N8T13, N8T23, SN75123 **DUAL LINE DRIVERS**

SLLS086B - SEPTEMBER 1973 - REVISED MAY 1995

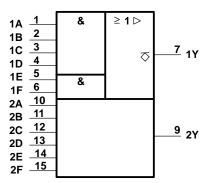
- Meet or Exceed the Requirements of IBM[™] System 360 Input/Output Interface Specification
- Operate From Single 5-V Supply
- TTL Compatible
- 3.11-V Output at I_{OH} = -59.3 mA
- Uncommitted Emitter-Follower Output **Structure for Party-Line Operation**
- Short-Circuit Protection
- AND-OR Logic Configuration
- Designed for Use With Triple Line Receiver SN75124
- Designed to Be Interchangeable With Signetics N8T13 and N8T23

description

The N8T13, N8T23, and SN75123 are dual line drivers specifically designed to meet the input/ output interface specifications for IBM System 360. It is also compatible with standard-TTL logic and supply-voltage levels.

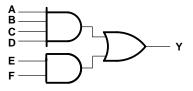
The N8T13, N8T23, SN75123 and low-impedance emitter-follower outputs drive terminated lines such as coaxial cable or twisted pair. Having the outputs uncommitted allows wired-OR logic to be performed in party-line applications. Output short-circuit protection is provided by an internal clamping network that turns on when the output voltage drops below approximately 1.5 V. All the inputs are in conventional TTL configuration, and the gating can be used during power-up and power-down sequences to ensure that no noise is introduced to the line.

The N8T13. N8T23. and SN75123 are characterized for operation from 0°C to 70°C.


D OR N PACKAGE (TOP VIEW)						
1A [1	16		V _{CC}		
1B [2	15		2F		
1C [3	14		2E		
1D [4	13		2D		
1E [5	12		2C		
1F]	6	12		2B		
1Y [7	1(þ	2A		
GND [8	9		2Y		

FUNCTION TABLE

	INPUTS					OUTPUT		
Α	В	С	D	Е	F	Y		
н	Н	Н	Н	Х	Х	Н		
Х	Х	Х	Х	Н	Н	н		
All o	ther i	L						


H = high level, L = low level, X = irrelevant

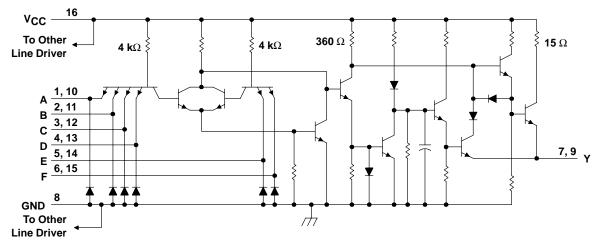
logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

THE SN751730 IS RECOMMENDED FOR NEW IBM 360/370 INTERFACE DESIGNS.

IBM is a trademark of International Business Machines Corp.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

N8T13, N8T23, SN75123 DUAL LINE DRIVERS

SLLS086B - SEPTEMBER 1973 - REVISED MAY 1995

schematic (each driver)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	
Input voltage, V ₁	
Output voltage, V _O	
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2): D package 950 mW	
N package 1150 mW	
Operating free-air temperature range, T _A 0°C to 70°C	
Storage temperature range, T _{stg} –65°C to 150°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. For operation above 25°C free-air temperature, derate the D package to 608 mW at 70°C at the rate of 7.6 mW/°C and the N package to 736 mW at 70°C at the rate of 9.2 mW/°C.

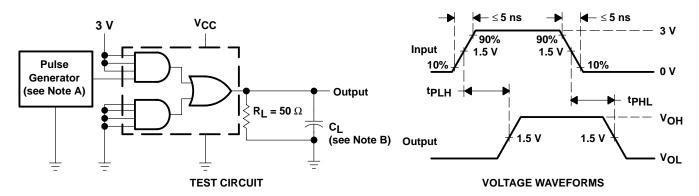
recommended operating conditions

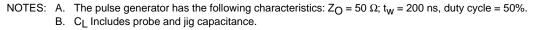
	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	V
High-level output current, I _{OH}			-100	mA
Operating free-air temperature, T _A	0		70	°C

SLLS086B - SEPTEMBER 1973 - REVISED MAY 1995

						-
PARAMETER		TEST CONDITIONS	5	MIN	MAX	UNIT
Input clamp voltage	V _{CC} = 5 V,	lj = -12 mA			-1.5	V
Input breakdown voltage	V _{CC} = 5 V,	lj = 10 mA		5.5		V
	$V_{CC} = 5 V,$	VIH = 2 V,	T _A = 25°C	3.11		V
High-level output voltage	$I_{OH} = -59.3 \text{ mA},$	See Note 3	$T_A = 0^{\circ}C$ to $70^{\circ}C$	2.9		v
Low-level output voltage	V _{IL} = 0.8 V,	$I_{OL} = -240 \ \mu A$,	See Note 3		0.15	V
High-level output current	$V_{CC} = 5 V,$ $T_A = 25^{\circ}C,$	V _{IH} = 4.5 V, See Note 3	V _{OH} = 2 V,	-100	-250	mA
Off-state output current	V _{CC} = 0,	V _O = 3 V			40	μA
High-level input current	V _I = 4.5 V				40	μA
Low-level input current	V _I = 0.4 V			-0.1	-1.6	mA
Short-circuit output current [†]	V _{CC} = 5 V,	T _A = 25°C			-30	mA
Supply current, outputs high	V _{CC} = 5.25 V,	All inputs at 2 V,	Outputs open		28	mA
Supply current, outputs low	V _{CC} = 5.25 V,	All inputs at 0.8 V,	Outputs open		60	mA
	Input clamp voltage Input breakdown voltage High-level output voltage Low-level output voltage High-level output current Off-state output current High-level input current Low-level input current Short-circuit output current [†] Supply current, outputs high	$\label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} \mbox{Input clamp voltage} & V_{CC} = 5 \ V, & I_I = -12 \ mA \\ \mbox{Input breakdown voltage} & V_{CC} = 5 \ V, & I_I = 10 \ mA \\ \mbox{High-level output voltage} & V_{CC} = 5 \ V, & V_{IH} = 2 \ V, \\ I_{OH} = -59.3 \ mA, & See \ Note \ 3 \\ \mbox{Low-level output voltage} & V_{IL} = 0.8 \ V, & I_{OL} = -240 \ \muA, \\ \mbox{High-level output current} & V_{CC} = 5 \ V, & V_{IH} = 4.5 \ V, \\ T_A = 25^{\circ}C, & See \ Note \ 3 \\ \mbox{Off-state output current} & V_{CC} = 0, & V_{O} = 3 \ V \\ \mbox{High-level input current} & V_{I} = 4.5 \ V \\ \mbox{Low-level input current} & V_{I} = 0.4 \ V \\ \mbox{Short-circuit output current}^{\dagger} & V_{CC} = 5 \ V, & T_A = 25^{\circ}C \\ \mbox{Supply current, outputs high} & V_{CC} = 5.25 \ V, & All inputs at 2 \ V, \\ \end{array}$	$\begin{array}{ c c c c c c } \hline Input clamp voltage & V_{CC} = 5 \ V, & I_I = -12 \ mA & \\ \hline Input breakdown voltage & V_{CC} = 5 \ V, & I_I = 10 \ mA & \\ \hline High-level output voltage & V_{CC} = 5 \ V, & V_{IH} = 2 \ V, & \\ \hline I_{OH} = -59.3 \ mA, & See \ Note \ 3 & \\ \hline T_A = 0^\circ C \ to \ 70^\circ C & \\ \hline T_A = 0^\circ C \ to \ 70^\circ C & \\ \hline I_A = 0^\circ C \ to \ 70^\circ C & $	$\begin{array}{ c c c c c c } & V_{CC} = 5 \ V, & I_I = -12 \ \text{mA} & & & & & & \\ \hline \text{Input breakdown voltage} & V_{CC} = 5 \ V, & I_I = 10 \ \text{mA} & & & & & 5.5 \\ \hline \text{High-level output voltage} & V_{CC} = 5 \ V, & V_{IH} = 2 \ V, & & & & & \\ \hline \text{I}_{OH} = -59.3 \ \text{mA}, & & & & & & & \\ \hline \text{See Note 3} & & & & & & \\ \hline \text{T}_A = 0^\circ \text{C to } 70^\circ \text{C} & & 2.9 \\ \hline \text{Low-level output voltage} & V_{IL} = 0.8 \ V, & & & & & \\ \hline \text{Low-level output voltage} & V_{IL} = 0.8 \ V, & & & & & \\ \hline \text{High-level output current} & & & & & \\ \hline \text{V}_{CC} = 5 \ V, & & & & & \\ \hline \text{High-level output current} & & & & & \\ \hline \text{V}_{CC} = 5 \ V, & & & & & \\ \hline \text{Off-state output current} & & & & \\ \hline \text{V}_{CC} = 0, & & & & & \\ \hline \text{V}_{CC} = 0, & & & & & \\ \hline \text{High-level input current} & & & \\ \hline \text{V}_{I} = 0.4 \ V & & & & & \\ \hline \text{Low-level input current} & & & \\ \hline \text{V}_{I} = 0.4 \ V & & & & & \\ \hline \text{Short-circuit output current}^{\dagger} & & & \\ \hline \text{V}_{CC} = 5 \ V, & & & \\ \hline \text{Supply current, outputs high} & & & \\ \hline \text{V}_{CC} = 5.25 \ V, & & & \\ \hline \text{All inputs at 2 V,} & & & \\ \hline \text{Outputs open} & & \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

electrical characteristics, V_{CC} = 4.75 V to 5.25 V, T_A = 0°C to 70°C (unless otherwise noted)

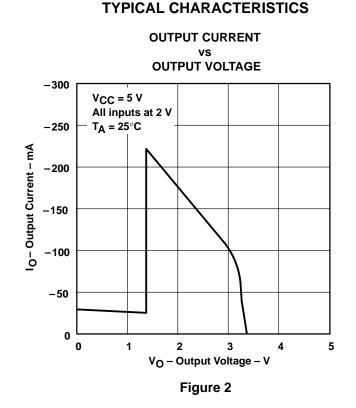

[†] Not more than one output should be shorted at a time.

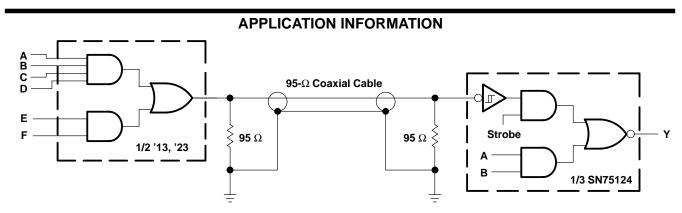

NOTE 3: The output voltage and current limits are valid for any appropriate combination of high and low inputs specified by the function table for the desired output.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low- to high-level output	Rι = 50 Ω.	CI =1┱₽₽.	See Figure 1		12	20	
^t PHL	Propagation delay time, high- to low-level output	$K_{L} = 50.52$,	С[=т5-рг,	See Figure 1		12	20	ns
^t PLH	Propagation delay time, low- to high-level output	R ₁ = 50 Ω,	$C_{1} = 100 \text{ pE}$	Soo Eiguro 1		20	35	
^t PHL	Propagation delay time, high- to low-level output	KL = 50 32,	C _L = 100 pF,	See Figure 1		15	25	ns

PARAMETER MEASUREMENT INFORMATION




Figure 1. Test Circuit and Voltage Waveforms

N8T13, N8T23, SN75123 DUAL LINE DRIVERS

SLLS086B - SEPTEMBER 1973 - REVISED MAY 1995

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated