TLV1548 A/D Converters to
Digital Processors

ABSTRACT

This Application Report describes the hardware and software
requirements for interfacing an A/D converter to a DSP and to a MCU.
The 10-bit A/D converter TLV1544 (4 analog input channels) and the
TLV1548 (8 analog input channels) from Texas Instruments have been
used to develop such interface. Example software code has been
written showing how to program the DSP and the MCU to control the
A/D converter and to acquire samples. This is shown and explained
methodically in the Application Report.

1. Introduction
As we enter the Digital Age, more and more measurement and control processes are using
Digital Signal Processors and Microcontrollers to manage entire systems. However, all the
variables in the “real world” which sensors are used to measure are analog in their physical
nature. Such signals could come from light, temperature and pressure sensors etc.

Before these signals can be treated, they must first be converted from analog into digital data
format so that the digital systems can acquire the equivalent analog values and modify them
appropriately.

The following (Figure 1) shows a typical block diagram for a digital system, using an ADC to
acquire the analog signal and convert it into digital form. The DSP or MCU manipulates the
information into the desired form and then sends the result to the DAC to provide an analog
signal, which may be used for control or observation purposes.

DSP/
MCU

ADC DAC

Figure 1: Typical Digital System Interface

This Application report is broken into two sections describing the method used to interface the
Texas Instruments 10-bit TLV1544 and TLV1548 Analog-to-Digital converters to the :

• Texas Instruments TMS320C542 Digital Signal Processor.

• Motorola MC68B11E9 Microcontroller.

The Analog-to-Digital Converter

2 Literature Number: SLAA022

Throughout this report, the process of interfacing the ADC will be methodically explained by
means of circuit diagrams, timing diagrams and by descriptions of the assembly code used to
control them.

2. The Analog-to-Digital Converter
The ADC used in this Application Report is the 10-bit TLV1544 from Texas Instruments. The
TLV1544 and the TLV1548 are almost identical except for the fact that the TLV1548 has eight
analog inputs rather than four.

2.1 Introducing the TLV1544/8

The TLV1544/8 is a CMOS 10-bit switched-capacitor successive-approximation (SAR) analog-
to-digital (A/D) converter. This device has an on-chip seven/eleven channel multiplexer that can
select any of four/eight analog inputs or any of three test voltages. These test voltages can be
used to check that the ADC is working correctly and that data can be send to and from the
converter. The three test voltages provide a 000h, 200h or a 3FFh result.

Control
Logic
and
I/O

Counters

Sample
and

Hold Function

CLOCK

10-Bit ADC
(Switch Capacitors)

Ouput Data Register

10-to-1
Data Selector

Self-Test
Reference

Analog
MUX

Input
Data

Register

A0-A3/7

REF+

REF-

DATA IN

DATA OUT

EOC

I/O CLK

FS
CS

CSTART

INV CLK

Figure 2: TLV1544/8 Functional Block Diagram

2.2 Serial Port Interface Pin Description

In order to connect the A/D converter to a DSP or Microcontroller, a brief description of the main
serial port signals will be given.

2.2.1 Chip Select

A high-to-low transition on CS resets the internal counters and controls and enables DATA IN,
DATA OUT and I/O CLK. A low-to-high transition disables DATA IN, DATA OUT and I/O CLK.

The Analog-to-Digital Converter

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 3

2.2.2 I/O CLK

This is the input/output clock signal and is required to send the converted values back to the
digital processor and receive the software-programmable operation mode data from the digital
processor via serial port on the A/D converter.

2.2.3 DATA IN

The 4-bit serial data selects the desired analog input or test voltage to be converted next in a
normal cycle. These bits can also set the conversion rate, the channels, the test voltages and
enable the power-down mode.

After the four input data bits have been read into the input data register, DATA IN is ignored for
the remainder of the current conversion period.

2.2.4 DATA OUT

Three-state serial output of the A/D conversion result. DATA OUT is in the high-impedance state
when CS is high and active when CS is low. With a valid CS signal, DATA OUT is removed
from the high-impedance state and is driven to the logic level corresponding to the MSB or LSB
value of the previous conversion result.

2.2.5 FS

DSP frame synchronization input. FS indicates the start of a serial data frame into and out of the
device.

2.2.6 EOC

End of conversion flag. This signal goes low once the last conversion has been read out of the
A/D converter and remains low until the next conversion is complete. Once the new data is
ready for transfer it returns to logic high. EOC can also indicate that the converter is busy.

The Analog-to-Digital Converter

4 Literature Number: SLAA022

2.3 Features of the TLV1544/8

All the features that can be software-programmed are listed below in Table 1. These values are
sent to the A/D converter via the DATA IN signal.

 INPUT DATA BYTE
FUNCTION SELECT COMMENT

BINARY HEX
Analog channel A0 for TLV1548 selected 0000b 0h Channel 0 for TLV1544
Analog channel A1 for TLV1548 selected 0001b 1h
Analog channel A2 for TLV1548 selected 0010b 2h Channel 1 for TLV1544
Analog channel A3 for TLV1548 selected 0011b 3h
Analog channel A4 for TLV1548 selected 0100b 4h Channel 2 for TLV1544
Analog channel A5 for TLV1548 selected 0101b 5h
Analog channel A6 for TLV1548 selected 0110b 6h Channel 3 for TLV1544
Analog channel A7 for TLV1548 selected 0111b 7h
Software power down set 1000b 8h No conversion result (cleared by any access)
Fast conversion rate (10 ms) 1001b 9h No conversion result (cleared by setting to fast)
Slow conversion rate (40 ms) 1010b Ah No conversion result (cleared by setting to slow)
Self-test voltage 1011b Bh Output result = 200h
Self-test voltage 1100b Ch Output result = 000h
Self-test voltage 1101b Dh Output result = 3FFh
Reserved 1110b Eh No conversion result
Reserved 1111b Fh No conversion result

Table 1: Software-Programmed Operation Modes Values

Now that the TLV1544/8 has been described, the next sections of this report deal with the way in which it is possible
to interface the converter to a DSP or Microcontroller.

The ADC to TMS320C542 DSP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 5

3. The ADC to TMS320C542 DSP Interface
The TLV1544/8 was interfaced to the 16-bit Fixed-Point DSP TMS320C542. It has one Time-
Division Multiplexed (TDM) Serial Port and one Buffered Serial Port (BSP), of which the TDM
port was used to control the ADC.

3.1 Hardware Interface

The following circuit diagram (Figure 3) shows the configuration that was used to interface the
A/D converter to the DSP.

Vcc

A0-A3/7

GND

TLV1544/8 TMS320C542

DATA IN TDX

DATA OUT TDR

TFSR

FS TFSX

INV CLOCK

CSTART

XFCS

Vcc

REF-

REF+Vcc

Analog
Inputs

TCLKX

I/O CLK TOUT

TCLKR

EOC INT0

SN74AHC1G04

Figure 3: ADC to ‘C542 DSP Circuit Diagram

Pin Description
INT0 External user interrupt inputs
TCKLR TDM port receive clock input
TCLKX TDM port transmit clock (input or output)
TDR TDM port serial data receive input
TDX TDM port serial data transmit output
TFSR TDM port receive frame synchronization
TFSX TDM port transmit frame synchronization
TOUT Timer output.
XF0 External flag output (latched software-programmable signal)

Table 2: TMS320C542 Signal Description

The ADC to TMS320C542 DSP Interface

6 Literature Number: SLAA022

3.2 Software Interface

In order to interface the DSP and the TLV1544/8 together, a basic understanding of the A/D
converter is required. The best way to visualize how the converter works is by using a timing
diagram. Such a diagram can be seen below in Figure 4.

Figure 4: Timing Diagram for the TLV1544/8

As can been seen above, the I/O Clock signal (generated by the DSP) oscillates continuously.
When CS is low and a Frame Sync (FS) signal is received on the FS pin, the TLV1544/8 starts
simultaneously to receive the next operation mode byte and to send the last converted value.
Once the first four input bits have been received, any more data to the input is ignored. After the
LSB of the converted value has been sent, the EOC signal goes low for whatever conversion
time has been previously set and returns to high once the conversion has been completed.
Once the conversion is complete, the EOC signal goes back to high, and CS may return to a
high state.

Now that the timing diagram has been shown, the DSP must be correctly configured so that the
control software may accurately interface with the TLV1544/8.

3.2.1 Source Code

Because the DSP software assembler can understand certain #include and .copy commands,
the program was broken into various distinct files. This improves the readability and the
understanding of the source code. The five files are as follows :

Go.asm Main program

Vectors.asm Vector table

Values.asm Variable setup

Timer.asm Timer initialization function

TDM.asm TDM Serial Port initialization function

The ADC to TMS320C542 DSP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 7

The best way to understand the operation of the software is to show the program in its entirety
and then break it down into concise segments. The whole program using the algebraic
assembler syntax is shown below in Listing 1.

;***
; (C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1997 *

;***
;* *
;* File: GO.ASM Main routine for the TMS320C54x *
;* *
;***

.width 80

.length 55

.title "TLV1544C ADC Interface routine"
;***
;This routine allows the ’C54x DSKplus to interface with an ADC on
;the TDM port of the DSP.

.mmregs

.setsect ".data", 0x500,1 ;place data section in data
;memory starting at address

;0x500

.setsect ".text", 0x500,0 ;place code in program memory
;starting at address 0x500h

.setsect "vectors",0x180,0 ;loads vectors section into
;absolute address 0x180h

.sect "vectors"

.copy "vectors.asm" ;copy the interrupt vector
;table from the file

;vectors.asm

.sect ".data"

.copy "values.asm" ;copy the constants needed for
;the ADC to the data section

.sect ".text"

start:
;Initialize the DSP control registers

INTM = 1 ;disable global interrupts
XF = #high ;set CS to logic level high
PMST = #01A0h ;setup the PMST register
SP = #0ffah ;setup the SP register

The ADC to TMS320C542 DSP Interface

8 Literature Number: SLAA022

;Initialize the memory and peripherals
CALL init_DSP ;initialise the DSP variables
;and memory

CALL init_timer ;initialise the TOUT Pin for 8
;MHz I/O Clock on ADC
CALL init_TDM ;Set up the TDM port

;Configure the interrupt operation of the DSP
IMR = #241h ;allow RINT and INT0
INTM = 0 ;enable global interrupts

;Initialize the ADC
CALL power_up ;initialises the ADC for the
;first time

;******************
;* Read in values *
;******************

start_read:
AR6 = #location ;pointer to data memory

;location

AR7 = #num_samples ;number of samples

samples_in:
XF = #low ;set CS logic level low
TDXR = #channel4_3 ;send Software-Programmed

;operational mode to ADC
CALL wait ;wait for EOC signal
B = B << -6 ;shift 6 places right since

;ADC uses only 10 bit
*AR6+ = B ;store value in data memory and

;pointer++

if (*AR7- != 0) GOTO samples_in ;continue if all samples
;are read in, else branch
;back

function1:
;
;a function requiring all sampled values
;could go here e.g. FFT...
;

The ADC to TMS320C542 DSP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 9

;***
;* Program finished and simply looping *
;***

end_loop:
nop
nop
nop
nop
goto end_loop

;***
;* Here are the ISR’s *
;***

;Interrupt service routine for the TDM port receiver interrupt
RINT:

B = TRCV ;load acc b with output from ADC
;a function requiring single sampled
;values could go here e.g. FIR, IIR.
;However function must be shorter than
;the conversion rate of the ADC

return_enable ;return from interrupt with interrupt
;enable

;Interrupt service routine for the external interrupt 0, which is
connected to the EOC signal of the ADC
CS_CLEAR:

XF = #high ;set CS back to logic level high
AR1 = #valid ;set the EOC flag
return_enable ;return from interrupt with interrupt

;enable

The ADC to TMS320C542 DSP Interface

10 Literature Number: SLAA022

;***
;* Here go the callable functions *
;***

init_DSP:
CALL clear_memory ;clear the data memory location
AR1 = #invalid ;reset flag for EOC
AR6 = #location ;pointer to data memory location
AR7 = #num_samples ;number of samples

;pointers used in the sample
;collect loop

return ;return from function call

clear_memory:
AR6 = #location ;pointer to data memory

;location

A = #0h ;acc zero
REPEAT(#num_samples) ;store 0 in memory "location" +
;"num_samples"

*AR6+ = A
return ;return from function call

;Initialize the ADC
power_up:

XF = #low ;bring CS logic level low
TDXR = #fast_conv ;set conversion rate. fast_conv

;is defined in the values.asm
;file

CALL wait ;wait until EOC signal is
;received

return_enable ;return to main program

wait:
nop ;no operation
nop ;no operation
nop ;no operation
if (*AR1 != 0) GOTO wait ;loop until EOC flag set
AR1 = #invalid ;reset the EOC flag
return ;return from function call

The ADC to TMS320C542 DSP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 11

;***
;* Here go the copied file list *
;***

;Copy the timer initalization routine
.copy "timer.asm"

;Copy the TDM port initialization routine
.copy "TDM.asm"

;Here is the end of the main listing
.end

Listing 1: Main Program Source Code

The following sections will deal with the description of the main program by defining and
explaining each individual segment.

3.2.1.1 Setting up the I/O Clock Signal using the On-Chip Timer

The I/O Clock signal can be generated externally by using a crystal or by the DSP. In the case of
this Application Report, the I/O Clock was generated by the DSP using the TOUT pin. The timer
consists of three registers:

TIM Timer Register The 16-bit memory-mapped timer register is loaded
with period register value and decremented

PRD Timer Period Register The 16-bit memory-mapped timer period register is
used to reload the timer register

TCR Timer Control Register The 16-bit memory-mapped timer control register
contains the control and status bits of the timer (see
the TMS320C54x User’s Guide for details).

Table 3: TMS320C542 Timer Registers

In order to generate an 8 MHz signal from TOUT, which will drive the TCLKR and TCLKX
signals on the DSP, the on-chip timer must be configured as follows:

The ADC to TMS320C542 DSP Interface

12 Literature Number: SLAA022

;This initialization routine sets up the timer

;You can interrupt the CPU by enabling the IMR=8 location.

;Set the TDDRreg and PRDreg below to configure the timer as defined

;by the equation.

; 1

; TOUT cycle = ------------------------------

; 25ns * (TDDRreg+1) * (PRDreg+1)

;Therefore, by setting the respective registers to the following values ;a
TOUT cycle of 125 ns is achieved. This is equivalent to 8.0 MHz TOUT ;signal

; 1

; TOUT cycle = -------------------- = 8 MHz

; 25ns * (4+1) * (0+1)

PRDreg .set 0h

TDDRreg .set 4h

;**

.eval TDDRreg | 20h, TDDRval ;set timer reload bit

init_timer:

prd = #PRDreg ;set prd register to value

tcr = #TDDRval ;set prd register to value

return ;return from function call

Listing 2: Timer.asm File Source Code

Once the timer has been set to operate at the desired frequency, the serial port must be
initialized to allow data to be passed to and from the ADC.

3.2.1.2 Setting up the TDM Serial Port

For this interface, the Time-Division Multiplexed (TDM) Serial Port was used. This port allows
the TMS320C542 to communicate serially with up to seven other devices. However, for this
application the TDM port was configured as stand-alone, in which case it behaves exactly like
the standard serial port.

The ADC to TMS320C542 DSP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 13

The TDM port consists of eight registers:

TRCV TDM data receive register Holds the incoming TDM serial data.

TDXR TDM data transmit register Holds the outgoing TDM serial data.

TSPC TDM serial port control
register

The TSPC contains control bits, which
configure the operation of the serial port.

TCSR TDM channel select register Selects in which time slot each
TMS320C54x device is to transmit.

TRTA TDM receive/transmit address
register

Specifies in the eight LSBs the receive
address of the TMS320C54x device and
in the eight MSBs the transmit address of
the TMS320C54x device.

TRAD TDM receive address register contains various information regarding
the status of the TDM address line.

TRSR TDM data receive shift register controls the storing of the data from the
input pin to the TRCV.

TXSR TDM data transmit shift
register

controls the transfer of the outgoing data
from the TDXR and holds the data to be
transmitted on the data-transmit pin
(TDX).

Table 4: TMS320C542 TDM Port Registers

For more information on these registers, please refer to the chapter 9 of the TMS320C54x DSP
CPU and Peripherals Reference Set (see Appendix for literature).

Because the TDM serial port is being used in stand-alone mode, only the TSPC register must be
configured for correct operation with the TLV1544/8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Free Soft RSRFULL XSREMPTY RXDY RRDY IN1 IN0 RRST XRST TXM MCM FSM FO DLB TDM

Figure 5: TSPC Register Layout

In Figure 5, the layout of the TSPC register is shown. For the serial port to work correctly, bit 0
(TDM) must be set to 0. This places the TDM serial port into stand-alone mode. Additionally,
since the FS signal must be generated by the DSP bit 5 (TXM) must be set to 1. Lastly, Burst
Mode must be selected for correct data transfer, which means that bit 3 (FSM in stand-alone
mode) must be set to 1. Additional information on these bits can be found at table 9-5 of the
TMS320C54x DSP CPU and Peripherals Reference Set.

After that, an initialization routine must be run to initialize the TDM serial port. A typical function
to do this is shown below.

The ADC to TMS320C542 DSP Interface

14 Literature Number: SLAA022

;This initialization routine sets up the TDM to work as the standard

;serial port. The various bit are setup in order to be able to ;interface a
Texas Instruments TLC1544 ADC to the TDM port

init_TDM:

intm = 1 ;disable all int service routines

ifr = #0c0h ;clear XINT and RINT flags in IFR

a = imr ;load interrupt mask register into
;accumulator A

a= a | #280h ;wakeup from idle when TDM trns int

imr = a ;write it back to interrupt mask
;register

tspc = #028h ;stop TDM serial port

tdxr = #0h ;send 0 as first xmit word

tspc = #0E8h ;reset and start TDM serial port

return ;return from function call

Listing 3: TDM.asm File Source Code

3.2.1.3 Setting up the DSP Vector Table

When using interrupts, the vector table must be correctly configured. Since this application uses
interrupts, the vector table should be as follows :

;The vectors in this table has been configured for processing 2 main

;interrupts.

;As you can see below, when a TRINT occurs, the vector has been set to ;goto
RINT and when an external INT0 occurs, the vector goes to ;CS_CLEAR

.mmregs

reset goto #80h ;00;RESET

nop

nop

nmi return_enable ;04;non-maskable external
;interrupt

nop

nop

nop

trap2 goto #88h ;08;trap2

nop

nop

.space 52*16 ;0C-3F;vectors for software
;interrupts 18-30

int0 goto CS_CLEAR ;40;external interrupt int0
nop

nop

The ADC to TMS320C542 DSP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 15

int1 return_enable ;44;external interrupt int1

nop

nop

nop

int2 return_enable ;48;external interrupt int2

nop

nop

nop

tint return_enable ;4C;internal timer interrupt

nop

nop

nop

brint return_enable ;50;BSP receive interrupt

nop

nop

nop

bxint return_enable ;54;BSP transmit interrupt

nop

nop

nop

trint goto RINT ;58;TDM receive interrupt
nop

nop

txint return_enable ;5C;TDM transmit interrupt

nop

nop

nop

int3 return_enable ;60;external interrupt int3

nop

nop

nop

hpiint goto #0e4h ;64;HPIint

nop

nop

.space 24*16 ;68-7F;reserved area

Listing 4: Vectors.asm File Source Code

Note : If an interrupt has been declared, one nop must be removed, since the goto instruction is
a double word instruction and the memory location for this nop is therefore already used.

3.2.1.4 Variables and the Software-Programmable Operation Mode Bytes

Lastly, the Software-Programmable Operation Mode bytes and some variables have been
defined in the values.asm file.
;***
;* Memory and sample setup values *

;***
location .set 2000h ;start location for storing of sampled values

The ADC to TMS320C542 DSP Interface

16 Literature Number: SLAA022

num_samples .set 50 ;samples to be taken (Remember first value
;invalid) change this line for other arrays

valid .set 0 ;a result is valid

invalid .set 1 ;a result is invalid

low .set 0 ;low logic value

high .set 1 ;high logic value

;***
;* ADC Software-Programmed Operation Modes *

;***
;These values are derived from the TLV1548 and TLV1544 data sheet

;TLV1548

;*******

channel8_0 .set 0000h

channel8_1 .set 1000h

channel8_2 .set 2000h

channel8_3 .set 3000h

channel8_4 .set 4000h

channel8_5 .set 5000h

channel8_6 .set 6000h

channel8_7 .set 7000h

;TLV1544

;*******

channel4_0 .set 0000h

channel4_1 .set 2000h

channel4_2 .set 4000h

channel4_3 .set 6000h

The ADC to TMS320C542 DSP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 17

;***
;* Following values are used for both TLV1544 and TLV1548 *

;***

power_down .set 8000h

fast_conv .set 9000h

slow_conv .set 0A000h

test_200 .set 0B000h

test_000 .set 0C000h

test_3FF .set 0D000h

Listing 5: Values.asm File Source Code

Note : One important point to remember is that since the A/D converter only reads the first four
bits of the operation mode word and the transmit register is 16-bits long, the mode byte must be
placed in the most significant four bits of the transmit register. Therefore, all software-
programmable operation mode bytes are (0)x000h.

MSB LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6: TDM Transmit Register

The ADC to TMS320C542 DSP Interface

18 Literature Number: SLAA022

3.3 Software Flowchart

Now that each segment has been described, the following flowchart (Figure 7) shows the exact
program operation.

Initialise

START

XF = 0

Send
WORD

RINT

Read
Value

EOC

XF = 1

DONE

FunctionFunction
e.g. FFTe.g. FFT

END

Sampling

YES

NO

YES

NO

NO

YES

Figure 7: ADC Interface Program Flowchart

From Figure 7, the first routine initializes various variables, memory locations, the timer and the
TDM serial port. Once this has been done, the DSP writes the first word to the A/D converter.
This first word must contain the conversion time to be set for the TLV1544/8. Thereafter, the
sampling process can start.

The ADC to TMS320C542 DSP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 19

The XF (CS) pin goes low to initialize the counter and state Machine on the A/D converter.
Then a 16-bit (first 4-bit only read by ADC) operation mode word is sent to the TLV1544/8 and at
the same time the DSP starts receiving the last 10-bit converted value. When the LSB (16-bit
word) has been sent from the converter, the TDM serial port generates a Receive Interrupt
(RINT). This indicates that the converted value is ready to be read from the receive register and
then stored in memory.

Then the EOC signal goes low, indicating that the converter is busy.

Finally, once the conversion process is complete, the EOC return to high, causing an interrupt
on INT0 , which brings the XF pin (CS) back high. The process is now ready to repeat again,
until all the samples have been collected.

3.4 Measured Timing Diagram

To show the user what should be expected, the waveform was recorded using a digital
oscilloscope. The following (Figure 8) shows the CS , I/O CLK, FS and EOC signals.

Figure 8: Timing Waveforms from the Digital Oscilloscope

The ADC to MC68B11E9 EBLP Interface

20 Literature Number: SLAA022

4. The ADC to MC68B11E9 EBLP Interface
The TLV1544/8 was also interfaced to the MC68B11E9 EBLP Microcontroller by using the Serial
Peripheral Interface SPI.

4.1 Hardware Interface

The ADC was connected to the Microcontroller in the following way:

Vcc

A0-A3/7

GND

TLV1544/8 MC68B11E9

EOC PA2/IC1

DATA IN PD3/MOSI

DATA OUT PD2/MISO

INV CLOCK

CSTART

Vcc

REF-

REF+Vcc

Analog
Inputs

I/O CLK PD4/SCK

PD5/SSCS

Figure 9: ADC to MC68B11E9 Circuit Diagram

4.2 Software Interface

The timing diagram for the interface to the Microcontroller is slightly different to that of the DSP.
Because the TLV1544/8 uses the SPITM of the microprocessor there is no need for the FS
(Frame Sync) signal. The different timing diagram can be seen below in Figure 10.

SPI is a registered trademark of Motorola, Inc.

The ADC to MC68B11E9 EBLP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 21

Figure 10: Timing Diagram for TLV1544/8

Once the CS signal goes low and the MCU sends the first bit to the A/D converter, the whole
process of data transmission and reception simultaneously starts. Once the first four input bytes
have been received, any more data to the input is ignored. After the LSB of the converted value
has been received, the EOC signal goes low for whatever conversion time has been previously
set and returns to high once the conversion has been completed.

Note : The I/O Clock signal on the SPITM behaves differently to the TDM port on the DSP. The
I/O Clock signal from the DSP was continuously generated by the TOUT pin. However, the
SPITM I/O Clock signal only generates eight clock pulses for each byte that is sent via the SPITM

MOSI. This means that to recover all 10-bit from DOUT, two bytes must be sent to the ADC (16
cock cycles in total). Figure 15 at the end of this section shows this characteristic.

4.2.1 Source Code

To interface the MC68B119E with the TLV1544/8, the following file was created:

ADCIO.asm The main program

Since the AS11 compiler does support the #include declaration, all the functions are included
within this one file. As a result, the main source code will be shown first and then discussed in
segments.

**
* (C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1997 *
**
* File: ADCIO.ASM Software for the Motorola MC68HCE9 Starter Kit *
**
* Program entry point at routine "main". The entry point *
* is address $B600 (e.g. "G B600" from BUFFALO) *

The ADC to MC68B11E9 EBLP Interface

22 Literature Number: SLAA022

**
* Equate statements for the below registers are commonly
* used as offsets to the x index register
* which contains the register block base address, i.e.
* $1000 for the "A" series, "E" series, and "L" series, and $0000 for the
* "D" series of 6811’s
portd EQU $08
ddrd EQU $09
tctl2 EQU $21
tmsk1 EQU $22
tflg1 EQU $23
spcr EQU $28
spsr EQU $29
spdr EQU $2a
**
* The following table of addresses corresponds to the memory map of *
* the MC68L11E9; consult a memory map of your device if using any *
* other 6811 device in this socket *
**
ramlow EQU $0000 ;<- will use this area for variables
bufstck EQU $0041
rammid EQU $0100
ramhi EQU $01ff ;<- will use this area for samples
regbas EQU $1000
eeprom EQU $b600
eprom EQU $d000
buffalo EQU $e000
**
* The following table of addresses corresponds to the pseudo vector *
* map of the MC68L11E9 *
**
pvic1 EQU $00e8 ;vector for EOC interrupt
**
* This area is for declaring certain variables for the ADC *
**

* TLV1548 *

channel8_0 EQU $00
channel8_1 EQU $20
channel8_3 EQU $30
channel8_4 EQU $40
channel8_5 EQU $50
channel8_6 EQU $60

The ADC to MC68B11E9 EBLP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 23

channel8_7 EQU $70

* TLV1544 *

channel4_0 EQU $00
channel4_1 EQU $20
channel4_2 EQU $40
channel4_3 EQU $60
**
* Following values are used for both TLV1544 and TLV1548 *
**
power_down EQU $80
fast_conv EQU $90
slow_conv EQU $A0
test_200 EQU $B0
test_000 EQU $C0
test_3FF EQU $D0
**
* Here are some variables used in the program *
**
num_samples EQU $80 ;number of samples to be taken
dummy EQU $00 ;dummy value

ORG ramlow

MSByte RMB 1 ;MSByte from ADC
LSByte RMB 1 ;LSByte from ADC
Counter1 RMB 1 ;Counter for # samples to go

**
* This is the main routine and also the entry point to the program *
**

ORG eeprom ;Start at eeprom so that all code segments
;can be started with the Buffalo monitor
;command ’G B600’, because the main routine
;resides in EEPROM at $B600.

main
LDS #bufstck ;initialize the stack pointer
LDX #regbas ;initialize the index register

BSR initPRTD ;initialize port D for SPI
BSR initPRTA ;initialize port A for interrupt

The ADC to MC68B11E9 EBLP Interface

24 Literature Number: SLAA022

BSR initADC ;initialize the ADC on the SPI
BSR samples ;get samples from the ADC

**
* These are the called functions *
**

initPRTD
LDAA #$08
STAA portd,x ;initialize before turning on drivers
LDAA #$38 ;let MOSI and SCK pins be output pins
STAA ddrd,x
LDAA #$50 ;let SPI be master
STAA spcr,x
BSET portd,x#$20 ;set CS to logic level high
RTS

initPRTA
LDAA #$7e ;this is the op code for jump extended
STAA pvic1 ;store in pseudo vector for IC1
LDD #cs_clear ;get start address of IC1 service routine
STD pvic1+1
LDAA #$10 ;IC1 capture on rising edge (EOC signal)
STAA tctl2,x
LDAA #$04 ;clear flag on FLG1 for IC1
STAA tflg1,x
STAA tmsk1,x ;enable interrupts on IC1
RTS

initADC
SEI
BCLR portd,x#$20 ;set CS to logic level low
LDAA #slow_conv ;set ADC to fast conversion
STAA spdr,x ;send value to ADC

wait1 BRCLR spsr,x#$80 wait1 ;loop until data sent and received
* ;i.e. If SPIF=0 --> wait

LDAA spdr,x ;load converted data in accumulator
LDAA #dummy ;send a dummy value
STAA spdr,x ;send value to ADC

wait2 BRCLR spsr,x#$80 wait2 ;loop until data sent and received
* ; i.e. If SPIF=0 --> wait

LDAA spdr,x ;load converted data in accumulator
CLI ;enable global interrupts

The ADC to MC68B11E9 EBLP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 25

* WAI ;wait for the interrupt on IC1
RTS

samples
LDAB #num_samples ;load the acc B with # samples to go
STAB Counter1 ;store value

get_samples
SEI
BCLR portd,x#$20 ;set CS to logic level low
LDAA #test_200 ;set value to send ADC
STAA spdr,x ;send value to ADC

wait3 BRCLR spsr,x#$80 wait3 ;loop until data sent and received
* ;i.e. If SPIF=0 --> wait

LDAA spdr,x ;load converted data in accumulator
STAA MSByte ;store MSByte of sample
LDAA #dummy ;send a dummy value
STAA spdr,x ;send value to ADC

wait4 BRCLR spsr,x#$80 wait4 ;loop until data sent and received
* ;i.e. If SPIF=0 --> wait

LDAA spdr,x ;load converted data in accumulator
STAA LSByte ;store LSByte of sample

LDAA MSByte ;load acc A with MSB
LDAB LSByte ;load acc B with LSB
LSRD ; ACCD right shift 6 times
LSRD ;since ADC 10 and 16 bits
LSRD ;received in total
LSRD
LSRD
LSRD
STAA MSByte
STAB LSByte ;store values again

CLI ;enable global interrupts
WAI ;wait for EOC signal from ADC
nop
nop

LDAB Counter1 ;load counter value
DECB ;decrement acc B by one
STAB Counter1 ;store counter value

The ADC to MC68B11E9 EBLP Interface

26 Literature Number: SLAA022

CMPB #$00 ;compare ACCB to 0
BHI get_samples ;if ACCB > 0 then get more

end_loop
nop ;program finished
nop
BSR end_loop

**
* This is the EOC interrupt routine *
**
cs_clear

BSET portd,x#$20 ;Set CS logic level high
ldaa #$04 ;clear flag so that
staa tflg1,x ;not constantly interrupted
RTI

Listing 6: Main Program Source Code

The following sections will deal with the description of the main program by defining and
explaining each individual segment.

4.2.2 Setting up the Register List

The first section of the assembly code deals with the equating of each register with its offset
address. The address for the registers starts at 1000h. Normally, the Index register is used to
point at the base address (1000h) and then the appropriate register can be read or modified by
offsetting the equated value from the Index register.

4.2.3 Setting up the Memory Map

The next section equates the memory map to the respective memory addresses where the
various sections of memory should be placed.

4.2.4 Setting up the Vector Table

This segment simply equates the IC1 vector variable to the vector memory address. It will be
used later to store the location where the program should jump to when an interrupt on IC1
occurs.

4.2.5 Defining Variables and the Software-Programmable Operation Mode Bytes

As previously, the Operation Mode bytes have been declared for both the TLV1544 and
TLV1548 with some extra variables.

Note: This time the Microprocessor transmit register is 8-bits long. Again the operation mode
byte must be placed in the first four bits of the transmit register. Hence the reason for all
Software-Programmable Operation Mode bytes are x0h.

The ADC to MC68B11E9 EBLP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 27

MSB LSB

7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0

Figure 11: Microcontroller Transmit Register

4.3 The Program

As described above, the first part of the code sets up certain variable and register values The
main program is located in the EEPROM area of memory and is described as follows. After
initializing the stack pointer and the index register, there are 4 branches, the first two configure
the ports and the latter two set up the ADC.

4.3.1 Setting up PortD

PortD is used for the SPITM to interface the ADC with the MCU. This is a four-wire link using the
following pins:

SS

SCK

MOSI

MISO

In order to configure this port, the DDRD and the SPCR registers must be modified.

As can be seen below in Figure 12, the DDRD is an 8-bit register. Bits 5,4,3 and 2 are used by
the SPI system when the SPI enable (SPE) control bit is one. For the port to be set as Master
i.e. the ADC is the Slave and is controlled by the MCU, bit 5,4 and 3 must be set to logic high.

- - DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0

7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0

- - SS SCK MOSI MISO TxD RxD

Figure 12: DDRD Register Configuration

Additionally, the SPCR register must be configured before SPI transfers can occur. Figure 13
(below) shows the SPCR register. The SPE and MSTR bits must be set to logic high for the port
to be fully set up as Master.

SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0

The ADC to MC68B11E9 EBLP Interface

28 Literature Number: SLAA022

7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0

Figure 13: SPCR Register Configuration

Once that has been done, the EOC interrupt must be set up.

4.3.2 Setting up the EOC Interrupt on PORTA

This is done by using the Input Capture pin (IC1) on port A, The first thing to do is to write the
starting address of the routine that deals with the interrupt to the PVIC1 location in the vector
table. Once that has been done the following three registers must be configured:

The ADC to MC68B11E9 EBLP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 29

TCTL2

TFLG1

TMSK1

The TCTL2 register controls on which edge (rising or falling) the particular input-capture pin
causes a interrupt. Since the EOC signal from the ADC has a rising edge upon completion of
conversion, the input-capture pin IC1 was set up to cause an interrupt on a rising-edge. This
was done by setting bit 4 to logic high, as can be seen below in Figure 14.

- - EDG1B EDG1A EDG2B EDG2A EDG3B EDG3A

7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0

Figure 14: TCTL2 Register Configuration

TMSK1 and TFLG1 are the Input Capture Interrupt Enable an Input Capture Flag registers respectively. They need to
be configured to set IC1 as Input Capture pin for the EOC signal. This is done by setting the IC1I bit on TMSK1 to
one and clearing the flag related to that interrupt on TFLG1, as shown in Figure 15 and Figure 16 below.

OC1I OC2I OC3I OC4I OC5I IC1I IC2I IC3I

7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0

Figure 15: TMSK1 Register Configuration

OC1F OC2F OC3F OC4F OC5F IC1F IC2F IC3F

7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0

Figure 16: TFLG1 Register Configuration

Now that the ports have been correctly configured, the MCU program can start sending and
receiving data to and from the ADC. As this is described in depth in the code listing, it will not be
developed further in this section.

Note: The program shows how to collect n samples from the A/D converter on the SPITM and
store the sample in two memory locations, since the converted value is 10-bits and memory on
the MCU is only 8-bit.

The ADC to MC68B11E9 EBLP Interface

30 Literature Number: SLAA022

4.4 Software Flowchart

Now that each segment has been described, the following flowchart shows the exact program
operation.

Initialise

START

XF = 0

Send
Byte1

TX
OK

Store
Byte1

Send
Dummy

TX
OK

Store
Byte2

EOC

XF = 1

DONE

FunctionFunction
e.g. FFTe.g. FFT

END

Sampling

YES

NO

YES

NONO

YES

YES

NO

Figure 17: Main Program Flowchart

The first routine initializes the two ports that will be used in this application. PORTA is configured so that the IC1 pin
on port A is the rising-edge triggered interrupt for the EOC signal from the A/D converter and PORTD is setup for the
SPITM, so that the MCU is master and the TLV1544/8 is the slave.

Once the configuration is complete, the MC68B119E writes the first byte to the A/D converter. As before, this first
byte must contain the conversion time to be set for the TLV1544/8. Because the transmit register is only 8-bits long, a
dummy value must be sent after the first byte to allow the I/O CLK to reach 10 clock cycles. Once the conversion rate
has been fixed, the process of getting samples can start.

The ADC to MC68B11E9 EBLP Interface

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 31

The PD5 / SS (CS) pin goes low to initialize the counter and state Machine on the A/D converter. Then an 8-bit
(first 4 bit only read by ADC) operation mode byte is sent to the TLV1544/8 and at the same time the MCU starts
receiving the last converted value. The 8-bit dummy byte is sent to retrieve the last two bits from the converter.

When the LSB has finally been sent from the A/D converter, the EOC signal goes low, indicating that the converter is
busy and two values that have been retrieved from the converter can be stored in two separate memory locations.

Once the conversion process is complete, the EOC returns to high, causing an interrupt on IC1, the software then
brings the PD5 / SS pin (CS) back high. The process is now ready to repeat again, until all the samples have
been collected.

4.5 Measured Timing Diagram

Just to show the user what should be expected, the waveform was recorded using a digital
oscilloscope. The following Figure 18 shows the CS , I/O CLK, DATA IN and EOC signals.

Figure 18: Timing Waveforms from the Digital Oscilloscope

Summary

32 Literature Number: SLAA022

5. Summary

This Application Report describes the hardware and software requirements for
interfacing an A/D converter to a DSP and to a MCU. The 10-bit A/D converter
TLV1544 (4 analog input channels) and the TLV1548 (8 analog input channels)
from Texas Instruments have been used to develop such interface. Example
software code has been written showing how to program the DSP and the MCU to
control the A/D converter and to acquire samples. This is shown and explained
methodically in the Application Report.

Appendix

Interfacing the TLV1544 and TLV1548 A/D Converters to Digital Processors 33

6. Appendix

TLV1544/8 Datasheet SLAS139A

Data Acquisition Data Book SLAD001

Data Converter Selection Guide SLABE05B

Operational Amplifiers Data Book Volume A SLYD011A

Operational Amplifiers Data Book Volume B SLYD012A

Rail-to-Rail Operational Amplifier Selection Guide SLOBE02

Single Supply Operational Amplifier Selection Guide SLOBE03

Mixed Signal Analog CD-ROM SLYC005A

TMS320C54x CPU and Peripherals SPRU131C

TMS320C54x Algebraic Instruction Set SPRU179

TMS320C54x DSKplus User’s Guide SPRU191

Much useful software is available from the TI Internet site. The main TI
Web site is at

http://www.ti.com/

Information on the TMS320C54x is at
http://www.ti.com/sc/docs/dsps/tools/c54x/c54xdskp.htm

TMS320C54x software can be downloaded from
http://www.ti.com/sc/docs/dsps/tools/c54x/softsupp.htm

