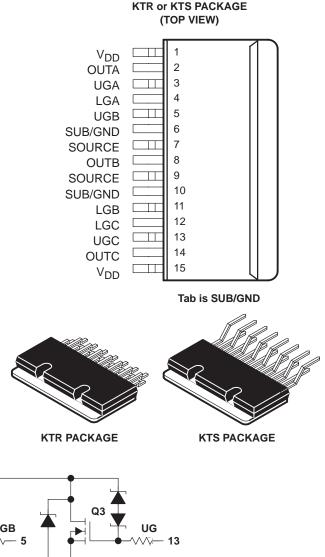
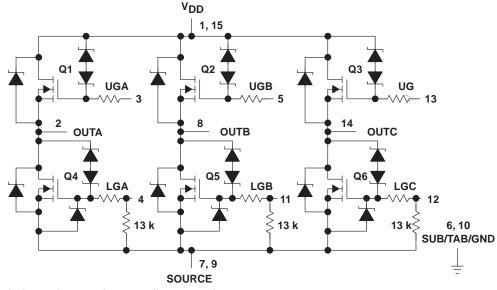
SLIS071 – DECEMBER 1997

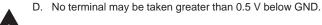

- Configured for 3-Phase Brushless Motor Drive
- Low r_{DS(on)} . . . 0.25 Ω Typ
- High Voltage Output . . . 30 V
- Pulsed Current . . . 12 A Per Channel
- Input Transient and ESD Protection
- Compatible With High-Side and Low-Side Current Sense Resistors

description


The TPIC1310 is a monolithic gate-protected power DMOS array that consists of six electrically isolated N-channel enhancement-mode DMOS transistors configured as a three-half H-bridge.

When suitably heat sunk, the TPIC1310 can drive motors requiring 2.5 A of phase current. The DMOS transistors are immune to second breakdown effects and current crowding, problems often associated with bipolar transistors.

The TPIC1310 is offered in 15-pin through-hole (KTS) and surface-mount (KTR) PowerFLEXTM packages and is characterized for operation over the case temperature range of -40° C to 125° C.



schematic

NOTES: A. Terminals 1 and 15 must be externally connected.

- B. Terminals 6 and 10 must be connected to GND.
- C. Terminals 7 and 9 must be connected to the sense resistor or GND.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerFLEX is a trademark of Texas Instruments Inc.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated

SLIS071 – DECEMBER 1997

absolute maximum ratings over operating case temperature range (unless otherwise noted)[†]

Drain-to-source voltage, V _{DS} Output-to-GND voltage	
SOURCE-to-SUB/GND voltage	
Gate-to-source voltage range, V _{GS}	
Continuous output current, each output, all outputs on, $T_C = 25^{\circ}C$	
Continuous source-to-drain diode current, $T_C = 25^{\circ}C$	
Pulsed output current, each output, I_{max} , $T_{C} = 25^{\circ}C$ (see Note 1 and Figure 14)	
Continuous V_{DD} and SOURCE current, $T_C = 25^{\circ}C$	3 A
Pulsed V _{DD} and SOURCE current, $T_C = 25^{\circ}C$ (see Note 1)	12 A
Continuous total dissipation, $T_C = 25^{\circ}C$ (see Note 2 and Figure 14)	
Operating virtual junction temperature range, T _J	40°C to 150°C
Operating case temperature range, T _C	40°C to 125°C
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Pulse duration = 10 μ s, duty cycle $\leq 2\%$

2. Package is mounted in intimate contact with an infinite heat sink.

SLIS071 – DECEMBER 1997

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
V(BR)DSX	Drain-to-source breakdown voltage		I _D = 250 μA,	$V_{GS} = 0$	30			V
VGS(th)	Gate-to-source threshold voltage		I _D = 1 mA, See Figure 4	V _{DS} = V _{GS} ,	0.9	1.2	1.7	V
V _(BR) GS	Gate-to-source breakdown voltage	Low-side	I _{GS} = 250 μA		20			V
	Source-to-gate breakdown voltage	Low-side	I _{SG} = 250 μA		0.3			v
V(BR)SG		High-side	I _{SG} = 250 μA		20			v
VDS(on)	on) Drain-to-source on-state voltage		I _D = 3 A, See Notes 3 and 4	V _{GS} = 14 V,		0.66	0.9	V
VF(SD)	D) Forward on-state voltage, source-to-drain		I _S = 3 A, See Notes 3 and 4 ar	V _{GS} = 0, nd Figure 11		1.1	1.4	V
	Desire surrent anto shorted to source		V _{DS} = 28 V,	T _C = 25°C		0.05	1	
DSS	Drain current-gate shorted to source		$V_{GS} = 0$	T _C = 125°C		0.5	10	μΑ
IGSSF	Forward-gate current, drain short	Low-side	$V_{SG} = 16 \text{ V}, \qquad V_{DS} = 0,$ Internal 13 k Ω from gate to source			2	4	mA
		High-side	V _{SG} = 16 V,	$V_{DS} = 0$		20	200	nA
IGSSR Reverse-gate current, drain short circuited to source		V _{SG} = 0.3 V,	$V_{DS} = 0$		20	200	nA	
I	Leakage current, drain-to-GND gate shorted to		V _{DGND} = 28 V	$T_C = 25^{\circ}C$		0.05	1	μA
likg	source		VDGND - 20 V	$T_{C} = 125^{\circ}C$		0.5	10	μ,
rDS(on) Static dra				$T_{C} = 25^{\circ}C$		0.27	0.37	
	Static drain-to-source on-state resistance	See Notes 3 and 4 and Figures 5 and 6	T _C = 125°C		0.45	0.55	Ω	
			$V_{GS} = 14 \text{ V},$ ID = 3 A, See Notes 3 and 4 and Figures 5 and 6	T _C = 25°C		0.22	0.32	22
				T _C = 125°C		0.32	0.47	
9fs	Forward transconductance		V _{DS} = 10 V, See Notes 3 and 4 ar	I _D = 3 A, nd Figure 8	0.5	0.85		S
C _{iss}	Short-circuit input capacitance, low-side					110		
C _{oss}	Short-circuit output capacitance, low-side	;	V _{DS} = 25 V, f = 1 MHz,	V _{GS} = 0, See Figure 10		120		pF
C _{rss}	Short-circuit reverse transfer capacitance, low-side					60		

electrical characteristics, $T_C = 25^{\circ}C$ (unless otherwise noted)

[†]Engineering estimate

NOTES: 3. Technique should limit T_J-T_C to 10°C maximum.

4. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

source-to-drain and GND-to-drain diode characteristics, T_C = 25°C

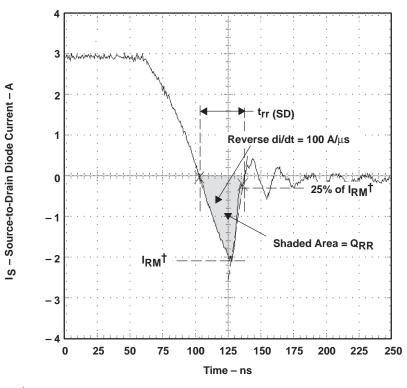
	PARAMETER	_	TEST CONDITIONS			TYP	MAX	UNIT	
t _{rr}	Reverse-recovery time	Llich oide	$I_S = 3 A,$	$V_{DS} = 28 V,$		30		ns	
Q _{RR}	Total diode charge	High-side	V _{GS} = 0, See Figures 1 and 13	di/dt = 100 A/µs,		30		nC	
t _{rr}	Reverse-recovery time	Low-side	$I_S = 3 A,$ $V_{GS} = 0,$		V _{DS} = 28 V, di/dt = 100 A/µs,		70		ns
Q _{RR}	Total diode charge		See Figure 13,	SUB/GND connected to SOURCE		350		nC	

TPIC1310 3-HALF H-BRIDGE GATE PROTECTED POWER DMOS ARRAY SLIS071 – DECEMBER 1997

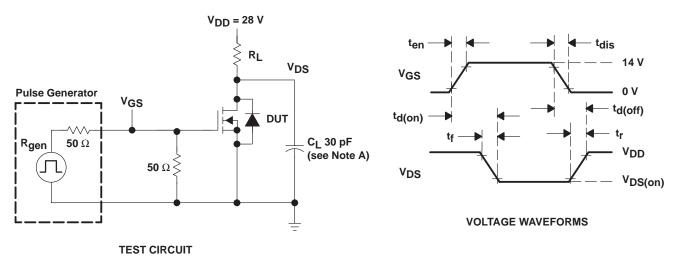
resistive-load switching characteristics, $T_C = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
^t d(on)	Turn-on delay time			70			
^t d(off)	Turn-off delay time	$V_{DD} = 28 V$, $R_L = 9.3 \Omega$,		200		20	
t _r	Rise time	t _{en} = 10 ns, t _{dis} = 10 ns, See Figure 2		140		ns	
t _f	Fall time			55			
Qg	Total gate charge	V_{DS} = 12 V, I_{D} = 3 A, V_{GS} = 10 V, See Figure 3 and Figure 12		1.6	2		
Q _{gs(th)}	Threshold gate-to-source charge			0.5	0.62	nC	
Q _{gd}	Gate-to-drain charge			0.25	0.31		
LD	Internal drain inductance			5		nH	
LS	Internal source inductance			5			
Rg	Internal gate resistance			500		Ω	

thermal resistance

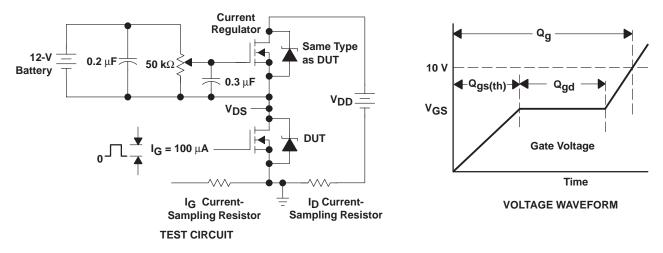

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-case thermal resistance, one output on	See Note 5		7.5	9	°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance, two outputs on	See Notes 5 and 6		4.5	5.5	°C/W

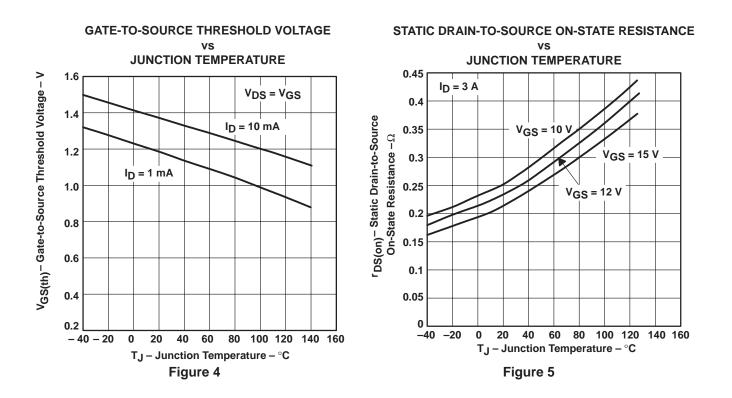
NOTES: 5. Package mounted in intimate contact with infinite heatsink. 6. Two outputs with equal power


TPIC1310 3-HALF H-BRIDGE GATE PROTECTED POWER DMOS ARRAY SLIS071 – DECEMBER 1997

PARAMETER MEASUREMENT INFORMATION

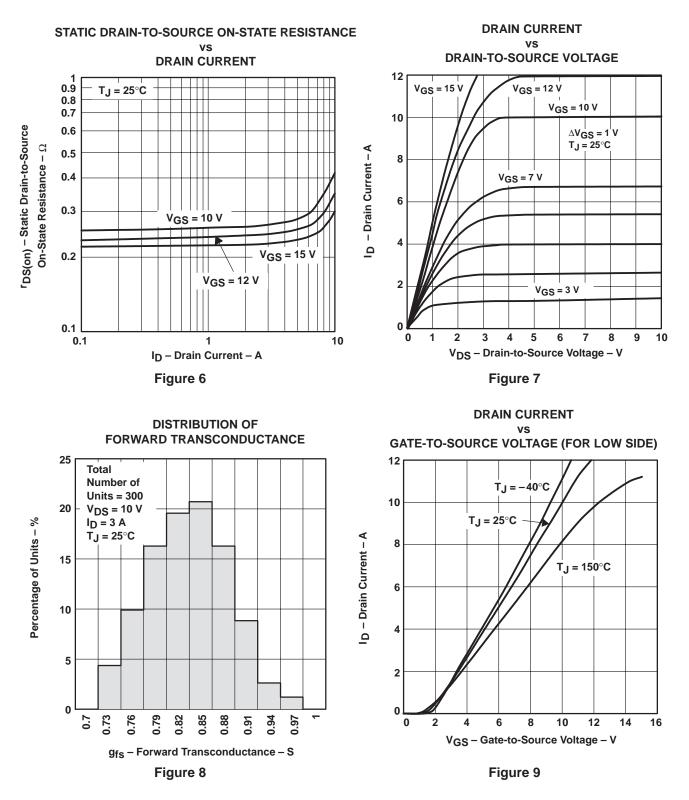
[†]I_{RM} = maximum recovery current


NOTE A: CL includes probe and jig capacitance.

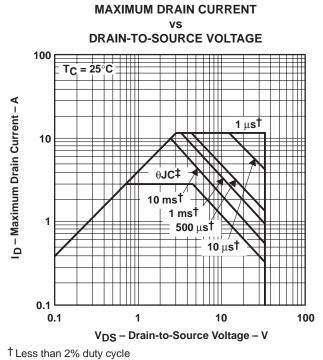


SLIS071 - DECEMBER 1997

TYPICAL CHARACTERISTICS

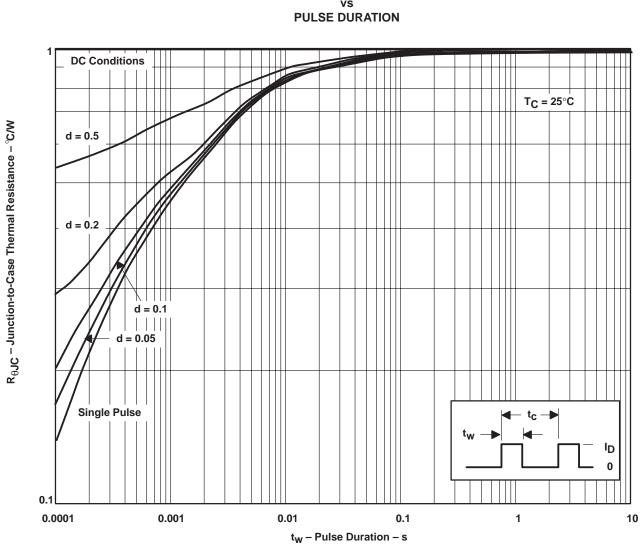


TYPICAL CHARACTERISTICS


TPIC1310 3-HALF H-BRIDGE GATE PROTECTED POWER DMOS ARRAY SLIS071 – DECEMBER 1997

TYPICAL CHARACTERISTICS

THERMAL INFORMATION



[‡] Device mounted in intimate contact with infinite heatsink.

Figure 14

THERMAL INFORMATION

JUNCTION-TO-CASE THERMAL RESISTANCE vs

[†] Package mounted in intimate contact with infinite heat sink.

NOTE E: $Z_{\theta JC}(t) = r(t) R_{\theta JC}$ t_W = pulse duration

 $t_{C} = cycle time$

 $d = duty cycle = t_W/t_C$

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated