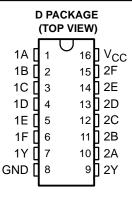
SLLS031B - D1332, SEPTEMBER 1987 - REVISED FEBRUARY 1993

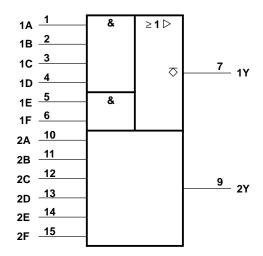

- Meets IBM 360 Input Interface **Specifications**
- Permits Digital Data Transmission Over Coaxial Cable, Strip Line, or Twisted Pair
- TTL Compatible With 5-V Supply
- 3.11-V Output at I_{OH} = 59.3 mA .
- **Uncommitted Emitter-Follower Output** Structure for Party-Line Operation
- IMPACT[™] Low-Power Schottky Technology •
- Improved Replacement for the SN75123 and Signetics 8T13
- **Glitchless Power-Up/Power-Down** • Protection
- **Short-Circuit Protection** •
- **AND-OR Logic Configuration**
- High Speed . . . Maximum Propagation • Delay Time of 14 ns at C_L = 15 pF

description

The SN75ALS123 dual line driver is specifically designed to meet the input interface specifications for the IBM System 360. It is compatible with standard TTL logic and supply voltage levels. The low-impedance, emitter-follower outputs drive terminated lines such as coaxial cable, strip line, or twisted pair. The uncommitted output allows wired-OR logic to be performed in party-line applications. Output short-circuit protection is provided by an internal clamping network that turns on when the output voltage drops below approximately 1.5 V. All inputs are in conventional TTL configuration. Gating can be used during power-up and power-down sequences to ensure that no noise is introduced on the line.

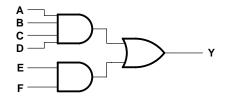
The SN75ALS123 employs the IMPACT™ process to achieve fast switching speeds, low power dissipation, and reduced input current requirements.

The SN75ALS123 is characterized for operation from 0°C to 70°C.


NOT RECOMMENDED FOR NEW DESIGN

FUNCTION TABLE

INPUTS					OUTPUT		
Α	В	С	D	Е	F	Y	
Н	Н	Н	Н	Х	Х	н	
Х	Х	Х	Х	н	н	н	
	All othe	L					
II bables I best best X made and							


H = high level L = low levelX = irrelevant

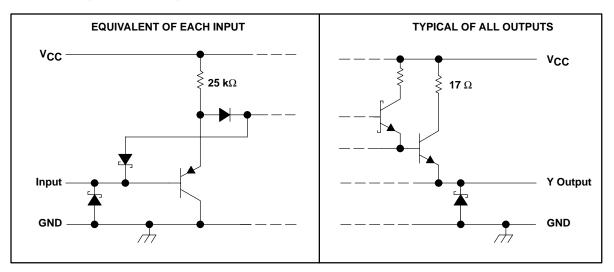
logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram, each driver (positive logic)

IMPACT is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 1993, Texas Instruments Incorporated

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN75ALS123 DUAL LINE DRIVER

SLLS031B - D1332, SEPTEMBER 1987 - REVISED FEBRUARY 1993

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage	
Output voltage	6 V
Continuous total dissipation at (or below) 25°C free air temperature (see Note 2)	
Operating free-air temperature range	. 0°C to 70°C
Storage temperature range –	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25°C free-air temperature, derate to 608 mW at 70°C at the rate of 7.6 mW/°C.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	V
High-level output current, I _{OH}			-100	mA
Operating free-air temperature range, T _A	0		70	°C

SLLS031B - D1332, SEPTEMBER 1987 - REVISED FEBRUARY 1993

	PARAMETER	TEST CONDITIONS				түр†	MAX	UNIT
VIK	Input clamp voltage	V _{CC} = 5 V,	l _l = –12 mA				- 1.5	V
V _(BR) I	Input breakdown voltage	V _{CC} = 5 V,	lı = 10 mA		5.5			V
V _{OH}		V _{CC} = 5 V, See Note 3	V _{IH} = 2 V,	I _{OH} = - 59.3 mA,	2.9			v
	High-level output voltage	$V_{CC} = 5 V,$ $T_A = 25^{\circ}C,$	V _{IH} = 2 V, See Note 3	I _{OH} = - 59.3 mA,	3.11	3.3		V
VOL	Low-level output voltage	V _{IL} = 0.8 V,	I _{OL} = -240 μA,	See Note 3			0.15	V
IOH	High-level output current	$V_{CC} = 5 V,$ $T_A = 25^{\circ}C,$	V _{IH} = 4.5 V, See Note 3	V _{OH} = 2 V,	- 100	- 200	- 250	mA
IO(off)	Off-state output current	V _{CC} = 0,	V _O = 3 V				40	μA
ΊΗ	High-level input current	V _I = 4.5 V					40	μA
۱ _{IL}	Low-level input current	V _I = 0.4 V					- 250	μA
los	Short-circuit output current	V _{CC} = 5 V				- 5	- 30	mA
ІССН	Supply current, outputs high	V _{CC} = 5.25 V,	All inputs at 2 V,	No load		9	14	mA
ICCL	Supply current, outputs low	V _{CC} = 5.25 V,	All inputs at 0.8 V,	No load		13	30	mA

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE 3: The output voltage and current limits are ensured for any appropriate combination of high and low inputs specified by the function table for the desired output.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	Rι = 50 Ω.	C _I = 15 pF,	See Figure 1		4	14	ns
^t PHL	Propagation delay time, high-to-low-level output	$K_{L} = 50 \Omega_{2},$	CL = 15 pF,	See Figure 1		5	14	ns
^t PLH	Propagation delay time, low-to-high-level output	Rι = 50 Ω.	C _I = 100 pF,	See Figure 1		8	20	ns
^t PHL	Propagation delay time, high-to-low-level output	$K_{L} = 50.22$,	$C_{L} = 100 \text{pr},$	See Figure 1		8	20	ns

[†] All typical values are at $V_{CC} = 5$ V and $T_A = 25^{\circ}C$.

PARAMETER MEASUREMENT INFORMATION

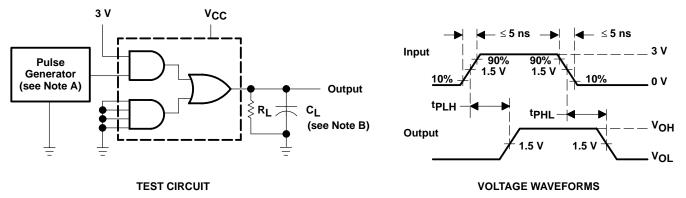


Figure 1. Test Circuit and Voltage Waveforms

NOTES: A. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, $t_W = 200$ ns, duty cycle = 50%. B. C₁ includes probe and jig capacitance.

SN75ALS123 DUAL LINE DRIVER

SLLS031B - D1332, SEPTEMBER 1987 - REVISED FEBRUARY 1993

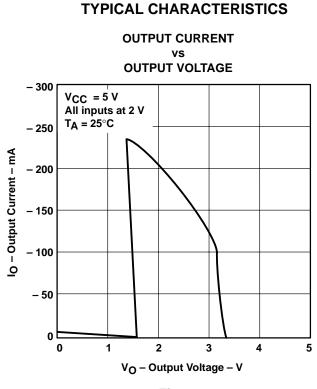


Figure 2

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated