
SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995

 Low r_{DS(on)}0.4 Ω Typ High-Voltage Outputs60 V 	D PACKAGE (TOP VIEW)				
 Pulsed Current 5 A Per Channel Fast Commutation Speed 	DRAIN1 [1 8] GATE1 GATE2 [2 7] SOURCE/GND DRAIN2 [3 6] SOURCE/GND DRAIN3 [4 5] GATE3				
description					

The TPIC2302 is a monolithic power DMOS array that consists of three electrically isolated N-channel enhancement-mode DMOS transistors configured with a common source and open drains. The TPIC2302 is offered in a standard 8-pin small-outline surface-mount (D) package.

The TPIC2302 is characterized for operation over the case temperature range of -40°C to 125°C.

schematic

absolute maximum ratings over operating case temperature range (unless otherwise noted)[†]

Drain-to-source voltage, V _{DS}	60 V
Gate-to-source voltage, V _{GS}	
Continuous drain current, each output, all outputs on, T _C = 25°C	1 A
Pulsed drain current, each output, $T_C = 25^{\circ}C$ (see Note 1 and Figure 6)	5 A
Single-pulse avalanche energy, T _C = 25°C, E _{AS} (see Figures 4 and 16)	9 mJ
Continuous total power dissipation at (or below) T _C = 25°C	0.95 W
Operating virtual junction temperature range, T	-40°C to 150°C
Operating case temperature range, T _C	-40°C to 125°C
Storage temperature range, T _{stg}	-65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Pulse duration = 10 ms, duty cycle = 2%

SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
V(BR)DSX	Drain-to-source breakdown voltage	I _D = 250 μA,	$V_{GS} = 0$	60			V	
VGS(th)	Gate-to-source threshold voltage	I _D = 1 mA,	V _{DS} = V _{GS}	1.5	1.85	2.2	V	
V _{DS(on)}	Drain-to-source on-state voltage	$I_D = 1 A$, See Notes 2 and 3	V _{GS} = 10 V,		0.4	0.475	V	
VF(SD)	Forward on-state voltage, source-to-drain	$I_{S} = 1 A,$ $V_{GS} = 0 (Z1, Z2, Z3),$ See Notes 2 and 3			0.9	1.1	V	
1	Zero-gate-voltage drain current	V _{DS} = 48 V,	T _C = 25°C		0.05	1	A	
IDSS		$V_{GS} = 0$	T _C = 125°C		0.5	10	μA	
IGSSF	Forward gate current, drain short circuited to source	V _{GS} = 16 V,	$V_{DS} = 0$		10	100	nA	
IGSSR	Reverse gate current, drain short circuited to source	V _{SG} = 16 V,	$V_{DS} = 0$		10	100	nA	
l.	Leakage current, drain-to-GND	V _R = 48 V	$T_C = 25^{\circ}C$		0.05	1	μA	
likg			T _C = 125°C		0.5	10		
^r DS(on)	Static drain-to-source on-state resistance	V_{GS} = 10 V, I_{D} = 1 A, See Notes 2 and 3 and Figures 6 and 7	$T_{C} = 25^{\circ}C$		0.4	0.475	Ω	
			T _C = 125°C		0.63	0.7	52	
9fs	Forward transconductance	V _{DS} = 10 V, See Notes 2 and 3	I _D = 0.5 A,	0.85	1.02		S	
C _{iss}	Short-circuit input capacitance, common source		V _{GS} = 0,		115	145		
C _{OSS}	Short-circuit output capacitance, common source	V _{DS} = 25 V,			60	75	pF	
C _{rss}	Short-circuit reverse-transfer capacitance, common source	f = 1 MHz	f = 1 MHz			30	40	Ч

NOTES: 2. Technique should limit $T_J - T_C$ to 10°C maximum, pulse duration \leq 5 ms. 3. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

source-to-drain diode characteristics, T_C = 25°C

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
trr(SD)	Reverse-recovery time	$I_{S} = 0.5 \text{ A}, V_{GS} = 0,$	V _{DS} = 48 V,		65		ns
Q _{RR}	Total diode charge	di/dt = 100 A/µs,	See Figure 1		0.03		μC

SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995

resistive-load switching characteristics, $T_C = 25^{\circ}C$

	PARAMETER	1	EST CONDITIO	NS	MIN	TYP	MAX	UNIT											
^t d(on)	Turn-on delay time					21	42												
^t d(off)	Turn-off delay time	V _{DD} = 25 V,	R _L = 50 Ω,	t _{r1} = 10 ns,		20	40												
t _{r2}	Rise time	t _{f1} = 10 ns,				5	10	ns											
t _{f2}	Fall time					13	26												
Qg	Total gate charge					3.1	3.8												
Q _{gs(th)}	Threshold gate-to-source charge	V _{DS} = 48 V, See Figure 3												I _D = 0.5 A,	V _{GS} = 10 V,		0.4	0.5	nC
Q _{gd}	Gate-to-drain charge		iguio o			1.3	1.6												
LD	Internal drain inductance					5													
LS	Internal source inductance					5		nH											
Rg	Internal gate resistance					0.25		Ω											

thermal resistance

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	All outputs with equal power,	See Note 4		130		°C/W
$R_{\theta JP}$	Junction-to-pin thermal resistance				44		C/ W

NOTE 4: Package mounted on an FR4 printed-circuit board with no heat sink

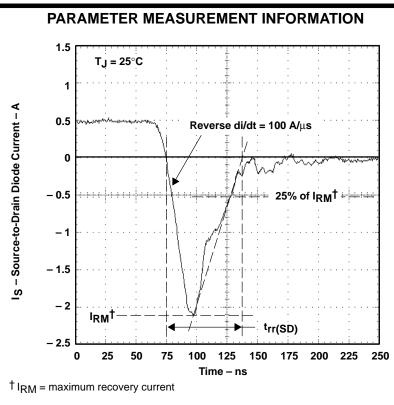
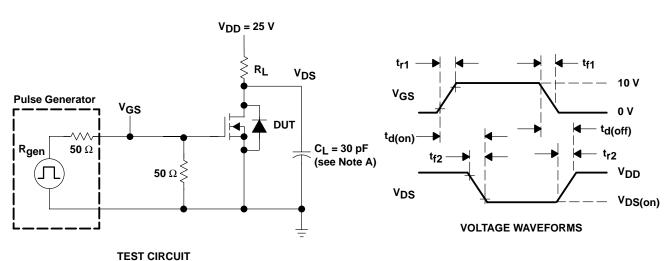



Figure 1. Reverse-Recovery-Current Waveform of Source-to-Drain Diode

SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995

PARAMETER MEASUREMENT INFORMATION

NOTE A: CL includes probe and jig capacitance.

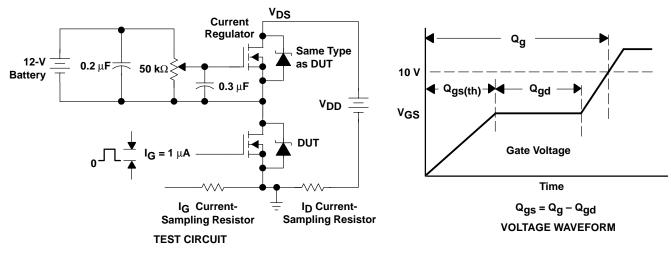
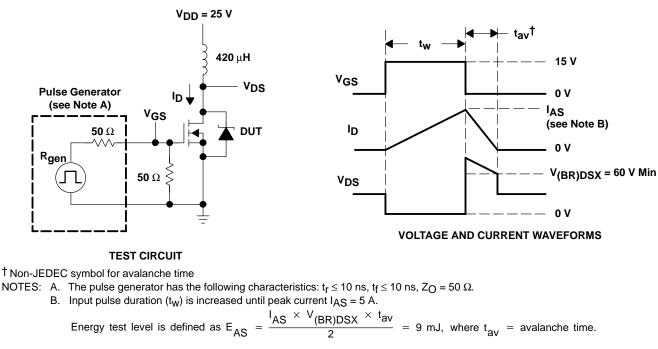
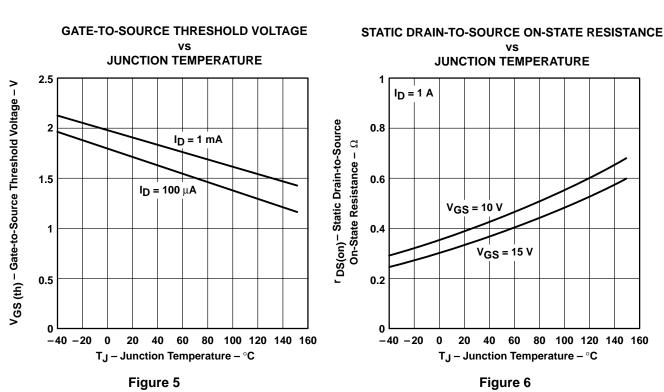
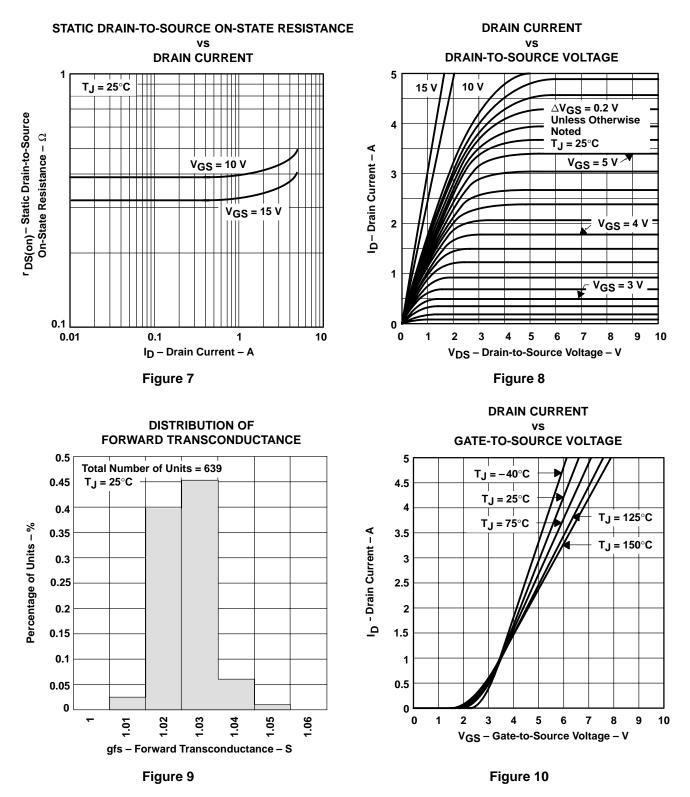



Figure 3. Gate-Charge Test Circuit and Voltage Waveform



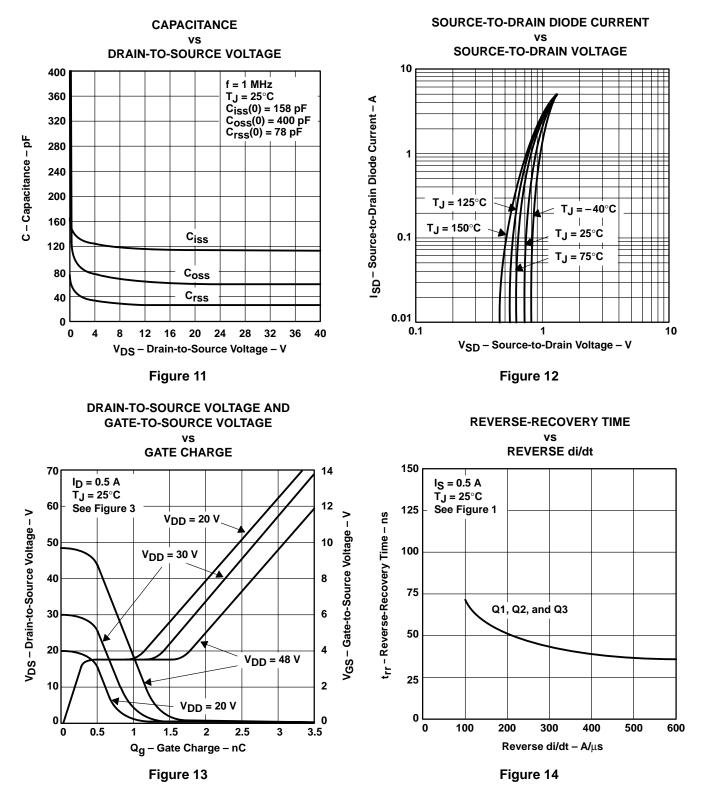
SLIS028B – APRIL 1994 – REVISED SEPTEMBER 1995

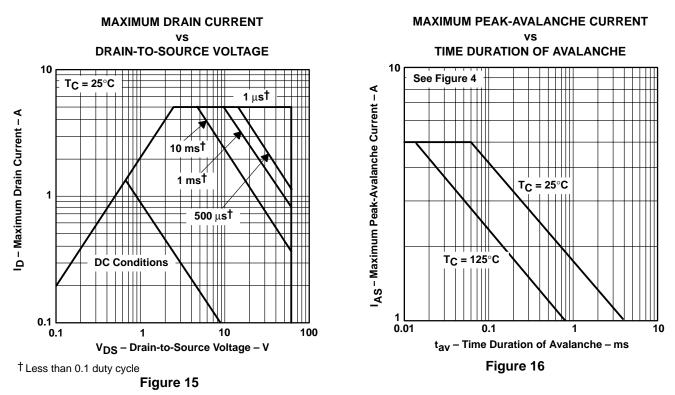
PARAMETER MEASUREMENT INFORMATION



TYPICAL CHARACTERISTICS

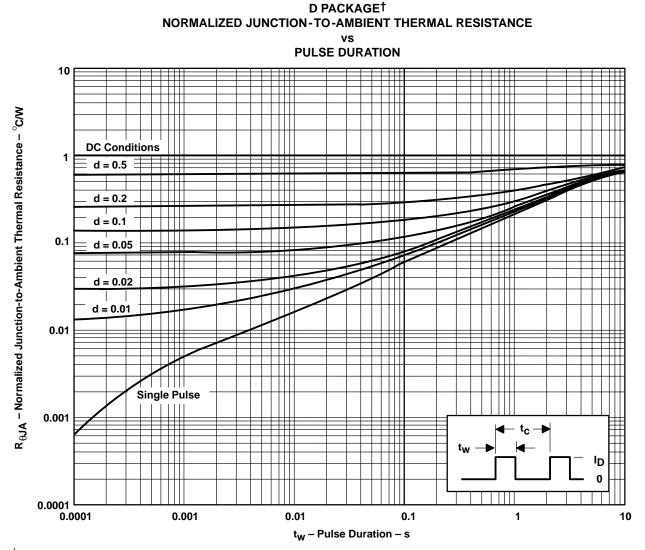
SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995


TYPICAL CHARACTERISTICS


SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995

TYPICAL CHARACTERISTICS

SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995



THERMAL INFORMATION

SLIS028B - APRIL 1994 - REVISED SEPTEMBER 1995

THERMAL INFORMATION

[†] Device mounted on FR4 printed-circuit board with no heat sink

NOTE A: $Z_{\theta A}(t) = r(t) R_{\theta JA}$ $t_W = pulse duration$

 $t_{C} = cycle time$

 $d = duty cycle = t_W/t_C$

Figure 17

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated