R

RE

DE 🛛 3

D[] 4

2

D OR P PACKAGE

(TOP VIEW)

SLLS040E - AUGUST 1987 - REVISED MAY 1995

□v_{cc}

GND

8

5

7ПВ

6 🛛 A

- Meet or Exceed the Requirements of ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendations V.11 and X.27
- Designed and Tested to Operate at Data Rates up to 35 MBaud
- SN65ALS176 Operating Temperature -40°C to 85°C
- Three Skew Limits Available: [^]ALS176...10 ns [^]ALS176A...7.5 ns [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5 ns
 [^]ALS176B...5
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Low Supply Current Requirements 30 mA Max
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Thermal Shutdown Protection
- Driver Positive- and Negative-Current Limiting
- Receiver Input Hysteresis
- Glitch-Free Power-Up and Power-Down Protection
- Receiver Open-Circuit Fail-Safe Design

description

The SN65ALS176 and SN75ALS176 series differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendations V.11 and X.27.

The SN65ALS176 and SN75ALS176 series combine a 3-state, differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC} = 0$. This port features wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

The SN65ALS176 is characterized for operation from -40° C to 85° C, and the SN75ALS176 series is characterized for operation from 0° C to 70° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated

1

SLLS040E - AUGUST 1987 - REVISED MAY 1995

AVAILABLE OPTIONS						
	AGE					
TA ^t sk(LIM) [†]	^t sk(LIM) [†]	SMALL OUTLINE (D) [‡]	PLASTIC DIP (P)			
0°C to 70°C	10 7.5 5	SN75ALS176D SN75ALS176AD SN75ALS176BD	SN75ALS176P SN75ALS176AP SN75ALS176BP			
-40°C to 85°C	15	SN65ALS176D	SN65ALS176P			

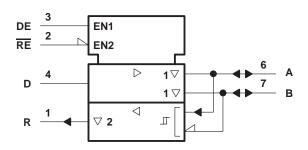
⁺ t_{sk(LIM)} This is the maximum range that the driver or receiver delay times vary over temperature, V_{CC}, and process (device to device).

[‡] The D package is available taped and reeled. Add the suffix R to the device type (e.g., SN75ALS176DR).

Function Tables

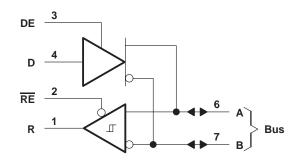
DRIVER

INPUT	ENABLE	OUT	PUTS
D	DE H	Α	В
Н	Н	Н	L
L	Н	L	Н
Х	L	Z	Z

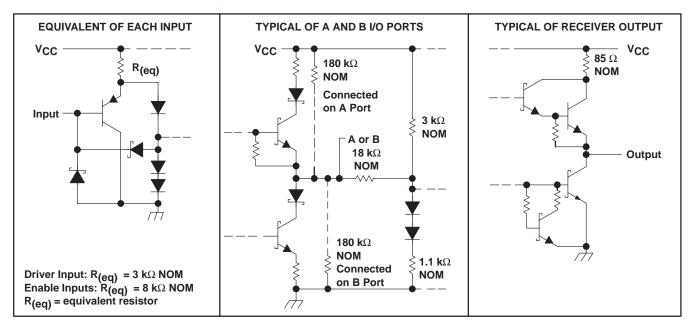

H = high level, L = low level, X = irrelevant, Z = high impedance

REC	EIV	'ER	

DIFFERENTIAL INPUTS A – B	ENABLE RE	OUTPUT R
$V_{ID} \ge 0.2 V$	L	Н
$-0.2 V < V_{ID} < 0.2 V$	L	?
$V_{ID} \leq -0.2 V$	L	L
Х	н	Z
Inputs open	L	н


H = high level, L = low level, X = irrelevant, Z = high impedance

logic symbol§


S This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SLLS040E - AUGUST 1987 - REVISED MAY 1995

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	
Voltage range at any bus terminal	–7 V to 12 V
Enable input voltage, V ₁	5.5 V
Continuous total power dissipation	. See Dissipation Rating Table
Operating free-air temperature range, T _A : SN65ALS176	40°C to 85°C
SN75ALS176 series	0°C to 70°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

	DISSIPATION RATING TABLE						
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING			
D	725 mW	5.8 mW/°C	464 mW	377 mW			
Р	1000 mW	8.0 mW/°C	640 mW	520 mW			

SLLS040E – AUGUST 1987 – REVISED MAY 1995

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
nput voltage at any bus terminal (separately or common mode), V _I or V_{IC}				12	V
input voltage at any bus terminal (separately of c				-7	v
High-level input voltage, VIH	D, DE, and RE	2			V
Low-level input voltage, VIL	D, DE, and RE			0.8	V
Differential input voltage, V_{ID} (see Note 2)				±12	V
ow-level input voltage, VIL	Driver			-60	mA
High-level output current, IOH	Receiver			-400	μA
	Driver			60	mA
	Receiver			8	mA
Operating free air temperature Te	SN65ALS176	-40		85	°C
Operating free-air temperature, T _A	SN75ALS176	0		70	C

NOTE 2: Differential input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

SLLS040E - AUGUST 1987 - REVISED MAY 1995

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONI	DITIONS [†]	MIN	TYP‡	MAX	UNIT
VIK	Input clamp voltage	lj = - 18 mA				-1.5	V
VO	Output voltage	I ^O = 0		0		6	V
VOD1	Differential output voltage	I _O = 0		1.5		6	V
VOD2	Differential output voltage	R _L = 100 Ω,	See Figure 1	1/2 V _{OD1} or 2§			V
		R _L = 54 Ω,	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	$V_{test} = -7 V$ to 12 V,	See Figure 2	1.5		5	V
Δ V _{OD}	Change in magnitude of differential output voltage¶					±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \ \Omega \text{ or } 100 \ \Omega,$	See Figure 1			3 -1	V
A VOC	Change in magnitude of common-mode output voltage [¶]					±0.2	V
la	Output current	Outputs disabled,	V _O = 12 V			1	mA
ю	Output current	See Note 3	$V_{O} = -7 V$			-0.8	ША
IIН	High-level input current	V _I = 2.4 V				20	μΑ
۱ _{IL}	Low-level input current	V _I = 0.4 V				-400	μΑ
		$V_{O} = -4 V$	SN65ALS176			250	
		$V_{O} = -6 V$	SN75ALS176			-250	
los	Short-circuit output current	$V_{O} = 0$				-150	mA
		V _O = V _{CC}	250				
		V _O = 8 V				230	
	Supply current	No load	Outputs enabled		23	30	mA
ICC	Supply current	No loau	Outputs disabled		19	±0.2 3 -1 ±0.2 1 -0.8 20 -400 -250 -150 250	ШA

[†] The power-off measurement in ANSI Standard EIA/TIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs. [‡] All typical values are at $V_{CC} = 5$ V and $T_A = 25^{\circ}$ C.

§ The minimum V_{OD2} with a 100- Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater.

 $\int \Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from one logic state to the other.

NOTE 3: This applies for both power on and power off; refer to ANSI standard RS-485 for exact conditions. The EIA/TIA-422-B limit does not apply for a combined driver and receiver terminal.

SLLS040E - AUGUST 1987 - REVISED MAY 1995

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

SN65ALS176

PARAMETER		TEST CONDITIONS			TYP†	MAX	UNIT
td(OD)	Differential output delay time					15	ns
t _{sk(p)}	Pulse skew‡	$R_L = 54 \Omega$, $C_L = 50 pF$,	See Figure 3		0	2	ns
tt(OD)	Differential output transition time				8		ns
^t PZH	Output enable time to high level	$R_L = 110 \Omega$, $C_L = 50 pF$,	See Figure 4			80	ns
t _{PZL}	Output enable time to low level	$R_L = 110 \Omega$, $C_L = 50 pF$,	See Figure 5			30	ns
^t PHZ	Output disable time from high level	$R_L = 110 \Omega$, $C_L = 50 pF$,	See Figure 4			50	ns
^t PLZ	Output disable time from low level	$R_L = 110 \Omega$, $C_L = 50 pF$,	See Figure 5			30	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] Pulse skew is defined as the |tpLH - tpHL| of each channel.

SN75ALS176, SN75ALS176A, SN75ALS176B

	PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
		'ALS176			3	8	13	
td(OD)	Differential output delay time	'ALS176A	$R_L = 54 \Omega$, $C_L = 50$	pF, See Figure 3	4	7	11.5	ns
		'ALS176B			5	8	10	
t _{sk(p)}	Pulse skew [‡]		$R_L = 54 \Omega$, $C_L = 50$	pF, See Figure 3		0	2	ns
		'ALS176					10	
^t sk(lim)	Skew limit§	'ALS176A	$R_L = 54 \Omega$, $C_L = 50$	pF, See Figure 3			7.5	ns
		'ALS176B					5	
tt(OD)	Differential output transition time		$R_L = 54 \Omega$, $C_L = 50$	pF, See Figure 3		8		ns
^t PZH	Output enable time to high level		$R_L = 110 \Omega$, $C_L = 50$	pF, See Figure 4		23	50	ns
t _{PZL}	Output enable time to low level		$R_L = 110 \Omega$, $C_L = 50$	pF, See Figure 5		14	20	ns
^t PHZ	tPHZ Output disable time from high level		$R_L = 110 \Omega$, $C_L = 50$	pF, See Figure 4		20	35	ns
^t PLZ	Output disable time from low leve		$R_L = 110 \Omega, C_L = 50$	pF, See Figure 5		8	17	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] Pulse skew is defined as the $|t_{PLH} - t_{PHL}|$ of each channel. § Skew limit is the maximum difference in propagation delay times between any two channels of one device.

SYMBOL EQUIVALENTS

DATA-SHEET PARAMETER	EIA/TIA-422-B	RS-485
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
V _{OD1}	Vo	Vo
V _{OD2}	V _t (R _L = 100 Ω)	V _t (R _L = 54 Ω)
V _{OD3}	None	V _t (test termination measurement 2)
Δ V _{OD}	V _t – V _t	V _t – V _t
Voc	V _{OS}	V _{os}
Δ V _{OC}	V _{os} – V _{os}	V _{os} – V _{os}
IOS	I _{sa} , I _{sb}	None
IO	I _{xa} , I _{xb}	l _{ia} , l _{ib}

SLLS040E - AUGUST 1987 - REVISED MAY 1995

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CO	TEST CONDITIONS		TYP [†]	MAX	UNIT
VIT+	Positive-going input threshold voltage	V _O = 2.7 V,	$I_{O} = -0.4 \text{ mA}$			0.2	V
VIT-	Negative-going input threshold voltage	V _O = 0.5 V,	IO = 8 mA	-0.2‡			V
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT} _)				60		mV
VIK	Enable-input clamp voltage	lı = –18 mA				-1.5	V
V _{ОН}	High-level output voltage	V _{ID} = 200 mV, See Figure 6	$I_{OH} = -400 \ \mu A$,	2.7			V
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$ See Figure 6	I _{OL} = 8 mA,			0.45	V
IOZ	High-impedance-state output current	$V_{O} = 0.4 \text{ V to } 2.4 \text{ V}$				±20	μΑ
ν.		Other input = 0 V,	V _I = 12 V			1	mA
VI	Line input current	See Note 4	$V_{I} = -7 V$			-0.8	mA
Ι _{ΙΗ}	High-level-enable input current	V _{IH} = 2.7 V	-			20	μA
Ι _{ΙL}	Low-level-enable input current	V _{IL} = 0.4 V				-100	μA
rj	Input resistance			12	20		kΩ
los	Short-circuit output current	V _{ID} = 200 mV,	VO = 0	-15		-85	mA
100	Supply ourront	No load	Outputs enabled		23	30	<u>س</u> ۸
ICC	Supply current	INU IUAU	Outputs disabled		19	26	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

NOTE 4: This applies for both power on and power off. Refer to ANSI Standard RS-485 for exact conditions.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

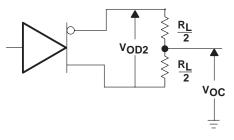
SN65ALS176

PARAMETER			TEST CONDITIONS		MIN T	YPt	MAX	UNIT
^t pd	Propagation time		$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$	C _I = 15 pF,			25	ns
t _{sk(p)}	Pulse skew§		$V_{ID} = -1.5 V$ to 1.5 V, $C_{L} = 15 pF$, See Figure 7			0	2	ns
^t sk(lim)	Skew limit [¶]	'ALS176	R _L = 54 Ω, See Figure 3	C _L = 50 pF,			10	
		'ALS176A					7.5	ns
		'ALS176B					5	
^t PZH	Output enable time to high level					11	18	ns
t _{PZL}	Output enable time to low level		Ci – 15 pE	Soo Eiguro 9		11	18	ns
^t PHZ	Output disable time from high level		C _L = 15 pF,	See Figure 8			50	ns
^t PLZ	Output disable time from low level						30	ns

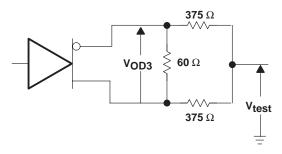
[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

§ Pulse skew is defined as the |tPLH - tPHL| of each channel.

 \P Skew limit is the maximum difference in propagation delay times between any two channels of one device.

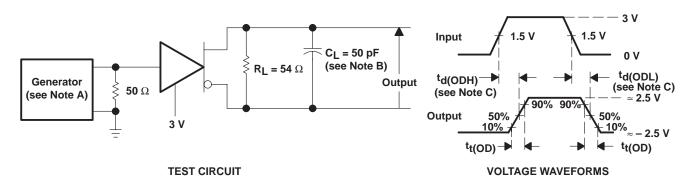

SLLS040E - AUGUST 1987 - REVISED MAY 1995

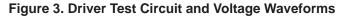
SN75ALS176, SN75ALS176A, SN75ALS176B

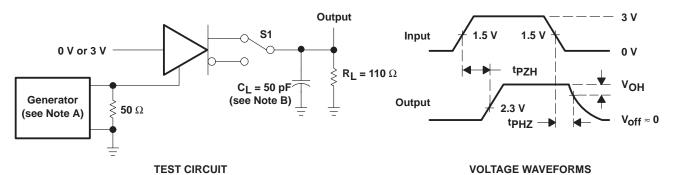

PARAMETER			TEST CONDITIONS		MIN	TYP†	MAX	UNIT
^t pd	Propagation time	'ALS176	V _{ID} = −1.5 V to 1.5 V, See Figure 7	C _L = 15 pF,	9	14	19	
		'ALS176A			10.5	14	18	ns
		'ALS176B			11.5	13	16.5	
t _{sk(p)}	Pulse skew [‡]					0	2	ns
^t PZH	Output enable time to high level		С _L = 15 рF,	See Figure 8		7	14	ns
^t PZL	Output enable time to low level					20	35	ns
^t PHZ	Output disable time from high level					20	35	ns
t _{PLZ}	Output disable time from lov	w level				8	17	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] Pulse skew is defined as the |t_{PLH} - t_{PHL}| of each channel.

PARAMETER MEASUREMENT INFORMATION




SLLS040E - AUGUST 1987 - REVISED MAY 1995


PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z_O = 50 Ω .

- B. C_L includes probe and jig capacitance.
- C. $t_d(OD) = t_d(ODH)$ or $t_d(ODL)$

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z_Q = 50 Ω .

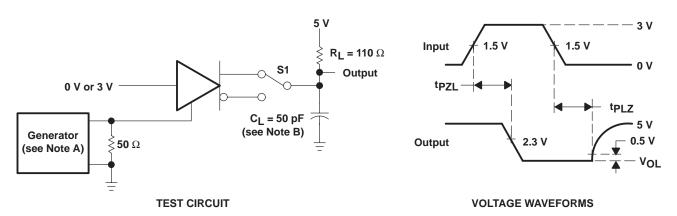

B. CL includes probe and jig capacitance.

Figure 4. Driver Test Circuit and Voltage Waeforms

SLLS040E – AUGUST 1987 – REVISED MAY 1995

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_O = 50 Ω .

B. CL includes probe and jig capacitance.

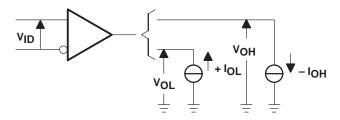
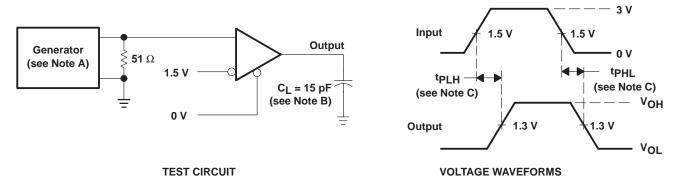
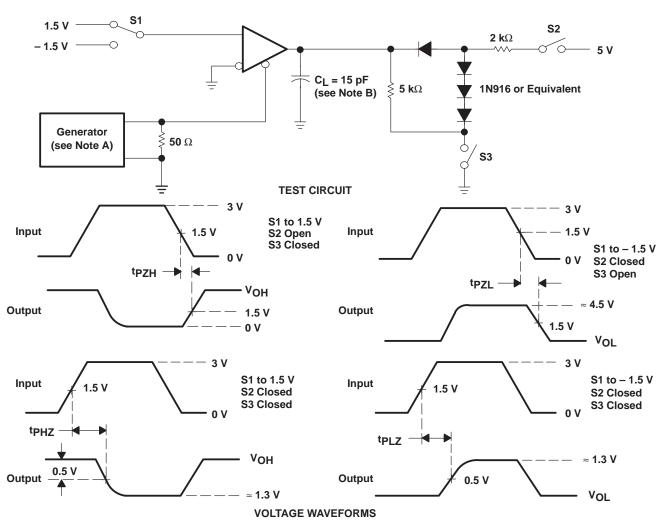



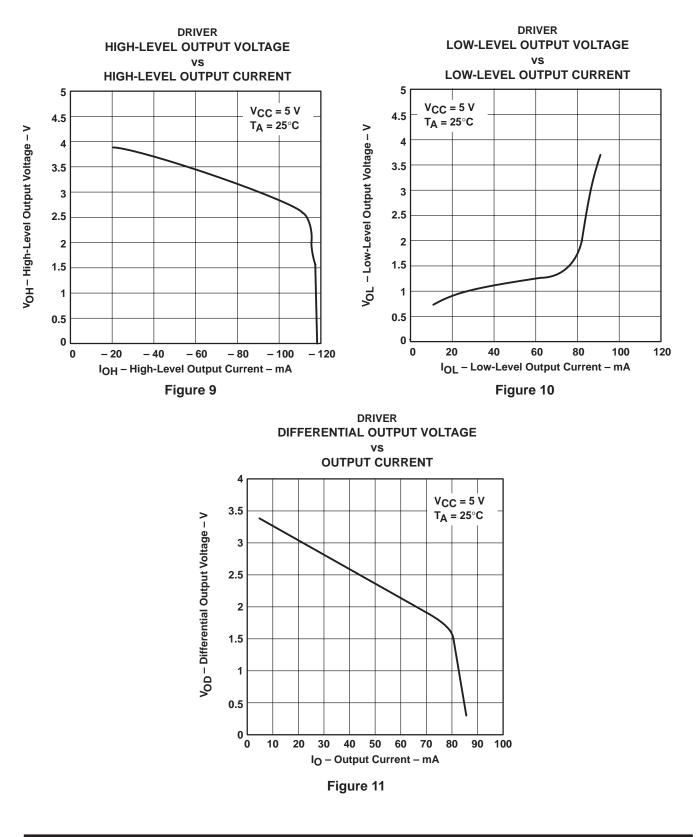
Figure 6. Receiver V_{OH} and V_{OL} Test Circuit



- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z_O = 50 Ω .
 - B. CL includes probe and jig capacitance.
 - C. tpd = tPLH or tPHL

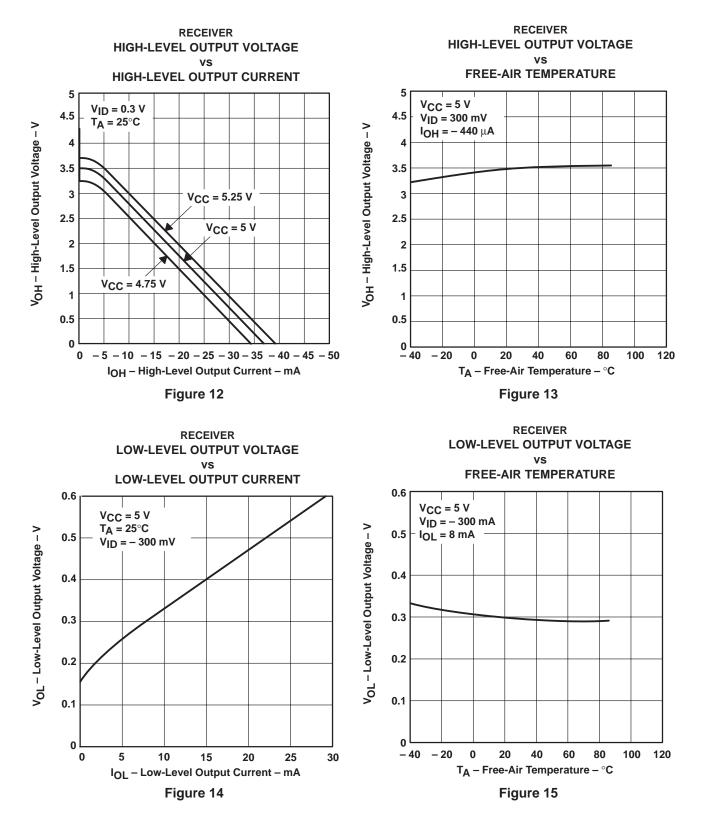
Figure 7. Receiver Test Circuit and Voltage Waveforms

SLLS040E - AUGUST 1987 - REVISED MAY 1995

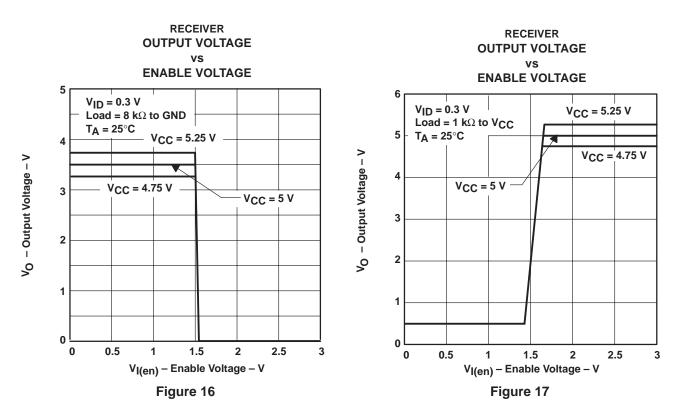

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 8 ns, t_f
 - B. CL includes probe and jig capacitance.

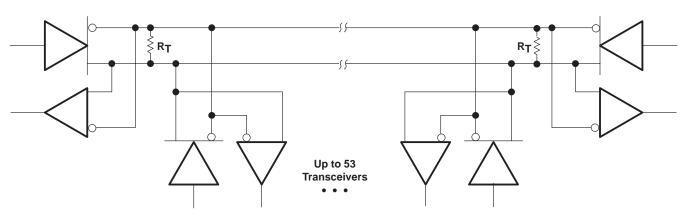
SLLS040E - AUGUST 1987 - REVISED MAY 1995



TYPICAL CHARACTERISTICS


SLLS040E - AUGUST 1987 - REVISED MAY 1995

TYPICAL CHARACTERISTICS



SLLS040E - AUGUST 1987 - REVISED MAY 1995

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

NOTE A: The line should terminate at both ends in its characteristic impedance (R_T = Z_O). Stub lengths off the main line should be kept as short as possible.

Figure 18. Typical Application Circuit

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated