SLAS105B - JANUARY 1995 - REVISED APRIL 1996

features

- 8-Bit Resolution
- Differential Linearity Error
 ±0.3 LSB Typ, ±1 LSB Max (25°C)
 ±1 LSB Max
- Integral Linearity Error
 ±0.6 LSB, ±0.75 LSB Max (25°C)
 ±1 LSB Max
- Maximum Conversion Rate of 40 Megasamples Per Second (MSPS) Min
- Internal Sample and Hold Function
- 5-V Single Supply Operation
- Low Power Consumption . . . 85 mW Typ
- Analog Input Bandwidth . . . ≥75 MHz Typ
- Internal Reference Voltage Generators

applications

- Quadrature Amplitude Modulation (QAM) and Quadrature Phase Shift Keying (QPSK) Demodulators
- Digital Television
- Charge-Coupled Device (CCD) Scanners
- Video Conferencing
- Digital Set-Top Box
- Digital Down Converters
- High-Speed Digital Signal Processor Front End

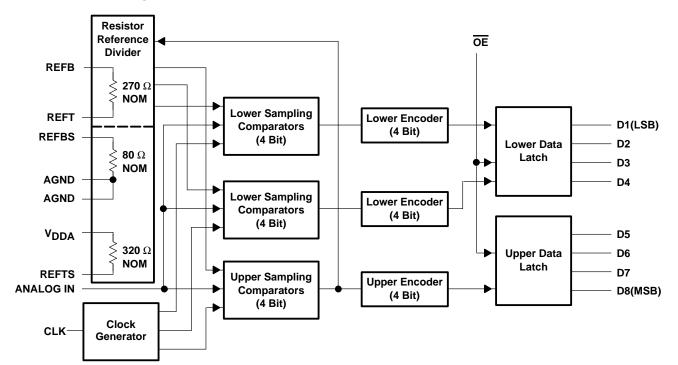
description

The TLC5540 is a high-speed, 8-bit analog-to-digital converter (ADC) that converts at sampling rates up to 40 megasamples per second (MSPS). Using a semiflash architecture and CMOS process, the TLC5540 is able to convert at high speeds while still maintaining low power consumption and cost. The analog input bandwidth of 75 MHz (typ) makes this device an excellent choice for undersampling applications. Internal resistors are provided to generate 2-V full-scale reference voltages from a 5-V supply, thereby reducing external components. The digital outputs can be placed in a high impedance mode. The TLC5540 requires only a single 5-V supply for operation.

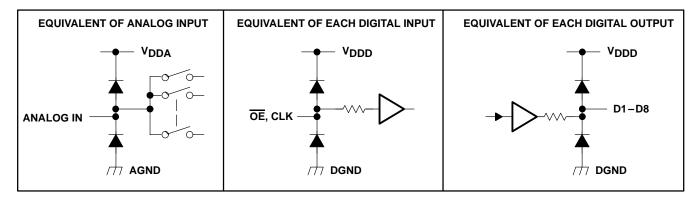
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

	NS PACKAGE (TOP VIEW)									
DGND 2 23 REFB D1(LSB) 3 22 REFBS D2 4 21 AGND D3 5 20 AGND	OE DGND D1(LSB) D2 D3 D4 D5 D6 D7 D8(MSB) V _{DDD}	1 2 3 4 5 6 7 8 9 10 11	24 23 22 21 20 19 18 17 16 15 14	REFBS AGND AGND ANALOG IN V _{DDA} REFT REFTS V _{DDA}						


AVAILABLE OPTIONS

TA	NS PACKAGE
0°C to 70°C	TLC5540CNSLE
-40°C to 85°C	TLC5540INSLE


Copyright $\ensuremath{\textcircled{}}$ 1996, Texas Instruments Incorporated

SLAS105B - JANUARY 1995 - REVISED APRIL 1996

functional block diagram

schematics of inputs and outputs

SLAS105B - JANUARY 1995 - REVISED APRIL 1996

Terminal Functions

TERM	INAL	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
AGND	20, 21		Analog ground
ANALOG IN	19	Ι	Analog input
CLK	12	Ι	Clock input
DGND	2, 24		Digital ground
D1-D8	3-10	0	Digital data out. D1:LSB, D8:MSB
OE	1	Ι	Output enable. When $\overline{OE} = L$, data is enabled. When $\overline{OE} = H$, D1–D8 is high impedance.
VDDA	14, 15, 18		Analog V _{DD}
VDDD	11, 13		Digital V _{DD}
REFB	23	Ι	ADC reference voltage in (bottom)
REFBS	22		Reference voltage (bottom). When using the internal voltage divider to generate a nominal 2-V reference, the REFBS terminal is shorted to the REFB terminal and the REFTS terminal is shorted to the REFT terminal (see Figure 13 and Figure 14).
REFT	17	I	Reference voltage in (top)
REFTS	16		Reference voltage (top). When using the internal voltage divider to generate a nominal 2-V reference, the REFTS terminal is shorted to the REFT terminal and the REFBS terminal is shorted to the REFB terminal (see Figure 13 and Figure 14).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DDA} , V _{DDD}	7 V
Reference voltage input range, VI(REFT), VI(REFB), VI(REFBS), VI(REFTS)	
Analog input voltage range, V _{I(ANLG)}	. AGND to V _{DDA}
Digital input voltage range, V _{I(DGTL)}	. DGND to V _{DDD}
Digital output voltage range, V _{O(DGTL)}	. DGND to V _{DDD}
Operating free-air temperature range, T _A : TLC5540C	0°C to 70°C
TLC5540I	−40°C to 85°C
Storage temperature range, T _{stg}	. −55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SLAS105B - JANUARY 1995 - REVISED APRIL 1996

recommended operating conditions

			MIN	NOM	MAX	UNIT
	V _{DDA} -AGND	V _{DDA} -AGND		5	5.25	V
Supply voltage	V _{DDD} -AGND		4.75	5	5.25	v
	AGND-DGND		-100	0	100	mV
Reference input voltage (top), VI(REFT)		V _{I(REFB)} +1.8 V _{I(REFB)} +2		V _{DDA}	V	
Reference input voltage (bottom), $V_{I(RE)}$	EFB)		0	0.6	V _{I(REFT)} -1.8	V
Analog input voltage range, VI(ANLG) (see Note 1)			VI(REFB)		VI(REFT)	V
Full scale voltage, VI(REFT) - VI(REFB)		1.8		5	V	
High-level input voltage, VIH			4			V
Low-level input voltage, VIL					1	V
Pulse duration, clock high, t _{w(H)}			12.5			ns
Pulse duration, clock low, tw(L)			12.5			ns
	TLC5540C		0		70	°C
Operating free-air temperature, T_A	TLC5540I		-40		85	°C

NOTE 1: $1.8 V \le V_{I(REFT)} - V_{I(REFB)} < V_{DD}$

SLAS105B - JANUARY 1995 - REVISED APRIL 1996

electrical characteristics at V_{DD} = 5 V, $V_{I(REFT)}$ = 2.6 V, $V_{I(REFB)}$ = 0.6 V, f_s = 40 MSPS, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]			TYP	MAX	UNIT
с.	Lincority array integral		$T_A = 25^{\circ}C$		±0.6	±1	
EL	Linearity error, integral	f _S = 40 MSPS,	$T_A = MIN$ to MAX			±1	LSB
F -	Lingerity error differential	$V_{I} = 0.6 V \text{ to } 2.6 V$	$T_A = 25^{\circ}C$		±0.3	±0.75	LOD
ED	Linearity error, differential		$T_A = MIN$ to MAX			±1	
	Self bias (1), V _{RB}	Short REFB to REFBS	Cas Figure 42	0.57	0.61	0.65	
	Self bias (1), V _{RT}	Short REFT to REFTS	See Figure 13	2.47	2.63	2.80	V
	Self bias (2), V _{RB}	Short REFB to AGND			AGND		v
	Self bias (2), V _{RT}	Short REFT to REFTS	See Figure 14	2.18	2.29	2.4	
I _{ref}	Reference-voltage current	V _{I(REFT)} – V _{I(REFB)} =	2 V	5.2	7.5	12	mA
R _{ref}	Reference-voltage resistor	Between REFT and RE	165	270	350	Ω	
Ci	Analog input capacitance	VI(ANLG) = 1.5 V + 0.0		4		pF	
E _{ZS}	Zero-scale error		-18	-43	-68		
E _{FS}	Full-scale error	VI(REFT) - VI(REFB) =	2 V	-25	0	25	mV
Чн	High-level input current	V _{DD} = 5.25 V,	V _{IH} = V _{DD}			5	
۱ _{IL}	Low-level input current	V _{DD} = 5.25 V,	$V_{IL} = 0$			5	μA
IOH	High-level output current	OE = GND,	V _{DD} = 4.75 V, V _{OH} = V _{DD} -0.5 V	-1.5			
IOL	Low-level output current	OE = GND,	$V_{DD} = 4.75 \text{ V}, V_{OL} = 0.4 \text{ V}$	2.5			mA
IOZH(lkg)	High-level high-impedance-state output leakage current	$\overline{OE} = V_{DD},$	V _{DD} = 5.25, V _{OH} = V _{DD}			16	
I _{OZL(lkg)}	Low-level high-impedance-state output leakage current	$\overline{OE} = V_{DD}$,	$V_{DD} = 4.75, V_{OL} = 0$			16	μA
IDD	Supply current	f_{S} = 40 MSPS, C _L \leq 25 pF,	NTSC [‡] ramp wave input, See Note 2		17	27	mA

[†] Conditions marked MIN or MAX are as stated in recommended operating conditions.

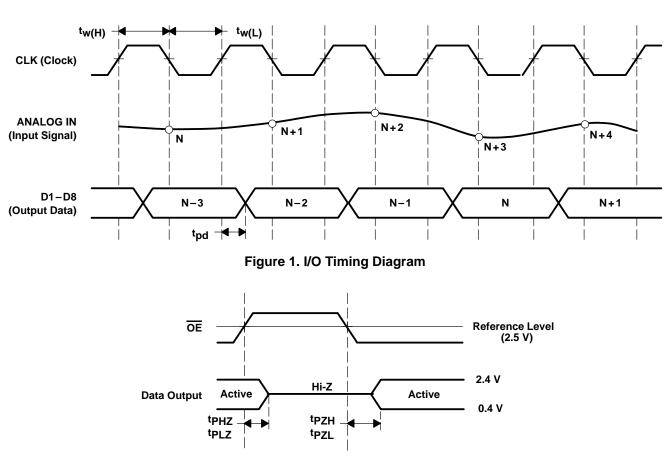
[‡] National Television System Committee

NOTE 2: Supply current specification does not include Iref.

SLAS105B - JANUARY 1995 - REVISED APRIL 1996

operating characteristics at V_{DD} = 5 V, V_{RT} = 2.6 V, V_{RB} = 0.6 V, f_s = 40 MSPS, T_A = 25°C (unless otherwise noted)

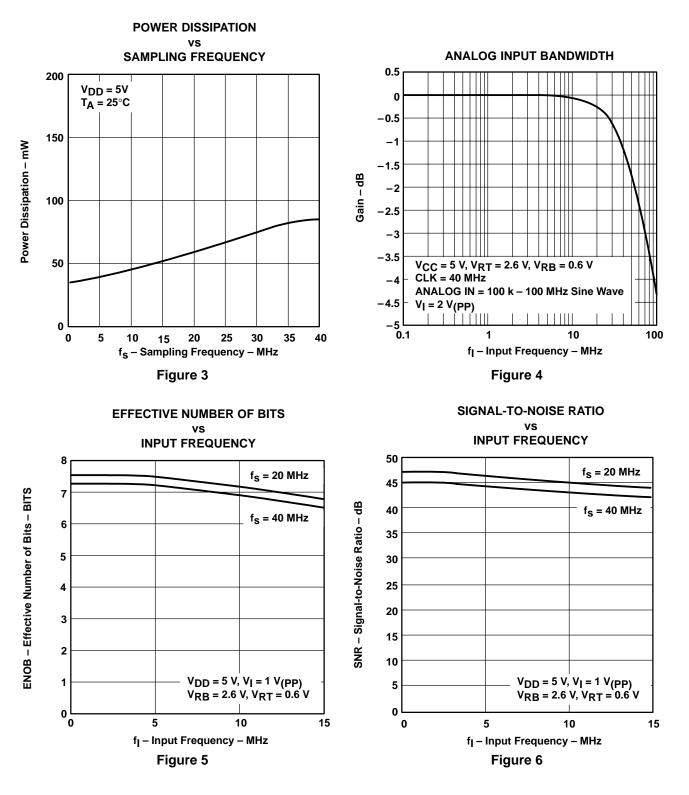
PARAMETER		TEST CO	TEST CONDITIONS [†]			MAX	UNIT	
f _S	Maximum conversion rate	$T_A = MIN \text{ to } MA$	$T_A = MIN \text{ to MAX}$				MSPS	
f _S	Minimum conversion rate	$T_A = MIN \text{ to } MA$	T _A = MIN to MAX		5		MSPS	
BW	Analog input full-power bandwidth	At – 3 dB, V _{I(Al}	NLG) = 2 V _{pp}		75		MHz	
^t pd	Delay time, digital output	C _L ≤ 10 pF (see			9	15	ns	
t _{PHZ}	Disable time, output high to hi-z	C _L ≤ 15 pF,	I _{OH} = -4.5 mA			20	ns	
^t PLZ	Disable time, output low to hi-z	C _L ≤ 15 pF,	I _{OL} = 5 mA			20	ns	
^t PZH	Enable time, hi-z to output high	C _L ≤ 15 pF,	I _{OH} = -4.5 mA			15	ns	
t _{PZL}	Enable time, hi-z to output low	CL ≤ 15 pF,				15	ns	
	Differential gain	NTSC 40 IRE±	modulation wave,		1%			
	Differential phase	f _S = 14.3 MSPS			0.7		degrees	
t _{AJ}	Aperture jitter time				30		ps	
^t d(s)	Sampling delay time				4		ns	
SNR S			f _I = 1 MHz		47		dB	
			f _I = 3 MHz	44	47			
		f _S = 20 MSPS	f _l = 6 MHz		46			
	Signal-to-noise ratio		f _I = 10 MHz		45			
			fj = 3 MHz		45.2			
		f _S = 40 MSPS	fj = 6 MHz	42	44			
			fj = 10 MHz		42		1	
			f _l = 1 MHz		7.64			
		(fı = 3 MHz	7.61				
		f _S = 20 MSPS	fj = 6 MHz		7.47			
ENOB	Effective number of bits		fj = 10 MHz	7.16		Bits		
		(40 MODO	f _l = 3 MHz		7			
		f _S = 40 MSPS	f _l = 6 MHz		6.8		1	
			f _l = 1 MHz		43			
		(00 MODO	f _l = 3 MHz	35	42		dBc	
TUD	Total bases as in statestics	f _S = 20 MSPS	f _l = 6 MHz		41			
THD	Total harmonic distortion		f _l = 10 MHz		38			
		4 40.14050	f _l = 3 MHz		40			
		f _S = 40 MSPS	fı = 6 MHz		38			
		f _S = 20 MSPS,	fj =3 MHz	41	46		dBc	
	Spurious free dynamic range	f _S = 40 MSPS,	f _l =3 MHz		42		dBc	


[†]Conditions marked MIN or MAX are as stated in recommended operating conditions.

[‡] Institute of Radio Engineers

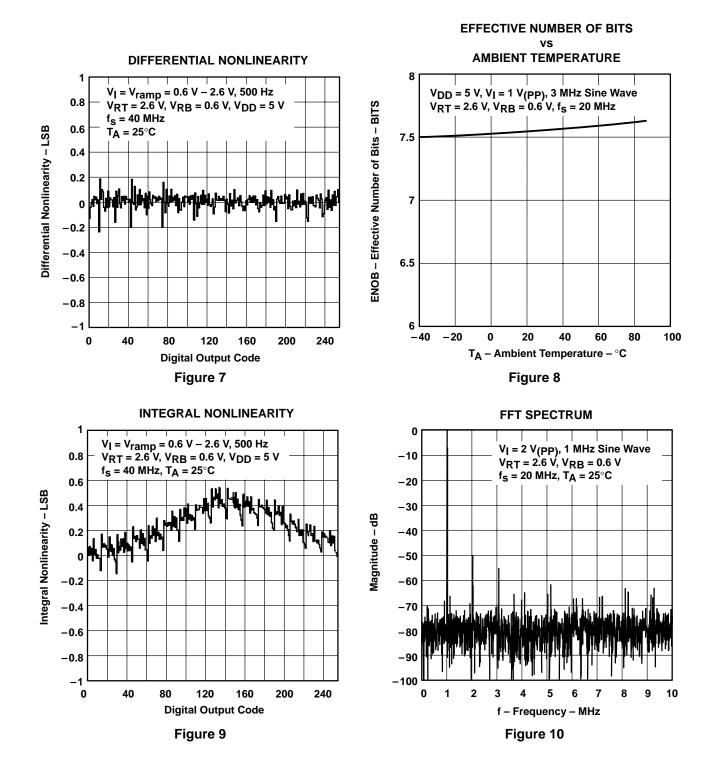
NOTE 3: CL includes probe and jig capacitance.

SLAS105B - JANUARY 1995 - REVISED APRIL 1996



PARAMETER MEASUREMENT INFORMATION

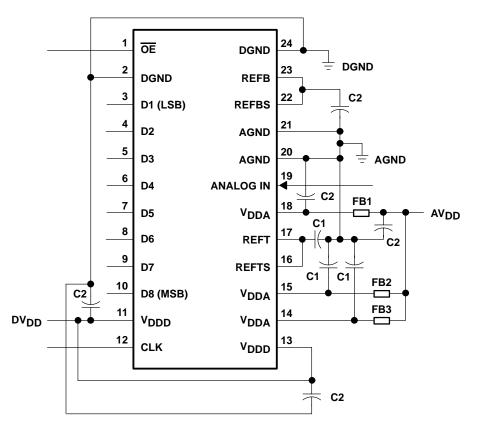
SLAS105B - JANUARY 1995 - REVISED APRIL 1996



TYPICAL CHARACTERISTICS

SLAS105B - JANUARY 1995 - REVISED APRIL 1996

TYPICAL CHARACTERISTICS



SLAS105B - JANUARY 1995 - REVISED APRIL 1996

APPLICATION INFORMATION

grounding and power supply considerations

As with most high performance A/D converters, separate analog and digital supply and grounding terminals are provided on the package. This is done to allow the sensitive analog currents to be separated from the noisy digital switching currents. All analog circuitry should be returned to analog ground and all digital currents should be returned to digital ground. A low impedance connection should be made between the two grounds at the power supply or closer when needed to keep the impedance minimal. It is critical to keep the potential of AGND equal to DGND. When a difference in potential exists, then common mode currents develop in the ADC which result in converter noise. The low impedance connection between AGND and DGND minimize this potential difference. It is recommended that switching power supplies be avoided for supply to the ADC. Low noise linear power supplies provide the best operation. V_{DDA} and V_{DDD} should be decoupled as close as possible to the integrated circuit (IC) with a 0.1 μ F capacitor. The capacitors chosen should have good characteristics for decoupling high frequencies. Ceramic chip capacitors typically prove the most beneficial. Figure 11 shows power and ground connections using ferrite beads for filtering.

LOCATION	DESCRIPTION
C1	> 0.02-µF capacitor
C2	< 10-µF capacitor
FB1, FB2, FB3	Ferrite beads, C type

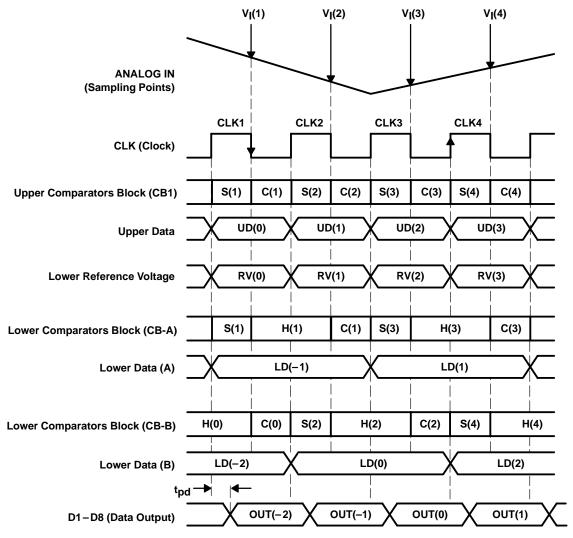
Figure 11. AV_{DD}, DV_{DD}, AGND, and DGND Connections

APPLICATION INFORMATION

printed circuit board (PCB) layout considerations

When designing a circuit that includes high-speed digital and precision analog signals such as a high speed ADC, PCB layout is a key component to achieving the desired performance. The following recommendations should be considered during the prototyping and PCB design phase:

- Separate analog and digital circuitry physically to help eliminate capacitive coupling and crosstalk. When
 separate analog and digital ground planes are used, the digital ground and power planes should be several
 layers from the analog signals and power plane to avoid capacitive coupling.
- Full ground planes should be used. Do not use individual etches to return analog and digital currents or partial ground planes. For prototyping, breadboards should be constructed with copper clad boards to maximize ground plane.
- The conversion clock, CLK, should be terminated properly to reduce overshoot and ringing. Any jitter on the conversion clock degrades ADC performance. A high-speed CMOS buffer such as a 74ACT04 or 74AC04 positioned close to the CLK terminal can improve performance.
- Minimize all etch runs as much as possible by placing components very close together. It also proves beneficial to place the ADC in a corner of the PCB nearest to the I/O connector analog terminals.
- It is recommended to place the digital output data latch (if used) as close to the TLC5540 as possible to minimize capacitive loading. If D0 through D7 must drive large capacitive loads, internal ADC noise may be experienced.


SLAS105B - JANUARY 1995 - REVISED APRIL 1996

PRINCIPLES OF OPERATION

functional description

The TLC5540 uses a modified semiflash architecture as shown in the functional block diagram. The four most significant bits (MSBs) of every output conversion result are produced by the upper comparator block CB1. The four least significant bits (LSBs) of each alternate output conversion result are produced by the lower comparator blocks CB-A and CB-B in turn (see Figure 12).

The reference voltage that is applied to the lower comparator resistor string is one sixteenth of the amplitude of the reference applied to the upper comparator resistor string. The sampling comparators of the lower comparator block require more time to sample the lower voltages of the reference and residual input voltage. By applying the residual input voltage to alternate lower comparator blocks, each comparator block has twice as much time to sample and convert as would be the case if only one lower comparator block were used.

This conversion scheme, which reduces the required sampling comparators by 30 percent compared to standard semiflash architectures, achieves significantly higher sample rates than the conventional semiflash conversion method.

PRINCIPLES OF OPERATION

functional description (continued)

The MSB comparator block converts on the falling edge of each applied clock cycle. The LSB comparator blocks CB-A and CB-B convert on the falling edges of the first and second following clock cycles, respectively. The timing diagram of the conversion algorithm is shown in Figure 12.

analog input operation

The analog input stage to the TLC5540 is a chopper-stabilized comparator and is equivalently shown below:

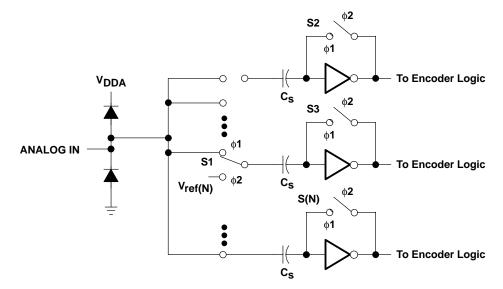


Figure 13. External Connections for Using the Internal Reference Resistor Divider

Figure 13 depicts the analog input for the TLC5540. The switches shown are controlled by two internal clocks, $\phi 1$ and $\phi 2$. These are nonoverlapping clocks that are generated from the CLK input. During the sampling period, $\phi 1$, S1 is closed and the input signal is applied to one side of the sampling capacitor, C_s. Also during the sampling period, S2 through S(N) are closed. This sets the comparator input to approximately 2.5 V. The delta voltage is developed across C_s. During the comparison phase, $\phi 2$, S1 is switched to the appropriate reference voltage for the bit value N. S2 is opened and V_{ref(N)} – VC_s toggles the comparator output to the appropriate digital 1 or 0. The small resistance values for the switch, S1, and small value of the sampling capacitor combine to produce the wide analog input bandwidth of the TLC5540. The source impedance driving the analog input of the TLC5540 should be less than 100 Ω across the range of input frequency spectrum.

reference inputs - REFB, REFT, REFBS, REFTS

The range of analog inputs that can be converted are determined by REFB and REFT, REFT being the maximum reference voltage and REFB being the minimum reference voltage. The TLC5540 is tested with REFT = 2.6 V and REFB = 0.6 V producing a 2-V full-scale range. The TLC5540 can operate with REFT – REFB = 5 V, but the power dissipation in the reference resistor increases significantly (93 mW nominally). It is recommended that a 0.1 μ F capacitor be attached to REFB and REFT whether using externally or internally generated voltages.

SLAS105B - JANUARY 1995 - REVISED APRIL 1996

PRINCIPLES OF OPERATION

internal reference voltage conversion

Three internal resistors allow the device to generate an internal reference voltage. These resistors are brought out on terminals V_{DDA}, REFTS, REFT, REFB, REFBS, and AGND. Two different bias voltages are possible without the use of external resistors.

Internal resistors are provided to develop REFT = 2.6 V and REFB = 0.6 V (bias option one) with only two external connections. This is developed with a 3-resistor network connected to V_{DDA}. When using this feature, connect REFT to REFTS and connect REFB to REFBS. For applications where the variance associated with V_{DDA} is acceptable, this internal voltage reference saves space and cost (see Figure 14).

A second internal bias option (bias two option) is shown in Figure 15. Using this scheme REFB = AGND and REFT = 2.28 V nominal. These bias voltage options can be used to provide the values listed in the following table.

BIAS OPTION	BIAS VOLTAGE					
BIAS OF HON	V _{RB}	V _{RT}	V _{RT} – V _{RB}			
1	0.61	2.63	2.02			
2	AGND	2.28	2.28			

Table 1. Bias Voltage Options

To use the internally-generated reference voltage, terminal connections should be made as shown in Figure 14 or Figure 15. The connections in Figure 14 provide the standard video 2-V reference.

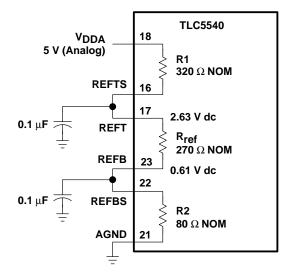
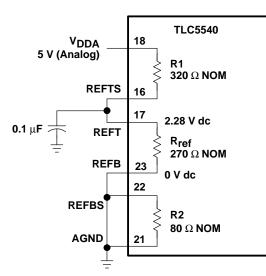



Figure 14. External Connections Using the Internal Bias One Option

SLAS105B - JANUARY 1995 - REVISED APRIL 1996

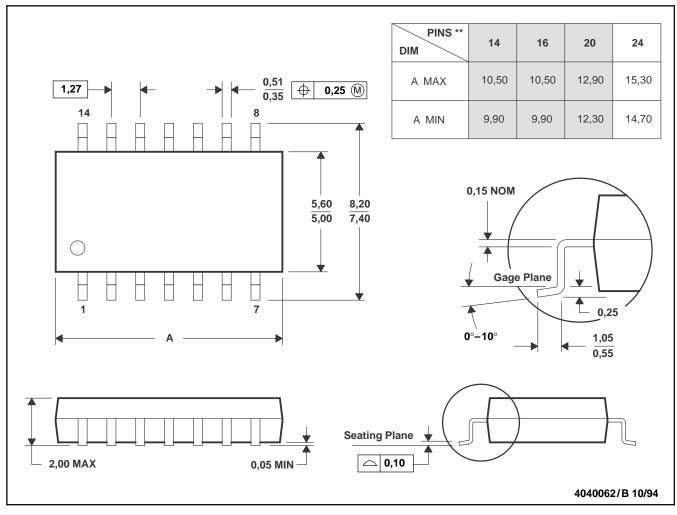
PRINCIPLES OF OPERATION

functional operation

Table 2 shows the TLC5540 functions.

INPUT SIGNAL	STEP		DIGITAL OUTPUT CODE						
VOLTAGE	SIEF	MSB		_					LSB
V _{ref(T)}	255	1	1	1	1	1	1	1	1
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	128	1	0	0	0	0	0	0	0
•	127	0	1	1	1	1	1	1	1
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
V _{ref(B)}	0	0	0	0	0	0	0	0	0

Table 2. Functional Operation



SLAS105B - JANUARY 1995 - REVISED APRIL 1996

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

NS (R-PDSO-G**) 14 PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated