

Design of the GPLynx
HAL

APPLICATION REPORT: SLLA026

Richard Solomon
 Mixed Signal Processing

Digital Signal Processing Solutions
 June 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current and
complete.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

TRADEMARKS

TI and LynxSoft are trademarks of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract 7
Product Support ... 8

World Wide Web ... 8
Email... 8

Initialization 9
Bus Reset .. 11
Outgoing Asynchronous Packet.. 13
Incoming Asynchronous Packet.. 15
Porting .. . 17

Reading and Writing GPLynx Registers .. 17
Handling Interrupts.. 17

Figures
Figure 1. Initialization ... 10
Figure 2. Bus Reset ... 12
Figure 3. Outgoing Packet ... 14
Figure 4. Incoming Async Packet... 16

Design of the GPLynx HAL 7

Design of the GPLynx HAL

Abstract

This document describes a high level design of the GPLynx
Hardware Abstraction Layer (HAL) software that runs on the
Texas Instruments (TI™) TMS320C52-based GPLynx evaluation
module (EVM). This design shows the control and data paths.
Note that the purpose of the HAL is to isolate the LynxSoft™
Application Program Interface (API) or user supplied Driver
software from the hardware.

HAL operation depends on the driving API calling and using the
HAL properly. This design includes a description of what is
expected of the driving API.

The design has been divided into Initialization, Bus Reset,
Outgoing Asynchronous Packet, and Incoming Asynchronous
Packet. A Porting section is added to emphasize the parts of the
HAL that may change as the HAL is moved to another
system/processor environment.

SLLA026

8 Design of the GPLynx HAL

Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SLLA026

Design of the GPLynx HAL 9

Initialization

After power on or hardware reset, the driving API must initialize
the HAL by calling the LynxHALInit function. The API should keep
the system’s 1394 interrupts turned off until the return from
LynxHALInit.

1) The API/Driver must first create a
LYNXHAL_BUS_RESET_INFO structure. The HAL will place
bus-reset information in this structure after a bus reset. This
structure also contains pointers to callback functions that will
be called by the HAL to notify the API of certain bus events
and errors.

2) The API calls the LynxHALInit function. This function initializes
the HAL software.

3) LynxHALInit does the initial setup of the GPLynx hardware.

4) The last thing LynxHALInit does is call
LynxHALEnableInterrupts to unmask the GPLynx interrupts.

5) After the HAL and the API have been initialized, the API
should call LynxHALCauseBusReset.

6) LynxHALCauseBusReset causes the GPLynx Link Layer
Controller to generate a 1394 Bus Reset.

SLLA026

10 Design of the GPLynx HAL

Figure 1. Initialization

*

LynxHALInit

LynxHALEnableInterrupts

Lynx HAL

Lynx API or Driver
2

3

Bus Reset
Information

4

Initialization function

1

LynxHALCauseBusReset

5

6

Link Layer Controller Hardware

SLLA026

Design of the GPLynx HAL 11

Bus Reset

The 1394 bus will be reset whenever a node is removed or added
to the bus, or by software at anytime. The 1394 Hardware will
detect that a 1394 bus reset has started and will cause an
interrupt.

1) The hardware interrupt causes LynxHALNodeISR to execute.

2) LynxHALNodeISR detects that the PhRst interrupt is set and
sets a flag indicating a bus reset has started.

3) LynxHALCheckInterruptFlags is caused to run and checks all
of the interrupt flags.

4) LynxHALBusResetCallback is called by
LynxHALCheckInterruptFlags.

5) LynxHALBusResetCallback polls hardware registers to
determine that Self ID packets have been collected.

6) LynxHALBusResetCallback updates the Bus Reset
Information structure.

7) LynxHALBusResetCallback calls the API Bus Reset Callback
function.

8) API Bus Reset Callback function creates a place to store Self
ID packets and calls LynxHALSaveSelfIDPackets.

9) LynxHALSaveSelfIDPackets removes packets from GRF and
puts them into the API provided Self ID storage.

10) The API’s Bus Reset Callback function will notify the API’s
Handle Bus Reset functions that the bus reset is complete and
Self ID and Bus Reset information is available.

SLLA026

12 Design of the GPLynx HAL

Figure 2. Bus Reset

8a

Link Layer Controller Hardware

Lynx HAL

Lynx API or Driver

7

Bus Reset
Information

Bus Reset Callback

10

Flags

Interrupt

Self ID
Storage

LynxHalSaveSelfIDPackets

Functions to Handle Bus Reset functions

1

6

LynxHALNodeISR

LynxHALBusResetCallback

8b

9b

LynxHALCheckInterruptFlags

5
3

2

9a

4

SLLA026

Design of the GPLynx HAL 13

Outgoing Asynchronous Packet

The API/Driver creates the asynchronous packet and then gives it
to the HAL to be sent.

1) The API creates the async packet header and data. The
hardware will insert the CRC for the header and the data.

2) API calls LynxHALSendAsyncPacket with pointers to the
async packet’s header and data.

3) LynxHALSendAsyncPacket moves the packet from the API’s
memory into the GPLynx Transmit FIFO.

4) The packet being sent causes an interrupt. This interrupt
causes LynxHALNodeISR to be executed.

5) LynxHALNodeISR sets a flag indicating a packet was sent.

6) When LynxHALCheckInterruptFlags runs, it sees the flag set.

7) LynxHALCheckInterruptFlags calls
LynxHALIoCompleteCallback.

8) LynxHALIoCompleteCallback reads GPLynx registers to verify
that the transmit FIFO is empty.

9) If the FIFO is empty, LynxHALIoCompleteCallback calls the
API’s I/O Complete Callback function.

10) The API’s I/O Complete Callback function will notify the API’s
packet sending functions that the packet was sent.

SLLA026

14 Design of the GPLynx HAL

Figure 3. Outgoing Packet

Outgoing
Async Packet

Link Layer Controller Hardware

Lynx HAL

Lynx API or Driver

10

Flags

Interrupt

LynxHALSendAsyncPacket

Send Async Packet functions

4

9

LynxHALNodeISR

I/O Complete Callback

1

3a

LynxHALCheckInterruptFlags

8

6

5

3b

7

2

LynxHALIoCompleteCallback

SLLA026

Design of the GPLynx HAL 15

Incoming Asynchronous Packet

The HAL notifies the API/Driver of a packet received into the
GPLynx General Receive FIFO (GRF). The API/Driver must
process the packet and take the correct action.

1) An interrupt is caused by a packet coming into the GRF. The
interrupt causes LynxHALNodeISR to run.

2) LynxHALNodeISR sets a flag to indicate a packet is in the
GRF.

3) When LynxHALCheckInterruptFlags runs, it sees the packet in
the GRF flag set.

4) LynxHALCheckInterruptFlags calls
LynxHALIndicationCallback.

5) LynxHALIndicationCallback calls the API’s Bus Event
Indication Callback function.

6) The API’s Bus Event Callback function creates storage space
for the packet and then calls LynxHALSaveAsyncPackets.

7) LynxHALSaveAsyncPackets will move the packet from the
GRF to the API’s storage space.

8) The API’s Callback function will then call the API Incoming
Async Packet functions to process the incoming packet.

9) If the GRF is not empty, API’s Bus Event Indication Callback
function will call CauseBusEventIndication to set the flag that
will cause the process to start again.

SLLA026

16 Design of the GPLynx HAL

Figure 4. Incoming Async Packet

9b

6a

Link Layer Controller Hardware

Lynx HAL

Lynx API or Driver

Bus Event Indication Callback

7b

Flags

Interrupt

Async
Packet
Storage

CauseBusEventIndication

Incoming Async Packets functions

1

9a

LynxHALNodeISR

LynxHALIndicationCallback

6b

LynxHALCheckInterruptFlags

4

2
7a

5

LynxHalSaveAsyncPackets

8

3

SLLA026

Design of the GPLynx HAL 17

Porting

The two major areas to consider when porting the HAL to a
different system is how to read or write GPLynx Link Layer
Controller Registers and how interrupts are handled.

Reading and Writing GPLynx Registers

All of the register functions and macros are contained in the files
LynxReg.c and LynxReg.h.

Some porting considerations:

� The start physical address of GPLynx Configuration Registers
contained in the defined StartAddressGPLynxCFR will be
unique to each system.

� GPLynx reads a 32-bit register in either 8 or 16 bit increments.
Keep in mind that an interrupt can occur at any time while
trying to read the complete 32 bits of a register. Because of
that, it is recommended to turn off interrupts at the start of a
32-bit read.

� GPLynx is a Big Endian device, meaning the Most Significant
Byte is at offset 0. When a register is read from offset xx0, the
MSB part will come out first followed by the LSB.

Handling Interrupts

All interrupt-related functions are contained in the files LynxISR.c
and LynxISR.h.

Some porting considerations:

� How does the system connect the LynxHALNodeISR to the
hardware interrupt vector? In the case of the GPLynx EVM
using a TMS320C52, the address of the ISR was placed into
the interrupt vector map.

� It may be possible to miss an interrupt that occurs while in the
ISR. Note that LynxHALNodeISR checks the Interrupt Register
for set bits before it exits and does not exit until there are no
bits set.

The interrupt functions will be greatly affected if an operating
system is used. The operating system will have a preferred way to
handle interrupts, such as setting semaphores, queuing function
calls, or starting tasks.

