
SLLS067D – AUGUST 1990 – REVISED MARCH 1997

- Bidirectional Transceiver
- Meet or Exceed the Requirements of ANSI Standard RS-485 and ISO 8482:1987(E)
- High-Speed Low-Power LinBiCMOS™ Circuitry
- Designed for High-Speed Operation in Both Serial and Parallel Applications
- Low Skew
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Very Low Disabled Supply-Current Requirements . . . 200 μA Maximum
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capacity . . . ±60 mA
- Thermal-Shutdown Protection
- Driver Positive-and Negative-Current Limiting
- Open-Circuit Fail-Safe Receiver Design
- Receiver Input Sensitivity . . . ±200 mV Max
- Receiver Input Hysteresis . . . 50 mV Typ
- Operate From a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection

description

The SN55LBC176, SN65LBC176, and SN75LBC176 differential bus transceivers are monolithic, integrated circuits designed for bidirectional data communication on multipoint bus-transmission lines. They are designed for balanced transmission lines and meet ANSI Standard RS-485 and ISO 8482:1987(E).

The SN65LBC176 and SN75LBC176 combine a 3-state, differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can externally connect together to function as a direction control. The driver differential outputs and the receiver differential

NC-No internal connection

Function Tables

DRIVER

INPUT	ENABLE	OUT	PUTS
D	DE	Α	В
Н	Н	Н	L
L	Н	L	Н
Х	L	Z	Z

RECEIVER

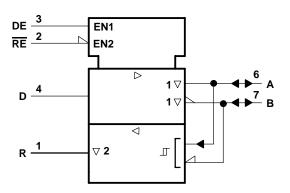
DIFFERENTIAL INPUTS A-B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \leq -0.2 V$	L	L
Х	Н	Z
Open	L	Н

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

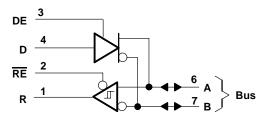
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS and LinASIC are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

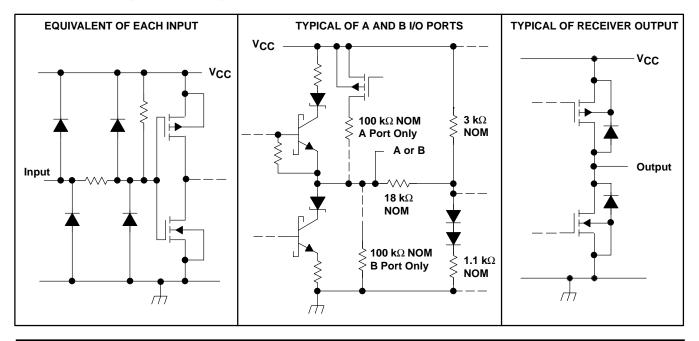

SLLS067D - AUGUST 1990 - REVISED MARCH 1997

description (continued)


inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC} = 0$. This port features wide positive and negative common-mode voltage ranges, making the device suitable for party-line applications. Very low device supply current can be achieved by disabling the driver and the receiver. Both the driver and receiver are available as cells in the Texas Instruments LinASICTM Library.

These transceivers are suitable for ANSI Standard RS-485 and ISO 8482:1987 (E) applications to the extent that they are specified in the operating conditions and characteristics section of this data sheet. Certain limits contained in the ANSI Standard RS-485 and ISO 8482:1987 (E) are not met or cannot be tested over the entire military temperature range.

The SN55LBC176 is characterized for operation from -55° C to 125° C. The SN65LBC176 is characterized for operation from -40° C to 85° C, and the SN75LBC176 is characterized for operation from 0° C to 70° C.



logic symbol[†] logic diagram (positive logic)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematics of inputs and outputs

SLLS067D - AUGUST 1990 - REVISED MARCH 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	
Enable input voltage, V ₁	
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A : SN55LBC176	–55°C to 125°C
SN65LBC176	–40°C to 85°C
SN75LBC176	0°C to 70°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

DISSIPATION RATING TABLE										
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 110°C POWER RATING					
D	725 mW	5.8 mW/°C	464 mW	377 mW	—					
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	440 mW					
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW					
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	—					

recommended operating conditions

		MIN	NOM	MAX	UNIT
	SN55LBC176	4.5	5	5.5	V
Supply voltage, V _{CC}	SN65/75LBC176	4.75	5	5.25	V
Voltage at any bus terminal (separately or common				12	V
voltage at any bus terminal (separately of common		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-7	v	
High-level input voltage, VIH	D, DE, and RE	2			V
Low-level input voltage, VIL	D, DE, and RE			0.8	V
Differential input voltage, VID (see Note 2)	-			±12	V
	Driver			-60	mA
High-level output current, IOH	Receiver			-400	μA
	Driver			60	~^^
Low-level output current, IOL	Receiver			8	mA
	SN55LBC176	-55		125	
Operating free-air temperature, TA	SN65LBC176	-40		85	°C
	SN75LBC176	0		70	

NOTE 2: Differential input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

SLLS067D - AUGUST 1990 - REVISED MARCH 1997

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TE	EST CONDITIONS		MIN	MAX	UNIT
VIK	Input clamp voltage	lj = – 18 mA				-1.5	V
VO	Output voltage	IO = 0			0	6	V
VOD1	Differential output voltage	IO = 0			1.5	6	V
				55LBC176	1.1		
VOD2	Differential output voltage	$R_L = 54 \Omega$, See Note 3	See Figure 1,	65LBC176	1.1		V
				75LBC176	1.5	5	
				55LCB176	1.1		
VOD3	Differential output voltage	$V_{test} = -7 V$ to 12 V, See Note 3	See Figure 2,	65LBC176	1.1		V
				75LBC176	1.5	5	
Δ V _{OD}	Change in magnitude of differential output voltage					±0.2	V
Vee	Common-mode output voltage	$R_L = 54 \Omega$ or 100 Ω,	See Figure 1			3	V
Voc	Common-mode output voltage	$K_{L} = 54.52 \text{ or } 100.52$	See rigule i			-1	v
$\Delta V_{OC} $	Change in magnitude of common-mode output voltage†				±0.2	V	
1	Output ourroat	Output disabled,	V _O = 12 V			1	mA
ю	Output current	See Note 4	$V_{O} = -7 V$			-0.8	mA
IIН	High-level input current	V _I = 2.4 V				-100	μA
۱ _{IL}	Low-level input current	V _I = 0.4 V				-100	μA
		V _O = -7 V				-250	
1	Chart aircuit autout aurrent	V _O = 0				-150	mA
los	Short-circuit output current	AO = ACC				250	mA
		V _O = 12 V	/ _O = 12 V			250	
				55LBC176		1.75	
			Receiver disabled and driver enabled	65LBC176		4.5	
	Supply surrent	$V_{I} = 0 \text{ or } V_{CC},$		75LBC176		1.5	
ICC	Supply current	No load		55LBC176		0.05	mA
			Receiver and driver disabled	65LBC176	0.25		
			uisableu	75LBC176		0.2	

 $\uparrow \Delta \mid V_{OD} \mid$ and $\Delta \mid V_{OC} \mid$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input changes from a high level to a low level.

NOTES: 3. This device meets the ANSI Standard RS-485 V_{OD} requirements above 0°C only.

4. This applies for both power on and off; refer to ANSI Standard RS-485 for exact conditions.

SLLS067D – AUGUST 1990 – REVISED MARCH 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER		TEST CONDITIONS		SN55LBC176			SN65LBC176 SN75LBC176			UNIT				
					TYP	MAX	MIN	TYP†	MAX					
^t d(OD)	Differential output delay time			8		31	8		25	ns				
tt(OD)	Differential output transition time	$R_L = 54 \Omega$, See Figure 3	·	-	·	$R_L = 54 \Omega$, See Figure 3	$C_{L} = 50 pF,$		12			12		ns
tsk(p)	Pulse skew (t _{d(ODH)} - t _{d(ODL)})	occ rigare o				6		0	6	ns				
^t PZH	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 4			65			35	ns				
^t PZL	Output enable time to low level	R _L = 110 Ω,	See Figure 5			65			35	ns				
^t PHZ	Output disable time from high level	R _L = 110 Ω,	See Figure 4			105			60	ns				
^t PLZ	Output disable time from low level	R _L = 110 Ω,	See Figure 5			105			35	ns				

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

DATA SHEET PARAMETER RS-485 ٧o Voa, Vob |VOD1| Vo |VOD2| $V_t (R_L = 54 \Omega)$ V_t (test termination |VOD3| measurement 2) $\Delta \mid V_{OD} \mid$ $||V_t| - |\overline{V}_t||$ |V_{os}| Voc $|V_{OS} - \overline{V}_{OS}|$ $\Delta \mid V_{OC} \mid$ None los

l_{ia}, l_{ib}

ΙO

SYMBOL EQUIVALENTS

SLLS067D - AUGUST 1990 - REVISED MARCH 1997

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

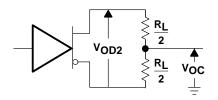
	PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VIT+	Positive-going input threshold voltage	V _O = 2.7 V,	$I_{O} = -0.4 \text{ mA}$				0.2	V
V _{IT} -	Negative-going input threshold voltage	V _O = 0.5 V,	I _O = 8 mA		-0.2‡			V
V _{hys}	Hysteresis voltage (V _{IT +} – V _{IT –}) (see Figure 4)					50		mV
VIK	Enable-input clamp voltage	l _l = –18 mA					-1.5	V
Vон	High-level output voltage	V _{ID} = 200 mV, See Figure 6	I _{OH} = -400 μA,		2.7			V
VOL	Low-level output voltage	V _{ID} = 200 mV, See Figure 6	I _{OL} = 8 mA,				0.45	V
I _{OZ}	High-impedance-state output current	$V_{O} = 0.4 V \text{ to } 2.4 V$	$V_{O} = 0.4 V \text{ to } 2.4 V$				±20	μΑ
ı.	Line input current	Other input = 0 V,	V _I = 12 V				1	mA
łı		See Note 5	$V_{I} = -7 V$				-0.8	ША
IIН	High-level enable-input current	V _{IH} = 2.7 V					-100	μA
۱ _{IL}	Low-level enable-input current	V _{IL} = 0.4 V					-100	μΑ
rı	Input resistance				12			kΩ
			Receiver enabled and driver disabled				3.9	mA
ICC	Supply current	$V_{I} = 0 \text{ or } V_{CC},$ No load		SN55LBC176			0.07	
		NUIDAU	Receiver and driver disabled	SN65LBC176			0.25	mA
				SN75LBC176	1		0.2	

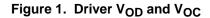
[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

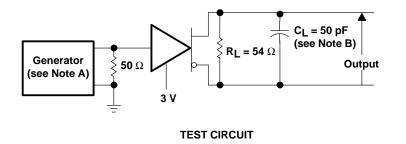
[‡] The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

NOTE 5: This applies for both power on and power off. Refer to ANSI Standard RS-485 for exact conditions.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 15 \text{ pF}$

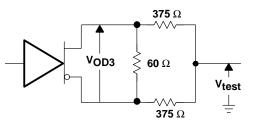
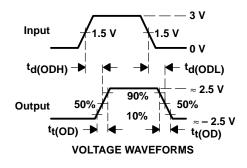
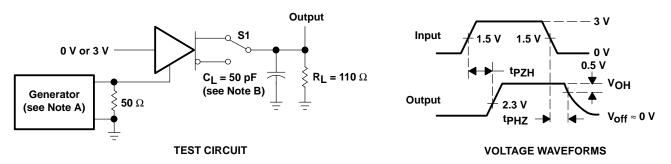

PARAMETER		TEST CONDITIONS	SN55LBC176		SN65LBC176 SN75LBC176			UNIT
			MIN	MAX	MIN	TYP†	MAX	
^t PLH	Propagation delay time, low- to high-level single-ended output		11	37	11		33	ns
^t PHL	Propagation delay time, high- to low-level single-ended output	$V_{ID} = -1.5 V$ to 1.5 V, See Figure 7	11	37	11		33	ns
^t sk(p)	Pulse skew (t _{d(ODH)} - t _{d(ODL)})			6		3	6	ns
^t PZH	Output enable time to high level			35			35	ns
^t PZL	Output enable time to low level	See Figure 8		35			30	ns
^t PHZ	Output disable time from high level			35			35	ns
^t PLZ	Output disable time from low level	See Figure 8		35			30	ns


[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.



SLLS067D – AUGUST 1990 – REVISED MARCH 1997

PARAMETER MEASUREMENT INFORMATION

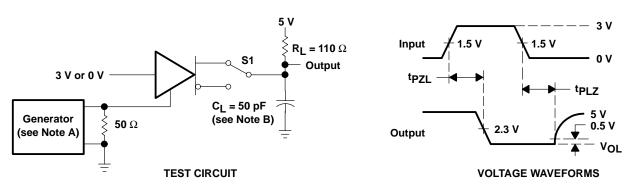

Figure 2. Driver VOD3

Figure 3. Driver Test Circuit and Voltage Waveforms

Figure 4. Driver Test Circuit and Voltage Waveforms

Figure 5. Driver Test Circuit and Voltage Waveforms

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 8 ns, t_f
 - B. CL includes probe and jig capacitance.

SLLS067D - AUGUST 1990 - REVISED MARCH 1997

PARAMETER MEASUREMENT INFORMATION

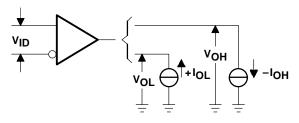
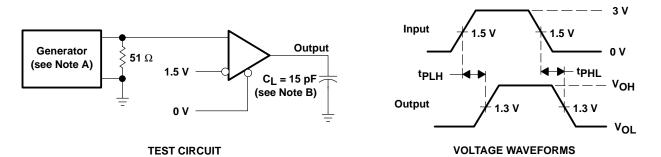
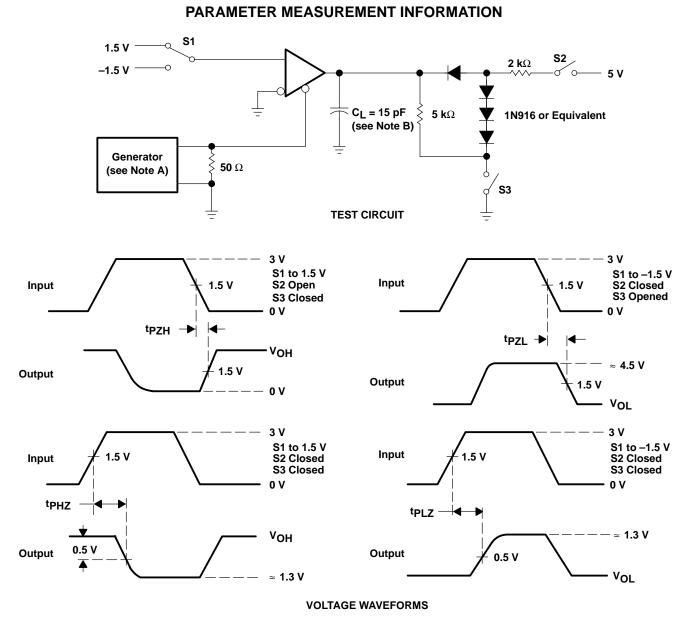



Figure 6. Receiver V_{OH} and V_{OL}

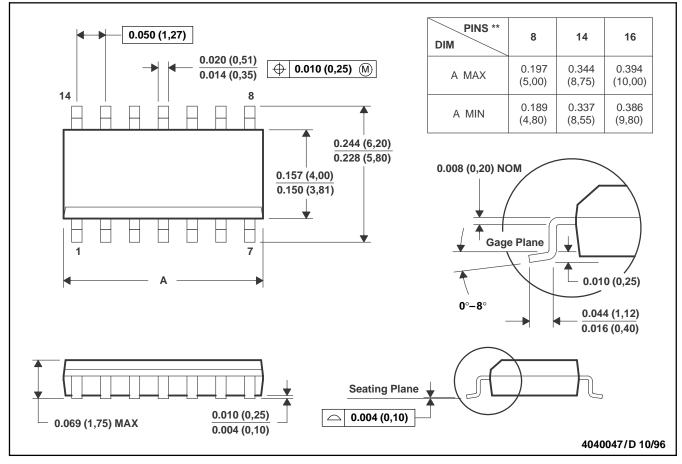


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z_O = 50 Ω .
 - B. CL includes probe and jig capacitance.

Figure 7. Receiver Test Circuit and Voltage Waveforms

SLLS067D – AUGUST 1990 – REVISED MARCH 1997

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z_O = 50 Ω .
 - B. CL includes probe and jig capacitance.


SLLS067D - AUGUST 1990 - REVISED MARCH 1997

MECHANICAL INFORMATION

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

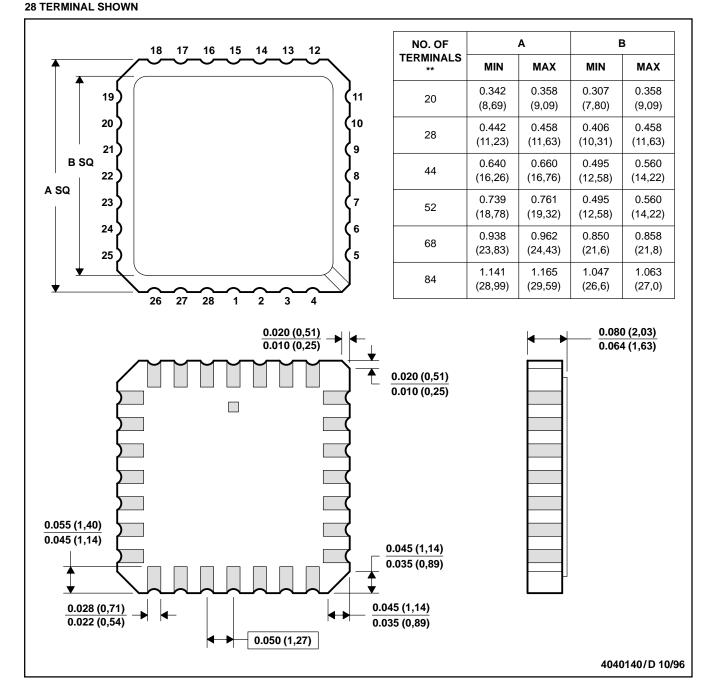
14 PIN SHOWN

NOTES: C. All linear dimensions are in inches (millimeters).

D. This drawing is subject to change without notice.

E. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

F. Falls within JEDEC MS-012



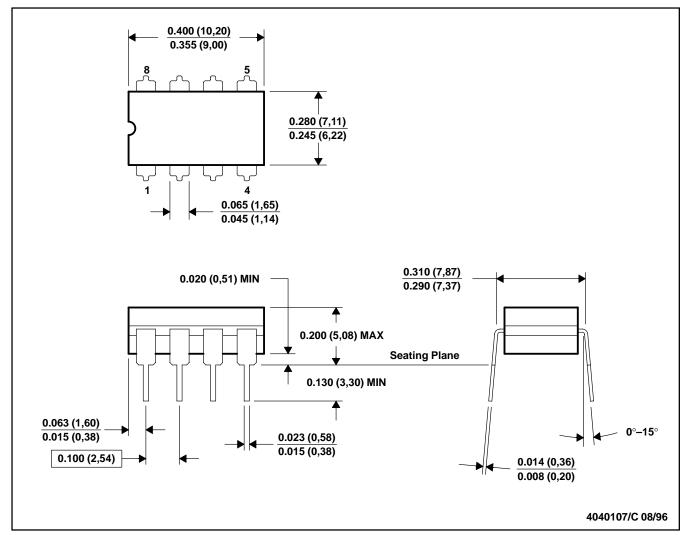
SLLS067D - AUGUST 1990 - REVISED MARCH 1997

MECHANICAL INFORMATION

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

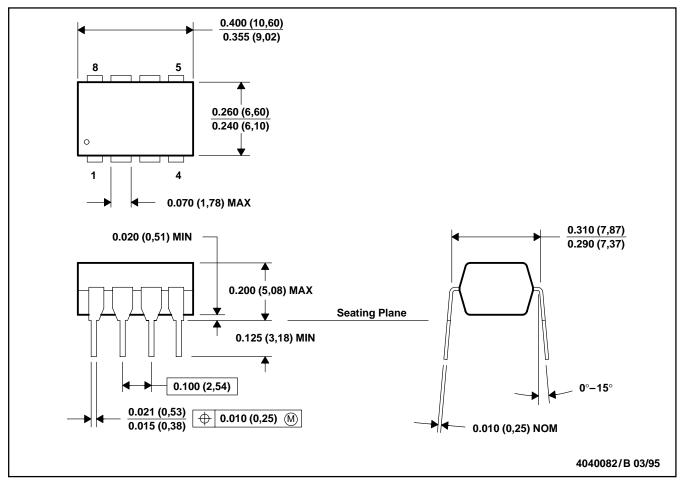
SLLS067D - AUGUST 1990 - REVISED MARCH 1997

MECHANICAL INFORMATION

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL-STD-1835 GDIP1-T8

SLLS067D - AUGUST 1990 - REVISED MARCH 1997

MECHANICAL INFORMATION

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001

P (R-PDIP-T8)

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated