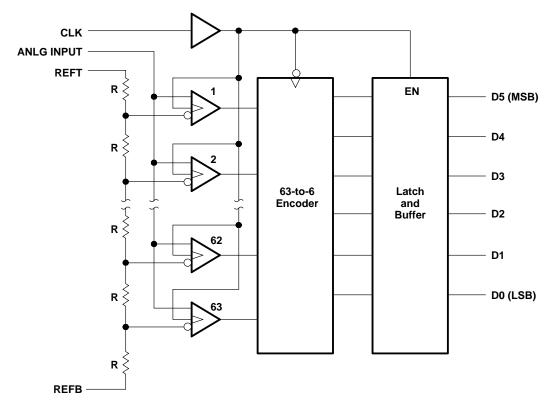
SLAS026 - OCTOBER 1989 - REVISED APRIL 1990

- 6-Bit Resolution
- Linearity Error ... ±0.8%
- Maximum Conversion Rate . . . 30 MHz Typ
- Analog Input Voltage Range V_{CC} to V_{CC} – 2 V
- Analog Input Dynamic Range ... 1 V
- TTL Digital I/O Level
- Low Power Consumption 200 mW Typ
- 5-V Single-Supply Operation
- Interchangeable With Fujitsu MB40576


N PACKAGE (TOP VIEW)										
(LSB) D0 [1 16] GND D1 [2 15] DGTL V _{CC} D2 [3 14] ANLG V _{CC} D3 [4 13] REFB D4 [5 12] ANLG INPU (MSB) D5 [6 11] REFT CLK [7 10] ANLG V _{CC} GND [8 9] DGTL V _{CC}										

description

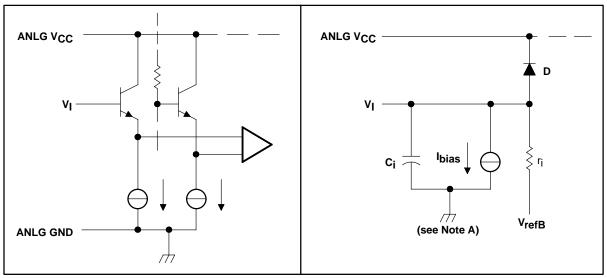
The TL5501 is a low-power ultra-high-speed video-band analog-to-digital converter that uses the Advanced Low-Power Schottky (ALS) process. It utilizes the full-parallel comparison (flash method) for high-speed conversion. It converts wide-band analog signals (such as a video signal) to a digital signal at a sampling rate of dc to 30 MHz. Because of this high-speed capability, the TL5501 is suitable for digital video applications such as digital TV, video processing with a computer, or radar signal processing.

The TL5501 is characterized for operation from 0°C to 70°C.

functional block diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



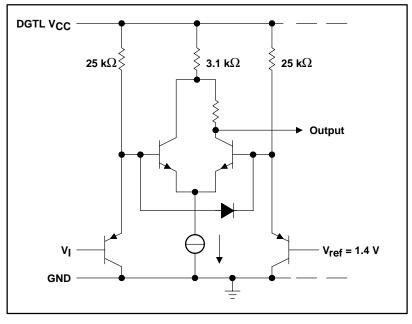
Copyright © 1990, Texas Instruments Incorporated

1

SLAS026 - OCTOBER 1989 - REVISED APRIL 1990

equivalents of analog input circuit

NOTE A: C_i - nonlinear emitter-follower junction capacitance


ri - linear resistance model for input current transition caused by comparator switching.

 $\dot{V}_{I} < V_{refB}$: Infinite; CLK high: infinite.

V_{refB}- voltage at REFB terminal

 I_{bias} – constant input bias current D – base-collector junction diode of emitter-follower transistor

equivalent of digital input circuit

SLAS026 - OCTOBER 1989 - REVISED APRIL 1990

STEP	ANALOG INPUT VOLTAGE	DIGITAL OUTPUT CODE					
0	3.992 V	L	L	L	L	L	L
1	4.008 V	L	L	L	L	L	Н
1	I						
31	4.488 V	L	Н	Н	н	н	н
32	4.508 V	н	L	L	L	L	L
33	4.520 V	н	L	L	L	L	н
1							
62	4.984 V	н	н	н	н	н	L
63	5.000 V	н	н	н	Н	н	н

FUNCTION TABLE

[†] These values are based on the assumption that V_{refB} and V_{refT} have been adjusted so that the voltage at the transition from digital 0 to 1 (V_{ZT}) is 4.000 V and the transition to full scale (V_{FT}) is 4.992 V. 1 LSB = 16 mV.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, ANLG V _{CC} (see Note 1)	
Supply voltage range, DGTL V _{CC} – 0.5 V to 7 V	
Input voltage range at digital input, V ₁ – 0.5 V to 7 V	
Input voltage range at analog input, V ₁ V -0.5 V to ANLG V _{CC} +0.5 V	
Analog reference voltage range, V _{ref}	
Storage temperature range	
Operating free-air temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	
OTE 1: All voltage values are with respect to the network ground terminal.	

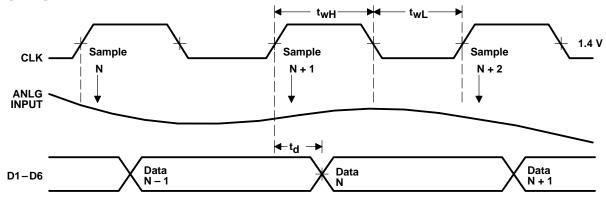
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, ANLG V _{CC}	4.75	5	5.25	V
Supply voltage, DGTL V _{CC}	4.75	5	5.25	V
High-level input voltage, V _{IH}	2			V
Low-level input voltage, VIL			0.8	V
Input voltage at analog input, VI (see Note 2)	4		5	V
Analog reference voltage (top side), V _{refT} (see Note 2)	4	5	5.1	V
Analog reference voltage (bottom side), V _{refB} (see Note 2)	3	4	4.1	V
High-level output current, IOH	-400			μΑ
Low-level output current, I _{OL}			4	mA
Clock pulse duration, high-level or low-level, t _W	25			ns
Operating free-air temperature, T _A	0		70	°C

NOTE 2: $V_{refB} < V_I < V_{refT}$, $V_{refT} - V_{refB} = 1 V \pm 0.1 V$.

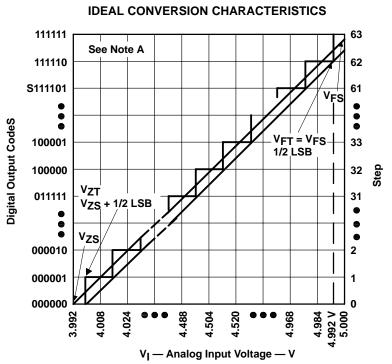
SLAS026 - OCTOBER 1989 - REVISED APRIL 1990

electrical characteristics over operating supply voltage range, $T_A = 25$ °C (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ı.	Analog input current	V _I = 5 V			75	
1	Analog input current	$V_{I} = 4 V$			73	μA
lн	Digital high-level input current	VI = 2.7 V		0	20	μA
١L	Digital low-level input current	VI = 0.4 V	- 400	-40		μA
Ц	Digital input current	V _I = 7 V			100	μA
I _{refB}	Reference current	V _{IrefB} = 4 V		-4	-7.2	mA
I _{ref} T	Reference current	V _{IrefB} = 5 V		4	7.2	mA
VOH	High-level output voltage	I _{OH} = -400 μA	2.7			V
VOL	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
rj	Analog input resistance		100			kΩ
1C _i	Analog input capacitance			35	65	pF
ICC	Supply current			40	60	mA

operating characteristics over operating supply voltage range, $T_A = 25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
EL	Linearity error				±0.8	%FSR
fmax	Maximum converstion rate		20	30		MHz
t _d	Digital output delay time	See Figure 3		15	30	ns


[†] All typical values are at $V_{CC} = 5 \text{ V}$, $V_{re}f = 4 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

timing diagram

SLAS026 - OCTOBER 1989 - REVISED APRIL 1990

TYPICAL CHARACTERISTICS

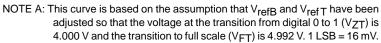
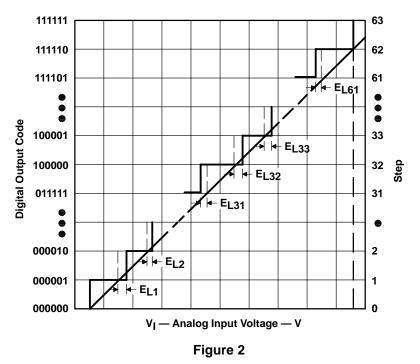
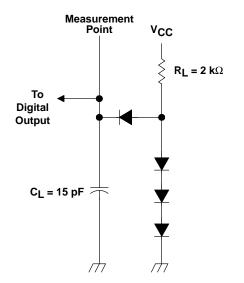




Figure 1

END-POINT LINEARITY ERROR

SLAS026 - OCTOBER 1989 - REVISED APRIL 1990

PARAMETER MEASUREMENT INFORMATION

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated