SLLS044C - NOVEMBER 1988 - REVISED MAY 1995

- Bidirectional Transceiver
- Meets or Exceeds the Requirements of ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendation V.11
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Skew . . . 6 ns Max
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Low Supply-Current Requirements 30 mA Max
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capacity . . . ±60 mA
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Impedances . . . 12 k Ω Min
- Receiver Input Sensitivity . . . ±200 mV Max
- Receiver Input Hysteresis . . . 120 mV Typ
- Fail Safe . . . High Receiver Output With Inputs Open
- Operates From a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection
- Interchangeable With National DS3695 and DS3695A

description

The TL3695 differential bus transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus-transmission lines. It is designed for balanced transmission lines and meets ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendation V.11.

The TL3695 combines a 3-state differential line driver and a differential input line receiver both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected together to function as a directional control. The driver differential outputs and the receiver differential inputs are connected internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus when the driver is disabled or $V_{\rm CC} = 0$. This port features wide positive and negative common-mode voltage ranges making the device suitable for party line applications.

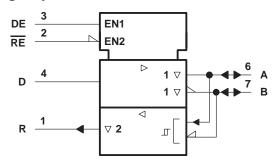
The TL3695 is characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Function Tables

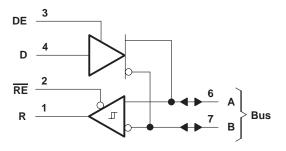
DRIVER

INPUT	JT ENABLE		PUTS
D	DE	Α	В
Н	Н	Н	L
L	Н	L	Н
Х	L	Z	Z

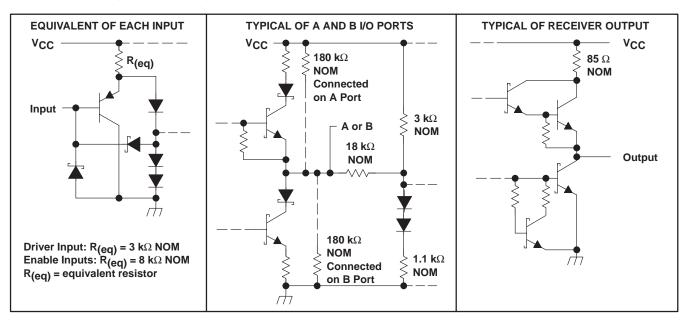

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

RECEIVER

DIFFERENTIAL INPUTS A – B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 V$	L	L
X	Н	Z
Inputs open	L	Н


H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

logic symbol†



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematic of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	
Voltage range at any bus terminal	–10 V to 15 V
Enable input voltage, V _I	5.5 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW

TL3695 DIFFERENTIAL BUS TRANSCEIVER

SLLS044C - NOVEMBER 1988 - REVISED MAY 1995

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Voltage at any bus terminal (separately or common mode), V _I or V _{IC}				12	V
				-7	V
High-level Input voltage, VIH	D, DE, and RE	2			V
Low-level Input voltage, V _{IL}	D, DE, and RE			0.8	V
Differential input voltage, VID (see Note 2)				±12	V
High-level output current, IOH	Driver			- 60	mA
High-level output current, IOH	Receiver			- 400	μΑ
Low-level output current, IOI	Driver			60	mA
Low-level output current, IOL	Receiver			8	IIIA
Operating free-air temperature, T _A		0		70	°C

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONI	DITIONST	MIN	TYP‡	MAX	UNIT
VIK	Input clamp voltage	I _I = -18 mA				-1.5	V
VO	Output voltage	IO = 0		0		6	V
V _{OD1}	Differential output voltage	IO = 0		1.5		5	V
IV _{OD2} I	Differential output voltage	R _L = 100 Ω,	See Figure 1	1/2 V _{OD1} or 2§			V
		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	$V_{test} = -7 \text{ V to } 12 \text{ V},$	See Figure 2	1.5		5	V
Δ V _{OD}	Change in magnitude of differential output voltage¶					±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega$,	See Figure 1			3	V
∆ Voc	Change in magnitude of common-mode output voltage¶					±0.2	V
	Output surrout	Output disabled,	V _O = 12 V			1	Λ
Ю	Output current	See Note 3	V _O = -7 V			-0.8	mA
lіН	High-level input current	V _I = 2.4 V				20	μΑ
I _{IL}	Low-level input current	V _I = 0.4 V				-200	μΑ
		V _O = -6 V				-250	
	Chart circuit output ourrent	V _O = 0				-150	mA
los	Short-circuit output current	VO = VCC				250	mA
		V _O = 8 V				250	
laa	Cupply current	No load	Outputs enabled		23	50	mA
Icc	Supply current	INO IOAU	Outputs disabled		19	35	IIIA

[†] The power-off measurement in ANSI Standard EIA/TIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs. ‡ All typical values are at V_{CC} = 5 V and T_A = 25°C.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	TES	T CONDITIONS		MIN	TYP‡	MAX	UNIT
t _d (OD)	Differential-output delay time					8	22	ns
	Skew ($ t_{d(ODH)} - t_{d(ODL)} $)	$C_{L1} = C_{L2} = 100 \text{ pF},$	$R_L = 60 \Omega$,	See Figure 3		1	8	ns
t _t (OD)	Differential output transition time					8	18	ns
^t PZH	Output enable time to high level	C _L = 100 pF,	$R_L = 500 \Omega$,	See Figure 4			50	ns
tPZL	Output enable time to low level	C _L = 100 pF,	$R_L = 500 \Omega$,	See Figure 5			50	ns
^t PHZ	Output disable time from high level	C _L = 15 pF,	$R_L = 500 \Omega$,	See Figure 4		8	30	ns
t _{PLZ}	Output disable time from low level	$C_L = 15 pF,$	$R_L = 500 \Omega$,	See Figure 5		8	30	ns

 $[\]ddagger$ All typical values are at V_{CC} = 5 V and T_A = 25°C.

[§] The minimum V_{OD2} with a 100- Ω load is either 1/2 V_{OD1} or 2 V whichever is greater.

^{¶ ∆ |}V_{OD}| and ∆ |V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

NOTE 3: This applies for both power on and off; refer to ANSI Standard RS-485 for exact conditions. The EIA/TIA-422-B limit does not apply for a combined driver and receiver terminal.

SLLS044C - NOVEMBER 1988 - REVISED MAY 1995

SYMBOL EQUIVALENTS

DATA-SHEET PARAMETER	EIA/TIA-422-B	RS-485
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
V _{OD1}	Vo	Vo
V _{OD2}	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
IVOD3		V _t (test termination measurement 2)
V _{test}		V _{tst}
Δ V _{OD}	$ \vee_t - \overline{\vee}_t $	$ \vee_t - \overline{\vee}_t $
Voc	V _{os}	V _{os}
Δ VOC	$ V_{OS} - \overline{V}_{OS} $	$ V_{OS} - \overline{V}_{OS} $
los	I _{sa} , I _{sb}	
IO	I _{xa} , I _{xb}	l _{ia} , l _{ib}

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CO	TEST CONDITIONS		TYP [†]	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	V _O = 2.7 V,	$I_{O} = -0.4 \text{ mA}$			0.2	V
V _{IT} _	Negative-going input threshold voltage	V _O = 0.5 V,	I _O = 8 mA	-0.2‡			V
V _{hys}	Hysteresis voltage (V _{IT+} -V _{IT-})	VOC = 0			70		mV
VIK	Enable-input clamp voltage	$I_{I} = -18 \text{ mA}$				-1.5	V
VOH	High-level output voltage	V_{ID} = 200 mV or input I_{OH} = -400 μ A,	uts open, See Figure 6	2.4			٧
V	Low lovel output voltage	$V_{ID} = -200 \text{ mV},$	I _{OL} = 16 mA			0.5	V
VOL	Low-level output voltage	See Figure 6	I _{OL} = 8 mA			0.45	V
loz	High-impedance-state output current	V _O = 0.4 V to 2.4 V				±20	μΑ
1.	Line input summer	Other input = 0,	V _I = 12 V			1	mA
†į	Line input current	See Note 4	$V_I = -7 V$			-0.8	IIIA
lн	High-level enable-input current	V _{IH} = 2.7 V				20	μΑ
IIL	Low-level enable-input current	V _{IL} = 0.4 V				-100	μΑ
rı	Input resistance			12			kΩ
los	Short-circuit output current	V _O = 0		-15		-85	mA
1	Cumply oursent	No load	Outputs enabled		23	50	A
ICC	Supply current		Outputs disabled		19	35	mA

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. ‡ The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

NOTE 4: This applies for both power on and power off. Refer to ANSI Standard RS-485 for exact conditions.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 15 pF

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$		14	37	ns
tPHL	Propagation delay time, high- to low-level output	See Figure 7		14	37	ns
^t PZH	Output enable time to high level	See Figure 8		7	20	ns
t _{PZL}	Output enable time to low level	See Figure 6		7	20	ns
tPHZ	Output disable time from high level	See Figure 8		7	16	ns
tPLZ	Output disable time from low level	See rigule o		8	16	ns

 $[\]dagger$ All typical values are at V_{CC} = 5 V and T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

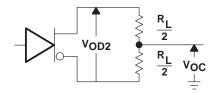


Figure 1. Driver $V_{\mbox{\scriptsize OD}}$ and $V_{\mbox{\scriptsize OC}}$

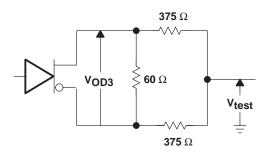
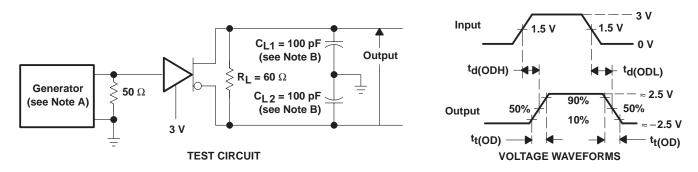
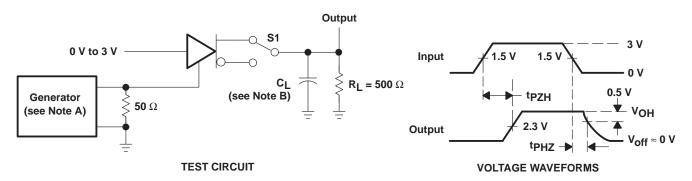
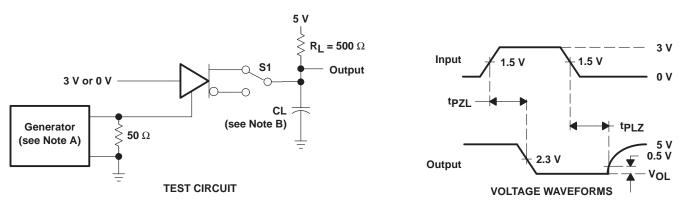



Figure 2. Driver V_{OD3}


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{f} \leq$ 6 ns, $t_{Q} = 50 \Omega$.

B. C_L includes probe and jig capacitance.

Figure 3. Driver Differential-Output Test Circuit and Voltage Waveforms



PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 10 ns, $t_{\Gamma} \leq$ 10 ns, t
 - B. C_L includes probe and jig capacitance.

Figure 4. Driver Test Circuit and Voltage Waveforms

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{f} \leq$ 10 ns, $t_{f} \leq$ 10 ns, $Z_{O} =$ 50 Ω .
 - B. C_L includes probe and jig capacitance.

Figure 5. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

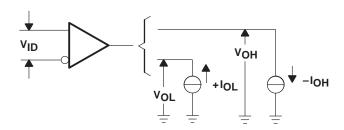
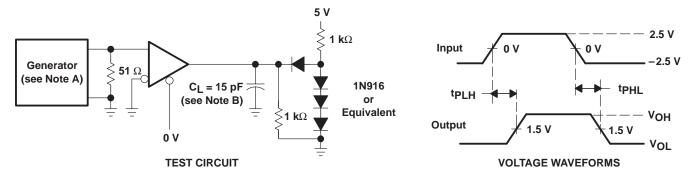
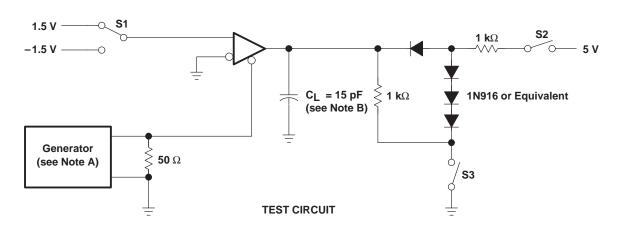
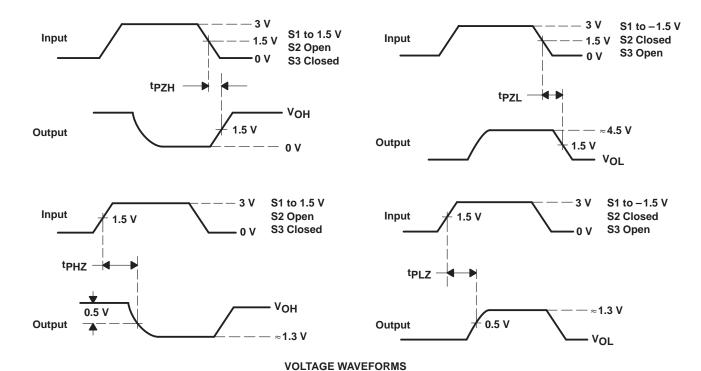



Figure 6. Receiver $V_{\mbox{OH}}$ and $V_{\mbox{OL}}$

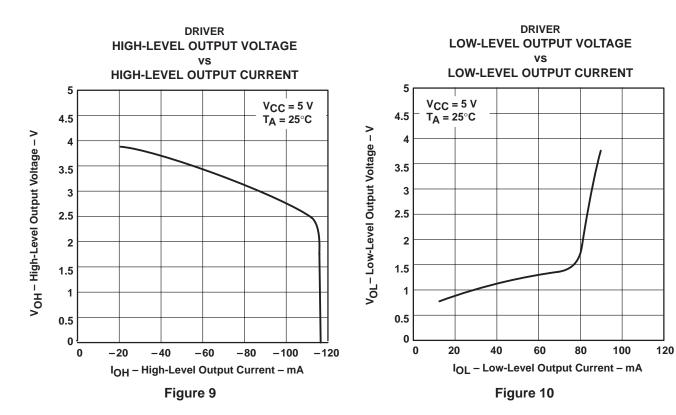



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 10 ns, $t_{f} \leq$ 10 ns, $Z_{O} =$ 50 Ω .

B. C_L includes probe and jig capacitance.

Figure 7. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\text{f}} \leq$ 10 ns, $t_{\text{f}} \leq$ 10 ns, $Z_{\text{O}} =$ 50 Ω .

B. CL includes probe and jig capacitance.

Figure 8. Receiver Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

DRIVER **DIFFERENTIAL OUTPUT VOLTAGE OUTPUT CURRENT** 4 $V_{CC} = 5 V$ $T_A = 25^{\circ}C$ 3.5 V_{OD} - Differential Output Voltage - V 3 2.5 2 1.5 1 0.5 10 20 40 50 60 70 80 90 100 0 IO - Output Current - mA

Figure 11

TYPICAL CHARACTERISTICS

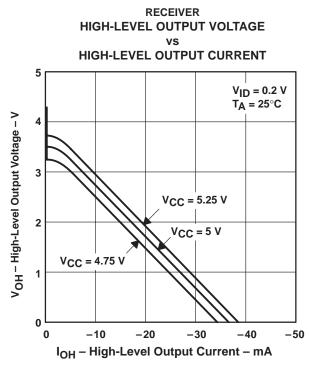
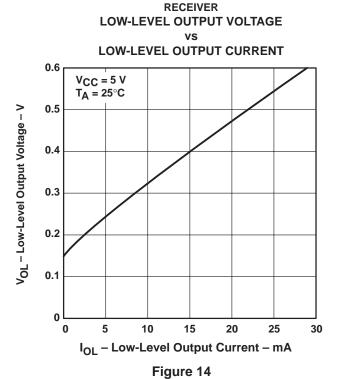



Figure 12

RECEIVER HIGH-LEVEL OUTPUT VOLTAGE FREE-AIR TEMPERATURE

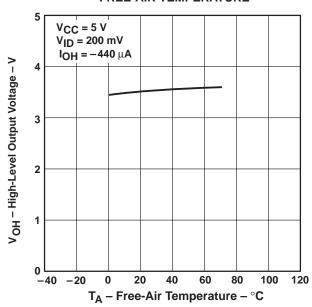


Figure 13

RECEIVER LOW-LEVEL OUTPUT VOLTAGE

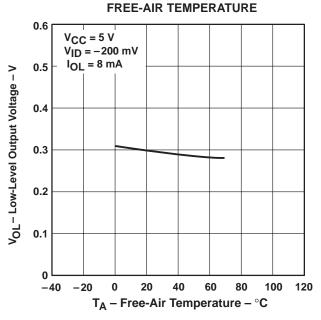
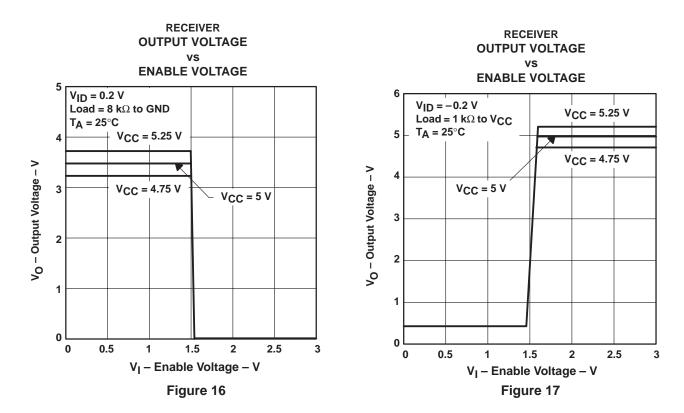
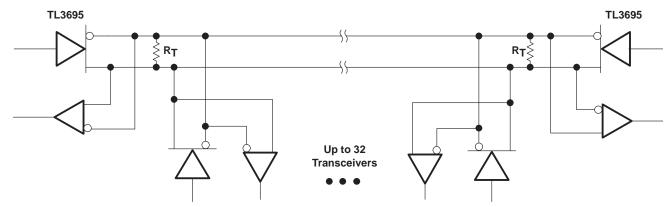




Figure 15

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance ($R_T = Z_O$). Stub lengths off the main line should be kept as short as possible.

Figure 18. Typical Application Circuit

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated