ΤE

в1 [

B2 3

B3

B4 🛛 5

B5 **1** 6

B6 🛛 7

B7 [

B8 [

GND

GPIB

I/O Ports

2

4

8

9

10

SLLS006A - D2611, OCTOBER 1985 - REVISED FEBRUARY 1993

20 VCC

19 D1

18 D2

17 D3

16 D4

15 D5

14 D6

13 D7

12 D8

11 **P**E

Terminal

I/O Ports

DW OR N PACKAGE

(TOP VIEW)

- 8-Channel Bidirectional Transceivers
- Power-Up/Power-Down Protection (Glitch Free)
- High-Speed Low-Power Schottky Circuitry
- Low Power Dissipation . . . 66 mW Max Per Channel
- High-impedance PNP Inputs
- Receiver Hysteresis . . . 650 mV Typ
- Open-Collector Driver Output Option
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)

description

The SN75163B octal general-purpose interface bus transceiver is a monolithic, high-speed, lowpower Schottky device. It is designed for two-way

NOT RECOMMENDED FOR NEW DESIGN

data communications over single-ended transmission lines. The transceiver features driver outputs that can be operated in either the open-collector or 3-state modes. If talk enable (TE) is high, these outputs have the characteristics of open-collector outputs when pullup enable (PE) is low and of 3-state outputs when PE is high. Taking TE low places the outputs in the high-impedance state. The driver outputs are designed to handle loads of up to 48 mA of sink current. Each receiver features pnp transistor inputs for high input impedance and 400 mV of hysteresis for increased noise immunity.

Output glitches during power up and power down are eliminated by an internal circuit that disables both the bus and receiver outputs. The outputs do not load the bus when $V_{CC} = 0$.

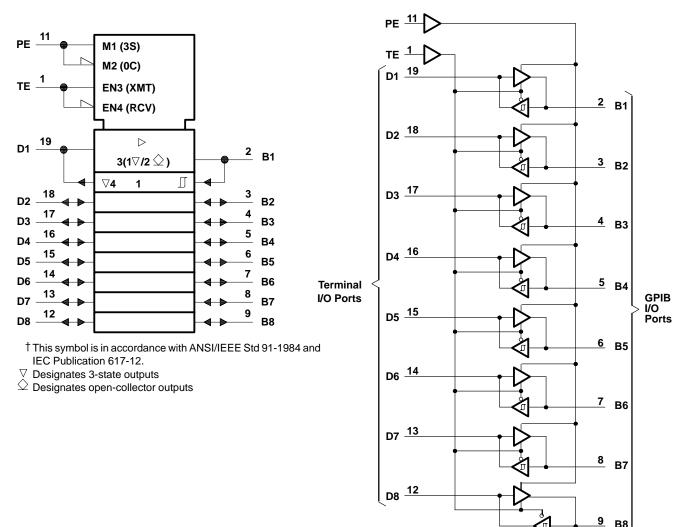
Function Tables

The SN75163B is characterized for operation from 0°C to 70°C.

EACH DRIVER							
	OUTPUT						
D	В						
н	Н	Н	Н				
L	Н	Н	L				
н	Х	L	Z				
L	Н	L	L				
Х	L	Х	Z				

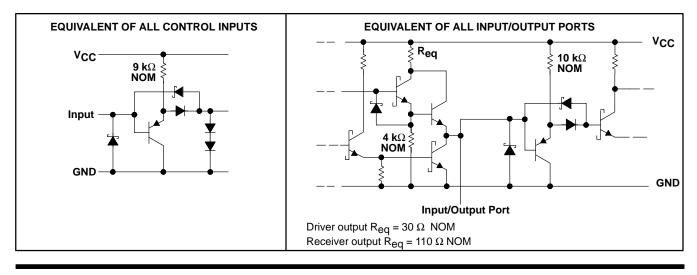
	INPUTS		OUTPUT
В	TE	PE	D
L	L	Х	L
Н	L	Х	Н
Х	н	Х	Z

H = high level, L = low level, X = irrelevant, Z = high-impedance state


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

2 - 1

SLLS006A - D2611, OCTOBER 1985 - REVISED FEBRUARY 1993


logic symbol[†]

logic diagram (positive logic)

B8

schematics of inputs and outputs

SLLS006A - D2611, OCTOBER 1985 - REVISED FEBRUARY 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Low-level driver output current	
Continuous total power dissipation (see Note 2)	See Dissipation Rating Table
Operating free-air temperature range	0°C to 70°C
Storage temperature range	– 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds	260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$\begin{array}{ll} PACKAGE & T_{A} \leq 25^\circ C \\ POWER RATING \end{array}$		T _A = 70°C POWER RATING		
DW	1125 mW	9.0 mW/°C	720 mW		
N	1150 mW	9.2 mW/°C	736 mW		

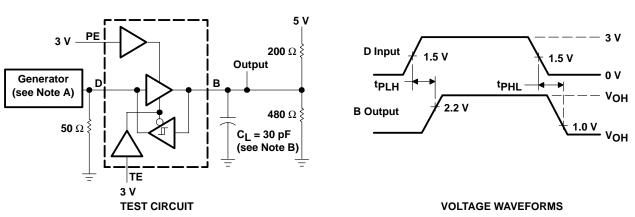
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	4.75 5 5.25		V
High-level input voltage, VIH		2		V	
Low-level input voltage, VIL				0.8	V
	Bus ports with pullups active			-10	mA
High-level output current, IOH	Terminal ports			-800	μA
High-level output current, I _{OL}	Bus ports	48		48	mA
	Terminal ports			16	ma
Operating free-air temperature, TA		0		70	°C

SLLS006A - D2611, OCTOBER 1985 - REVISED FEBRUARY 1993

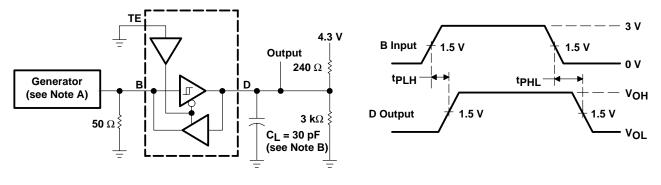
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TES	T CONDITIONS	MIN	TYP†	MAX	UNIT	
VIK	Input clamp voltage		lj = -18 mA			-0.8	-1.5	V	
V _{hys}	Hysteresis (V _{T+} – V _T _)	Bus	See Figure 8		0.4	0.65		V	
VOH	High-level output voltage	Terminal	I _{OH} = -800 μA,	TE at 0.8 V	2.7	3.5		v	
		Bus	I _{OH} = -10 mA,	PE and TE at 2 V	2.5	3.3			
	Terminal	I _{OL} = 16 mA,	TE at 0.8 V		0.3	0.5	N		
VOL	Low-level output voltage	Bus	I _{OL} = 48 mA,	PE and TE at 2 V		0.4	0.5	V	
ЮН	High-level output current (open-collector mode)	Bus	$V_{O} = 5.5 V$, D and TE at 2 V	PE at 0.8 V,			100	μA	
1	Off-state output current	Bus	PE at 2 V, TE at 0.8 V	V _O = 2.7 V			20	μA	
IOZ (3-state mode)	(3-state mode)			V _O = 0.4 V			-20		
lj –	Input current at maximum input voltage	Terminal	V _I = 5.5 V			0.2	100	μΑ	
IIН	High-level input current	Terminal	V ₁ = 2.7 V			0.1	20	μA	
۱ _{IL}	Low-level input current	Terminal	V _I = 0.5 V			-10	-100	μA	
laa	Chart airquit autout aurrant	Terminal			-15	-35	-75	mA	
los	Short-circuit output current	Bus			-25	-50	-125	ША	
1	Supply ourrent			Receivers low and enabled			80	mA	
۱L	Supply current		No load	Drivers low and enabled			100	ША	
C _{I/O(bus)}	Bus-port capacitance		V _{CC} = 5 V to 0,	$V_{I/O} = 0$ to 2 V, $f = 1$ MHz		30		pF	


[†] All typical values are at V_{CC} = 5, $T_A = 25^{\circ}C$.

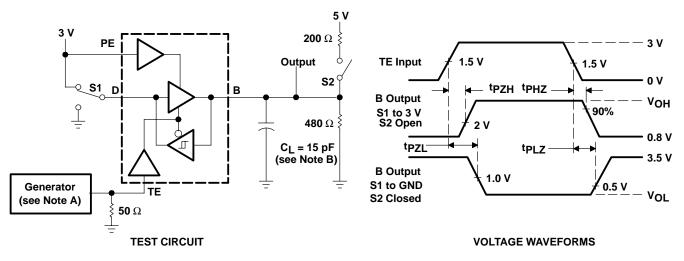
switching characteristics, $V_{CC} = 5 V$, $C_L = 15 pF$, $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
^t PLH	Propagation delay time, low-to-high-level output	Terminal	Bus	C _L = 30 pF,		14	20	-
^t PHL	Propagation delay time, high-to-low-level output	Terminal	DUS	See Figure 1		14	20	ns
^t PLH	Propagation delay time, low-to-high-level output	Bus	Terminal	C _L = 30 pF, See Figure 2		10	20	
^t PHL	Propagation delay time, high-to-low-level output	Bus				15	22	ns
^t PZH	Output enable time to high level	TE	Bus			25	35	ns
^t PHZ	Output disable time from high level			See Figure 3		13	22	
t _{PZL}	Output enable time to low level					22	35	
^t PLZ	Output disable time from low level					22	32	
^t PZH	Output enable time to high level		Terminal	See Figure 4		20	30	
^t PHZ	Output disable time from high level					12	20	
^t PZL	Output enable time to low level					23	32	ns
t _{PLZ}	Output disable time from low level	1				19	30	
t _{en}	Output pullup enable time		Tamainal			15	22	
^t dis	Output pullup disable time	PE	Terminal	See Figure 5		13	20	ns



SLLS006A - D2611, OCTOBER 1985 - REVISED FEBRUARY 1993

PARAMETER MEASUREMENT INFORMATION



TEST CIRCUIT

VOLTAGE WAVEFORMS

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z_O = 50 Ω .
 - B. CL includes probe and jig capacitance.

SLLS006A - D2611, OCTOBER 1985 - REVISED FEBRUARY 1993

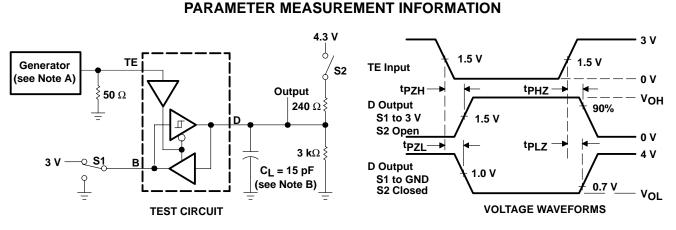
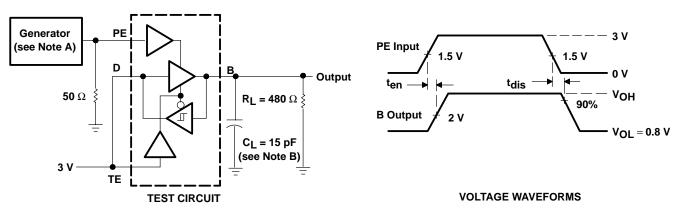
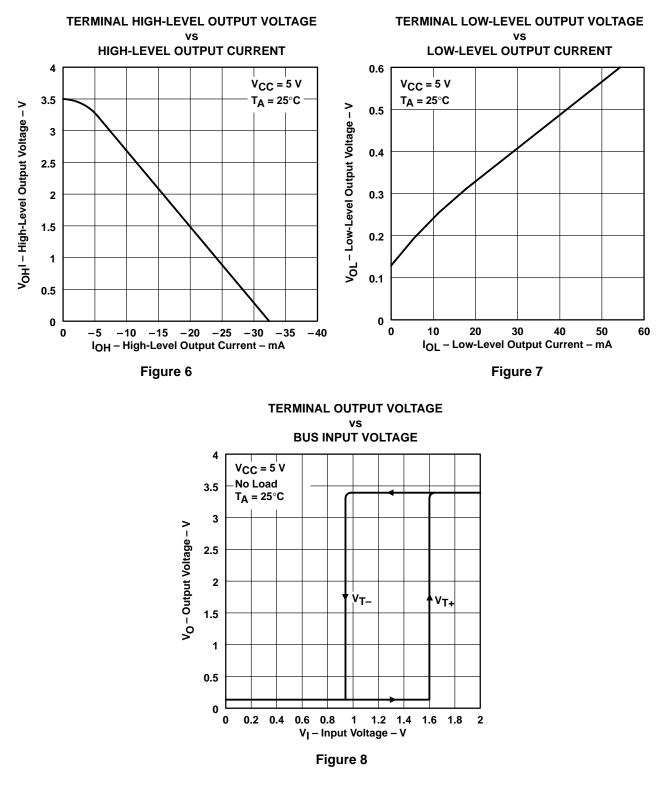
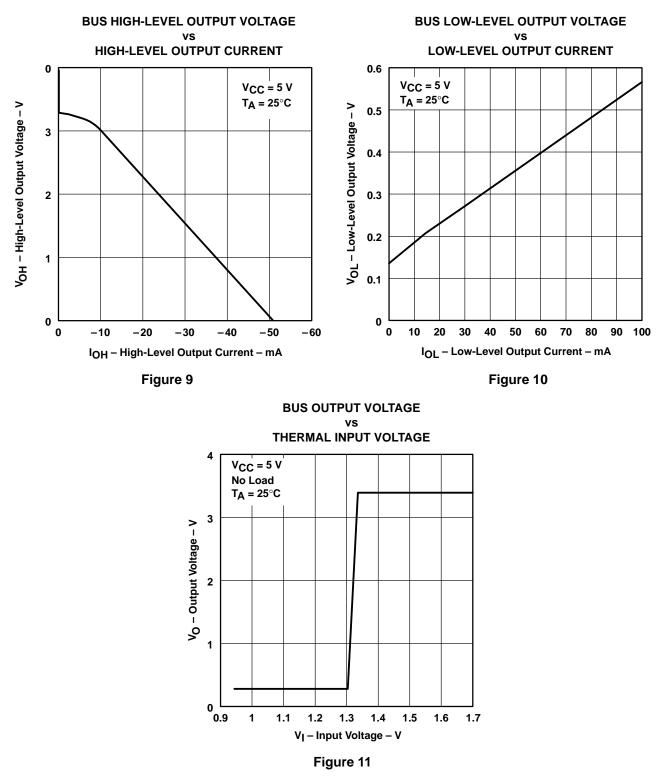



Figure 4. TE-to-Terminal Test Circuit and Voltage Waveforms



- NOTES: C. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 8 ns, t_f
 - D. C_{L} includes probe and jig capacitance.


SLLS006A - D2611, OCTOBER 1985 - REVISED FEBRUARY 1993

TYPICAL CHARACTERISTICS

SLLS006A - D2611, OCTOBER 1985 - REVISED FEBRUARY 1993

TYPICAL CHARACTERISTICS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated