- Each Device Drives 32 Lines
- 60-V Output Voltage Swing Capability
- 25-mA Output Source Current Capability
- High-Speed Serially Shifted Data Input
- Latches on All Driver Outputs

description

The SN65518 and SN75518 are monolithic BIDFET \dagger integrated circuits designed to drive a dot matrix or segmented vacuum fluorescent display.
Each device consists of a 32-bit shift register, 32 latches, and 32 output AND gates. Serial data is entered into the shift register on the low-to-high transition of CLOCK. While LATCH ENABLE is high, parallel data is transferred to the output buffers through a 32-bit latch. Data present in the latch during the high-to-low transition of LATCH ENABLE is latched. When STROBE is low, all Q outputs are enabled. When STROBE is high, all Q outputs are low.
Serial data output from the shift register may be used to cascade additional devices. This output is not affected by LATCH ENABLE or STROBE.

The SN65518 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The SN75518 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

\dagger BIDFET - Bipolar, double-diffused, N-channel and P-channel MOS transistors on same chip. This is a patented process.
logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the N package.
logic diagram (positive logic)

FUNCTION TABLE							
FUNCTION	CONTROL INPUTS			SHIFT REGISTERSR1 THRU R32	LATCHES LC1 THRU LC32	OUTPUTS	
	CLOCK	LATCH ENABLE	STROBE			SERIAL	Q1 THRU Q32
Load	$\begin{gathered} \uparrow \uparrow \\ \text { No } \uparrow \end{gathered}$	$\begin{aligned} & \hline X \\ & x \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	Load and shift \dagger No change	Determined by LATCH ENABLE \ddagger	R32	Determined by STROBE
Latch	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	As determined above	Stored data New data	R32	Determined by STROBE
Strobe	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	As determined above	Determined by LATCH ENABLE \ddagger	R32	All L LC1 thru LC32, respectively

H = high level, L = low level, $\quad X=$ irrelevant, $\quad \uparrow=$ low-to-high-level transition.
\dagger R32 and the serial output take on the state of R31, R31 takes on the state of R30, .. R2 takes on the state of R1, and R1 takes on the state of the data input.
\ddagger New data enter the latches while LATCH ENABLE is high. These data are stored while LATCH ENABLE is low.
typical operating sequence

schematic of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, $\mathrm{V}_{\mathrm{CC} 1}$ (see Note 1) ... 15 V

Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A} : SN65518 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SN75518 ... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Case temperature for 10 seconds: FN package .. $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds: N package $260^{\circ} \mathrm{C}$
NOTE 1: Voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
FN	1700 mW	13.6 mW/ ${ }^{\circ} \mathrm{C}$	1088 mW	884 mW
N	1250 mW	$10.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	800 mW	650 mW

SN65518, SN75518
 VACUUM FLUORESCENT DISPLAY DRIVERS

recommended operating conditions, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

		MIN	MAX	UNIT
Supply voltage, $\mathrm{V}_{\mathrm{CC} 1}$		4.5	15	V
Supply voltage, $\mathrm{V}_{\mathrm{CC} 2}$		0	60	V
High-level input voltage $\mathrm{V}_{\text {IH }}$ (see Figure 1)	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	3.5		V
Migh-level inut volage, ViH (see Figure 1)	$\mathrm{V}_{\mathrm{CC} 1}=15 \mathrm{~V}$	12		
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Figure 1)		-0.3	0.8	V
High-level output current, IOH			-25	mA
Low-level output current, IOL			2	mA
Clock frequency f ${ }^{\text {fock (see }}$	$\mathrm{V}_{\mathrm{CC} 1}=10 \mathrm{~V}$ to 15 V	0	5	MHz
Clock rrequency, clock (see Figure 2)	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	0	1	
Pulse duration, CLO	$\mathrm{V}_{\mathrm{CC} 1}=10 \mathrm{~V}$ to 15 V	100		s
Pulse duration, CLOCK high, ${ }_{\text {w (CKH) }}$	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	500		ns
	$\mathrm{V}_{\mathrm{CC} 1}=10 \mathrm{~V}$ to 15 V	100		ns
Pulse duration, CLOCK low, ${ }_{\text {w }}$ (CKL)	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	500		ns
Setup time DATA IN before CLOCKT, tsu	$\mathrm{V}_{\mathrm{CC} 1}=10 \mathrm{~V}$ to 15 V	75		
Setup time, DATA in before CLOCK, isu	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	150		ns
Hold time, DATA IN after CLOCKT, th	$\mathrm{V}_{\mathrm{CC} 1}=10 \mathrm{~V}$ to 15 V	75		
Hold time, DATA ${ }^{\text {N }}$ ater CLOCK, ${ }_{\text {h }}$	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	150		
Operating free-air temperature T_{A}	SN65518	-40	85	${ }^{\circ} \mathrm{C}$
Operaing free air	SN75518	0	70	

electrical characteristics over recommended ranges of operating free-air temperature and V_{CC}, $\mathrm{V}_{\mathrm{CC} 2}=60 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT
V_{IK}	Input clamp voltage		$\mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High-level output voltage	Q outputs	$\mathrm{IOH}^{\prime}=-25 \mathrm{~mA}$		57.5	58		V
		SERIAL OUT	$\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}$,	$\mathrm{IOH}=-20 \mu \mathrm{~A}$	4.5	4.9	5	
VOL	Low-level output voltage	Q outputs	$\mathrm{IOL}=1 \mathrm{~mA}$				5	V
		SERIAL OUT	$\mathrm{IOL}=20 \mu \mathrm{~A}$			0.06	0.8	
${ }^{1} \mathrm{IH}$	High-level input current		$\mathrm{V}_{\mathrm{CC} 1}=15 \mathrm{~V}$,	$\mathrm{V}_{1}=15 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
IIL	Low-level input current		$\mathrm{V}_{\mathrm{CC} 1}=15 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$		-0.1	-1	$\mu \mathrm{A}$
ICC1	Supply current		$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$			1.8	4	mA
			$\mathrm{V}_{\mathrm{CC} 1}=15 \mathrm{~V}$			2	5	
ICC2	Supply current	SN65518	Outputs high,	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$			12	mA
		SN65518, SN75518	Outputs high,	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to MAX		7	10	
			Outputs low			0.01	0.5	

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC} 2}=60 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN MAX	UNIT
t_{d}	Delay time, CLOCK to DATA OUT		$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	$C_{L}=15 \mathrm{pF}$, See Figure 4	600	ns
			$\mathrm{V}_{\mathrm{CC} 1}=15 \mathrm{~V}$		150	
tDHL	Delay time, high-to-low-level Q output	From LATCH ENABLE	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	See Figure 5	1.5	$\mu \mathrm{s}$
		From STROBE		See Figure 6	1	
		From LATCH ENABLE	$\mathrm{V}_{\mathrm{CC} 1}=15 \mathrm{~V}$	See Figure 5	0.5	
		From STROBE		See Figure 6	0.5	
${ }^{\text {t }}$ LH	Delay time, low-to-high-level Q output	From LATCH ENABLE	$V_{C C 1}=4.5 \mathrm{~V}$	See Figure 5	1.5	$\mu \mathrm{s}$
		From STROBE		See Figure 6	1	
		From LATCH ENABLE	$V_{C C 1}=15 \mathrm{~V}$	See Figure 5	0.25	
		From STROBE		See Figure 6	0.25	
tTHL	Transition time, high-to-low-level Q output		$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	See Figure 6	3	$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{CC} 1}=15 \mathrm{~V}$		1.5	
t T LH	Transition time, low-to-high-level Q output		$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}$	See Figure 6	2.5	$\mu \mathrm{s}$
			$\mathrm{V}_{\mathrm{CC} 1}=15 \mathrm{~V}$		0.75	

RECOMMENDED OPERATING CONDITIONS

Figure 1

MAXIMUM CLOCK FREQUENCY
VS SUPPLY VOLTAGE $\mathrm{V}_{\mathrm{CC}} 1$

Figure 2

Figure 3. Input Timing Waveforms

Figure 5. Q Output Switching Times

Figure 4. Data Output Switching Times

Figure 6. Switching Time Voltage Waveforms
\dagger For testing purposes, all input pulses have maximum rise and fall times of 30 ns .

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

