LM3302 QUADRUPLE DIFFERENTIAL COMPARATOR

SLCS014 -OCTOBER 1977 -REVISED APRIL 1988

•	Single Supply or Dual Supplies	D, J, OR N PACKAGE				
•	Wide Range of Supply Voltage 2 V to 28 V	10UT)] зоит		
•	Low Supply Current Drain Independent of Supply Voltage 0.8 mA Typ	2OUT	2 13	40UT		
•	Low Input Bias Current 25 nA Typ	2IN-[4 11	Бакі		
•	Low Input Offset Current 3 nA Typ	2IN+[] 4IN–		
•	Low Input Offset Voltage 3 mV Typ	1IN-[1IN+[] 3IN+] 3IN–		
-	O survey and Marcha language Marka and Dana and	4				

• Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ± 28 V

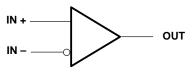
Common-Mode Input Voltage Range

Low Output Saturation Voltage

Includes Ground

Output Compatible With TTL, MOS, and CMOS

description

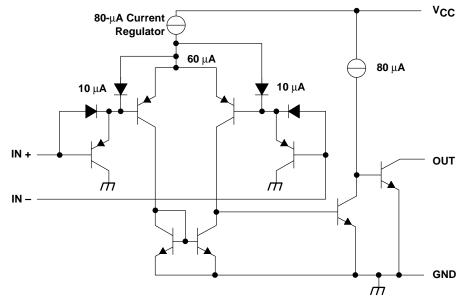

This device consists of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies is also possible so long as the difference between the two supplies is 2 V to 28 V and V_{CC} is a least 1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

AVAILABLE OPTIONS

		PACKAGE		
TA	V _{IO} max at 25°C	SMALL OUTLINE (D) [†]	CERAMIC DIP (J)	PLASTIC DIP (N)
-40° C to 85° C	20 mV	LM3302D	LM3302J	LM3302N

⁺ The D packages are available taped and reeled. Add the suffix R to the device type, when ordering (i.e., LM3302DR).

symbol (each comparator)



LM3302 QUADRUPLE DIFFERENTIAL COMPARATOR

SLCS014 -OCTOBER 1977 -REVISED APRIL 1988

schematic

Current values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage 1/ (ass Note 1)	
Supply voltage, V _{CC} (see Note 1)	
Differential input voltage, VID (see Note 2)	±28 V
Input voltage range, V _I (either input), V _I	– 0.3 V to 28 V
Output voltage, V _O	28 V
Output current, Io	20 mA
Duration of output short-circuit to ground (see Note 3)	unlimited
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	− 40°C to 85°C
Storage temperature range	– 65°C to 150°C
Lead temperature range 1,6 mm (1/16 inch) from case for 60 seconds: J pack	age 300°C
Lead temperature range 1,6 mm (1/16 inch) from case for 10 seconds: D or N	package 260°C

[†] Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. There are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the recommended operating conditions section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground.

- 2. Differential voltages are at IN+ with respect to IN -.
- 3. Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction.

DISSIPATION RATING TABLE

PACKAGE $T_A \le 25^{\circ}C$ POWER RATING		DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW
J	1025 mW	8.2 mW/°C	656 mW	533 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW

SLCS014 -OCTOBER 1977 -REVISED APRIL 1988

	PARAMETER	TEST CO	NDITIONS [‡]	TA	MIN	TYP	MAX	UNIT
Vie	Input offset voltage	$V_{CC} = 5 V \text{ to } 28 V,$ $V_{O} = 1.4 V$	$V_{IC} = V_{ICR} min,$	25°C		3	20	mV
VIO				- 40°C to 85°C			40	
l. a	Input offset voltage	$\lambda = 1.4 \lambda$		25°C		3	100	
IIO	input onset voltage	ut offset voltage $V_{O} = 1.4 V$		-40° C to 85° C			300	nA
L.=	Innut biog ourrest			25°C		- 25	- 500	nA
IВ	Input bias current			– 40°C to 85°C			-1000	
) (Common-mode input					v		
VICR	voltage range							
AVD	Large-signal differential voltage amplification	$V_{CC} = 15 V,$ RL = 15 Ω to V_{CC}	$V_{O} = 1.4 V$ to 11.4 V,	25°C	2	30		V/mV
1	Lich lovel output ourrest		Maria EM	25°C		0.1 I	nA	
ЮН	High-level output current	V _{ID} = 1 V,	V _{OH} = 5 V	– 40°C to 85°C			1	μA
Vai				25°C		150	500	
VOL	Low-level output voltage	V _{ID} = 1 V,	V _{OH} = 5 V	- 40°C to 85°C			700	mV
IOL	Low-level output current	V _{ID} = 1 V,	V _{OL} = 1.5 V	25°C	6	16		mA
ICC	Supply current (four comparators)	V _O = 2.5 V,	No load	25°C		0.8		mA

electrical characteristics at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

[‡] All characteristics are measured with zero common-mode input voltage unless otherwise specified.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
Response time	$R_L = 5.1 \text{ k}\Omega$ to 5 V,	C _L = 15 pF [†] ,	100-mV input step with 5-mV overdrive		1.3		
Response time	See Note 4	_	TTL-level input step		0.3		μs

⁺C_L includes probe and jig capacitance. NOTE 4: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated