SLLS133D - AUGUST 1992 - REVISED MAY 1995

Computer Systems Interface (SCSI) and Intelligent Peripheral Interface (IPI-2)GND [1]56CDE2• Meets or Exceeds the Requirements of ANSI Standard RS-485 and ISO 8482:1987(E)BSR CRE255CDE1• Packaged in Shrink Small-Outline Package With 25-mil Terminal Pitch1A 2A 2DE/RE4539B+• Designed to Operate at 10 Million Transfers Per Second2A 3DE/RE6518B+• Low Disabled Supply Current 1.4 mA Typical4A 4DE/RE1047 4B+6B+• Thermal-Shutdown ProtectionGND 4DE/RE1344 4DE/REGND• Positive and Negative Output-Current LimitingGND 4AGND 4A1443 4BGND• Open-Circuit Fail-Safe Receiver DesignGND 4A1641 43GND 4A1641 43GND• descriptionVcc 4A1839 4BVcc 4A1641 4AGND
ANSI Standard RS-485 and ISO 8482:1987(E) \overrightarrow{CRE} 354CDE0ISO 8482:1987(E)1A4539B+Packaged in Shrink Small-Outline Package With 25-mil Terminal Pitch1DE/RE5529B-With 25-mil Terminal Pitch2A6518B+Designed to Operate at 10 Million Transfers Per Second3A8497B+Spectro d3DE/RE9487B-Low Disabled Supply Current 1.4 mA Typical4A10476B+Thermal-Shutdown ProtectionV _{CC} 1245V _{CC} Power-Up/Power-Down Glitch ProtectionGND1344GNDPositive and Negative Output-Current LimitingGND1443GNDOpen-Circuit Fail-Safe Receiver DesignGND1641GNDVcc1839V _{CC} V _{CC} 1839V _{CC}
ISO 8482:1987(E) 1A 4 53 9B+ • Packaged in Shrink Small-Outline Package 1DE/RE 5 52 9B- With 25-mil Terminal Pitch 2A 6 51 8B+ • Designed to Operate at 10 Million Transfers 2DE/RE 7 50 8B- Per Second 3A 8 49 7B+ • Low Disabled Supply Current 4A 10 47 6B+ 1.4 mA Typical 4DE/RE 10 47 6B+ • Thermal-Shutdown Protection V _{CC} 12 45 V _{CC} • Positive and Negative Output-Current GND 14 43 GND • Imiting GND 15 42 GND • Open-Circuit Fail-Safe Receiver Design GND 16 41 GND • Wcc 18 39 V _{CC} V _{CC} 18 39 V _{CC}
• Packaged in Shrink Small-Outline Package With 25-mil Terminal Pitch $1DE/RE$ 5 52 $9B-$ • Designed to Operate at 10 Million Transfers Per Second $2A$ 6 51 $8B+$ • Low Disabled Supply Current 1.4 mA Typical $3DE/RE$ 9 48 $7B-$ • Thermal-Shutdown Protection $4A$ 10 47 $6B+$ • Power-Up/Power-Down Glitch Protection V_{CC} 12 45 V_{CC} • Positive and Negative Output-Current Limiting GND 14 43 GND • Open-Circuit Fail-Safe Receiver Design GND 16 41 GND • Vcc 18 39 V_{CC}
With 25-mil Terminal Pitch $2A$ 6518B+Designed to Operate at 10 Million Transfers Per Second $2DE/RE$ 7508B-Ber Second $3A$ 8497B+Designed Supply Current 1.4 mA Typical $4A$ 10476B+Thermal-Shutdown Protection V_{CC} 11466B-Power-Up/Power-Down Glitch Protection V_{CC} 1344GNDPositive and Negative Output-Current LimitingGND1443GNDOpen-Circuit Fail-Safe Receiver Design GND 1641GNDVcc1839Vcc
• Designed to Operate at 10 Million Transfers Per Second $2DE/RE$ 7508B-• Low Disabled Supply Current 1.4 mA Typical $3A$ 8497B+• Low Disabled Supply Current 1.4 mA Typical $4A$ 10476B+• Thermal-Shutdown Protection V_{CC} 1245 V_{CC} • Power-Up/Power-Down Glitch Protection GND 1344 GND • Positive and Negative Output-Current Limiting GND 1443 GND • Open-Circuit Fail-Safe Receiver Design GND 1641 GND • Vcc1839 V_{CC}
• Designed to Operate at 10 Million Transfers Per Second $3A \begin{bmatrix} 8 & 49 \\ 7B + 3DE/RE \end{bmatrix}$ $7B + 3DE/RE \begin{bmatrix} 9 & 48 \\ 7B - 4A \end{bmatrix}$ • Low Disabled Supply Current 1.4 mA Typical $4A \begin{bmatrix} 10 & 47 \\ 6B + 11 \end{bmatrix}$ $6B + 4DE/RE \begin{bmatrix} 11 & 46 \\ 6B - 11 \end{bmatrix}$ $6B - 12 \begin{bmatrix} 12 & 45 \\ 7C \end{bmatrix}$ • Thermal-Shutdown Protection $V_{CC} \begin{bmatrix} 12 & 45 \\ 13 & 44 \end{bmatrix}$ $V_{CC} \begin{bmatrix} 12 & 45 \\ 7C \end{bmatrix}$ $V_{CC} \begin{bmatrix} 12 & 45 \\ 7C \end{bmatrix}$ • Power-Up/Power-Down Glitch Protection $GND \begin{bmatrix} 13 & 44 \\ 14 & 43 \end{bmatrix}$ GND • Positive and Negative Output-Current Limiting $GND \begin{bmatrix} 14 & 43 \\ 6ND \end{bmatrix}$ $GND \begin{bmatrix} 15 & 42 \\ 6ND \end{bmatrix}$ • Open-Circuit Fail-Safe Receiver Design $GND \begin{bmatrix} 17 & 40 \\ 6ND \end{bmatrix}$ $GND \begin{bmatrix} 17 & 40 \\ 6ND \end{bmatrix}$
Per Second $3DE/RE$ 948 $7B-$ • Low Disabled Supply Current $4A$ 1047 $6B+$ 1.4 mA Typical $4DE/RE$ 1146 $6B-$ • Thermal-Shutdown Protection V_{CC} 1245 V_{CC} • Power-Up/Power-Down Glitch Protection GND 1344 GND • Positive and Negative Output-Current GND 1443 GND • Deen-Circuit Fail-Safe Receiver Design GND 1641 GND • Vcc1839 V_{CC}
1.4 mA Typical $4A$ 10 47 $00F$ • Thermal-Shutdown Protection $4DE/RE$ 11 46 $6B$ • Power-Up/Power-Down Glitch Protection V_{CC} 12 45 V_{CC} • Positive and Negative Output-Current GND 13 44 GND • Distributing GND 14 43 GND • Open-Circuit Fail-Safe Receiver Design GND 16 41 GND • Vcc 18 39 V_{CC}
• Thermal-Shutdown Protection $4DE/RE$ 11 46 $0B^{-1}$ • Thermal-Shutdown Protection V_{CC} 12 45 V_{CC} • Power-Up/Power-Down Glitch Protection GND 13 44 GND • Positive and Negative Output-Current GND 14 43 GND Limiting GND 15 42 GND • Open-Circuit Fail-Safe Receiver Design GND 16 41 GND description V_{CC} 18 39 V_{CC}
 Power-Up/Power-Down Glitch Protection Positive and Negative Output-Current Limiting Open-Circuit Fail-Safe Receiver Design Opencircuit Fail-Safe Receiver Design VCC [12 43 VCC GND [13 44] GND GND [14 43] GND GND [14 43] GND GND [15 42] GND GND [16 41] GND GND [17 40] GND VCC [18 39] VCC
• Positive and Negative Output-Current Limiting GND 14 43 GND • Open-Circuit Fail-Safe Receiver Design GND 15 42 GND • Open-Circuit Fail-Safe Receiver Design GND 16 41 GND • Open-Circuit Fail-Safe Receiver Design GND 17 40 GND • V _{CC} 18 39 V _{CC} V _{CC} V _{CC} V _{CC}
Initial Structure of Comput-Current GND [] 15 42 [] GND [] Imiting GND [] 16 41 [] GND [] Open-Circuit Fail-Safe Receiver Design GND [] 16 41 [] GND [] Imiting GND [] 17 40 [] GND [] Imiting Vcc [] 18 39 [] Vcc
• Open-Circuit Fail-Safe Receiver Design GND [] 16 41 [] GND GND [] 17 40 [] GND Vcc [] 18 39 [] Vcc
• Open-Circuit Fail-Safe Receiver Design GND [] 17 40 [] GND Jescription V _{CC} [] ¹⁸ ³⁹] V _{CC}
$\frac{1}{2} = \frac{1}{2} = \frac{1}$
The SN75LBC976 is a nine-channel differential 5DE/RE 20 37 5B-
transceiver based on the 75LBC176 LinASIC [™] 6A [] 21 36 [] 4B+
cell. Use of TI's LinBiCMOS ^{TT} process $6DE/RE [22 35] 4B-$
technology allows the power reduction necessary 7A 23 34 3B+
to integrate nine differential transceivers. On-chip 7DE/RE 24 33 3B-
enabling logic makes this device applicable for the $_{8A}$ \vec{I} 25 $_{32}$ \vec{I} 2B+
data path (eight data bits plus parity) and the 8DE/RE 26 31 2B-

Pins 13 through 17 and 40 through 44 are connected together to the package lead frame and signal ground.

27

28

9A

9DE/RE

30**1** 1B+

1B-

29

The switching speed and testing capabilities of the SN75LBC976 are sufficient to transfer data over the data bus at 10 million transfers per second. Each of the nine channels conforms to the requirements of the ANSI RS-485 and ISO 8482:1987(E) standards referenced by ANSI X3.129-1986 (IPI), ANSI X3.131-1993 (SCSI-2), and the proposed SCSI-3 standards.

The SN75LBC976 is characterized for operation from 0°C to 70°C.

[†] Patent pending LinASIC and LinBiCMOS are trademarks of Texas Instruments Incorporated.

control path (nine bits) for both the Small

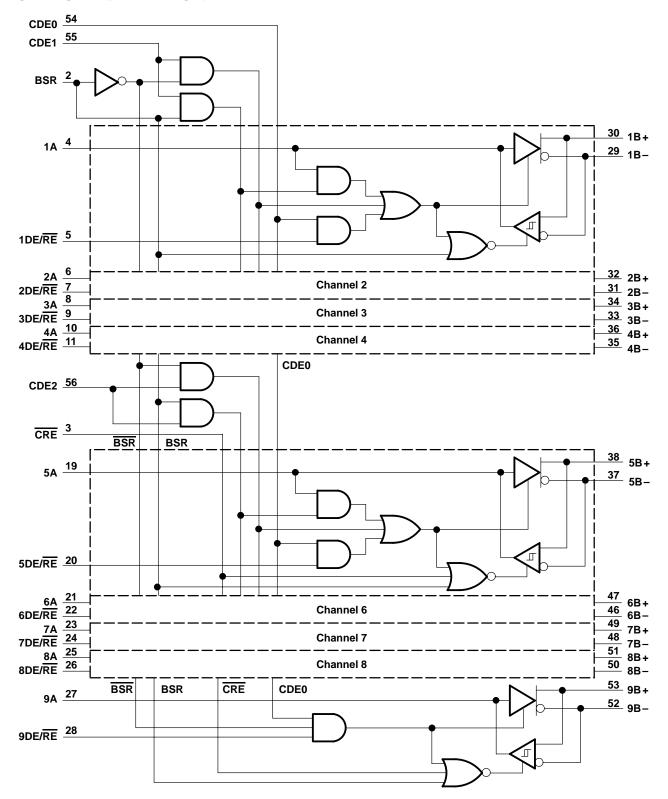
Computer Systems Interface (SCSI) and the

Intelligent Peripheral Interface (IPI-2) standard

The SN75LBC976 is packaged in a shrink

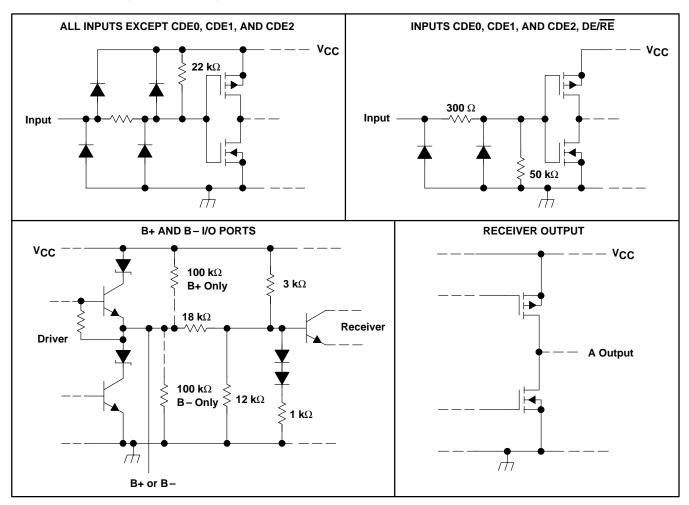
small-outline package (DL) with improved thermal characteristics using heat-sink terminals. This package is ideal for low-profile, space-restricted

applications such as hard disk drives.


data interfaces.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SLLS133D - AUGUST 1992 - REVISED MAY 1995


logic diagram (positive logic)[†]

[†] For additional logic diagrams, see Application Information, Table 1 and Figures 7 through 44.

SLLS133D - AUGUST 1992 - REVISED MAY 1995

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	
Bus voltage range	–10 V to 15 V
Data I/O and control (A-side) voltage range	$\ldots~-0.3$ V to 7 V
Continuous power dissipation	internally limited
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stg}	−65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

SLLS133D - AUGUST 1992 - REVISED MAY 1995

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
/oltage at any bus terminal (separately or common-mode), V_{O} , V_{I} , or V_{IC} B+ or B-				12	V
				-7	v
High-level input voltage, VIH	All except B+ and B-	2			V
Low-level input voltage, VIL	All except B+ and B-			0.8	V
	B+ or B-			-60	mA
High-level output current, I _{OH}	А			-8	mA
	B+ or B-			60	mA
Low-level output current, IOL	А			8	mA
Operating free-air temperature, T _A				70	°C

device electrical characteristics over recommended ranges of operating conditions (unless otherwise noted)

	PARAMETE	R	TEST C	ONDITIONS	MIN	түр†	MAX	UNIT
1	High-level input current	BSR, A, DE/RE, and CRE		$\lambda (u) = 2 \lambda (u)$			-200	μΑ
ΊΗ	Figh-level input current	CDE0, CDE1, and CDE2	See Figure 1	V _{IH} = 2 V			100	μΑ
1	Low-level input current	BSR, A, DE/RE, and CRE	Ŭ,	V _{II} = 0.8 V			-200	μΑ
۱Ľ	Low-level input current	CDE0, CDE1, and CDE2		VIL = 0.0 V			100	μΑ
		All drivers and receivers disabled	BSR and CDE0 at 5 V, Other inputs at 0 V			1.4	3	mA
ICC	Supply current	All receivers enabled	No load, All other input	V _{ID} = 5 V, s at 0 V		29	45	mA
		All drivers enabled	BSR at 0 V, No load, All other inputs at 5 V			4.8	10	mA
CO	Bus port output capacitance		B+ or B-			16		pF
<u> </u>	Dower dissinction consistence [†]		One driver			460		рF
C _{pd}	Power dissipation capacitance‡		One receiver			50		рF

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡]C_{pd} determines the no-load dynamic current consumption; I_S = C_{pd} · V_{CC} · f + I_{CC}.

driver electrical characteristics over recommended ranges of operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOD	Differential output voltage	$V_{test} = -7 V$ to 12 V, See Figure 2	1	2		V
IOS	Output short-circuit current	See Figure 3			±250	mA
I _{OZ}	High-impedance-state output current	See receiver input current				

SLLS133D - AUGUST 1992 - REVISED MAY 1995

receiver electrical characteristics over recommended ranges of operating conditions (unless otherwise noted)

	PARAMETER		TEST CON	IDITIONS	MIN	TYP†	MAX	UNIT
V _{ОН}	High-level output voltage		V _{ID} = 200 mV, See Figure 1	$I_{OH} = -8 \text{ mA},$	2.5			V
V _{OL}	Low-level output voltage		V _{ID} = -200 mV, See Figure 1	I _{OL} = 8 mA,			0.8	V
VIT+	Positive-going input threshold vo	Itage	$I_{OH} = -8 \text{ mA},$	See Figure 1			0.2	V
VIT-	Negative-going input threshold ve	oltage	I _{OL} = 8 mA,	See Figure 1	-0.2			V
V _{hys}	Receiver input hysteresis voltage	e (V _{IT +} – V _{IT –})				45		mV
			$V_I = 12 V$, Other input at 0 V,	V _{CC} = 5 V, See Figure 1		0.7	1	mA
1.		B+ and B–	$V_I = 12 V,$ Other input at 0 V,	V _{CC} = 0, See Figure 1		0.8	1	mA
1	Receiver input current	D+ and D-	$V_I = -7 V$, Other input at 0 V,	V _{CC} = 5 V, See Figure 1		-0.5	-0.8	mA
			$V_{I} = -7 V$, Other input at 0 V,	V _{CC} = 0, See Figure 1		-0.4	-0.8	mA
107	High-impedance-state output cur	rent	See Figure 1	V _O = GND			-200	μA
loz		ion	Geerigater	VO = VCC			50	μη

driver switching characteristics over recommended operating conditions (unless otherwise noted) (see Figure 4)

	PARAMETER		NDITIONS	MIN	түр†	MAX	UNIT
				7.6		19.6	
^t d(OD)	IOW- to high-level output (ta/Ani)	V _{CC} = 5 V,	$T_A = 25^{\circ}C$	9.1		17.1	ns
		V _{CC} = 5 V,	$T_A = 70^{\circ}C$	11.5		19.5	
+	Skew limit, the maximum difference in propagation delay times					12	ns
^t sk(lim)	(lim) between any two drivers on any two devices		See Note 2			8	115
t _{sk(p})	Pulse skew (t _{d(ODL)} – t _{d(ODH)})				0	6	ns
tt	Transition time (t _r or t _f)				10		ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 2: This specification applies to any 5°C band within the operating temperature range.

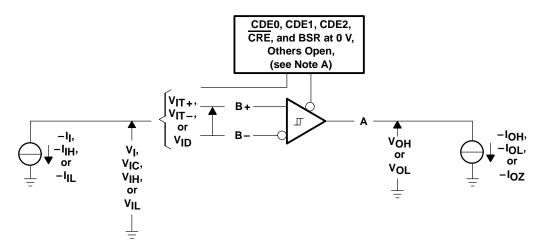
SLLS133D - AUGUST 1992 - REVISED MAY 1995

receiver switching characteristics over recommended operating conditions (see Figure 5) (unless otherwise noted)

	PARAMETER		NDITIONS	MIN	түр†	MAX	UNIT
				21.5		33	
^t pd	Propagation delay time, high- to low-level output (tpLH) or low- to high-level output (tpHL)	V _{CC} = 5 V,	$T_A = 25^{\circ}C$	22.6		31.6	ns
		V _{CC} = 5 V,	$T_A = 70^{\circ}C$	23.4		32.4	
+	Skew limit, the maximum difference in propagation delay times					12	
^t sk(lim)	between any two drivers on any two devices	V _{CC} = 5 V,	See Note 2			9	ns
t _{sk(p})	Pulse skew (t _{PHL} - t _{PLH})				2	6	ns
tt	Transition time (t _r or t _f)				3		ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 2: This specification applies to any 5°C band within the operating temperature range.

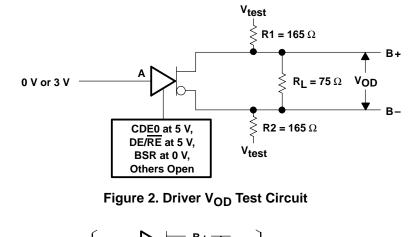

transceiver switching characteristics over recommended operating conditions

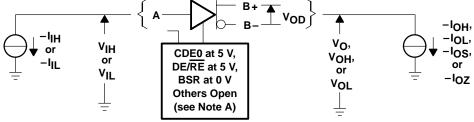
	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
ten(RXL)	Enable time, transmit-to-receive to low-level output		150	ns
ten(RXH)	Enable time, transmit-to-receive to high-level output		150	ns
ten(TXL)	Enable time, receive-to-transmit to low-level output	See Figure 6	80	ns
ten(TXH)	Enable time, receive-to-transmit to high-level output		80	ns
t _{su}	Setup time, CDE0, CDE1, CDE2, BSR, or CRE to active input(s) or output(s)		150	ns

thermal characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JA}$	Junction-to-free-air thermal resistance	Board mounted, No air flow		50		°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance			12		°C/W

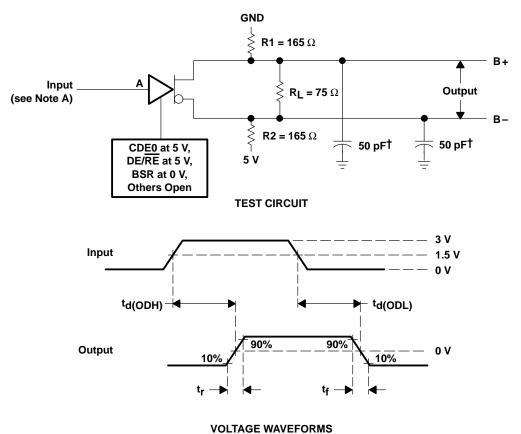
PARAMETER MEASUREMENT INFORMATION


NOTE A: For the I_{OZ} measurement, BSR is at 5 V and CDE0, CDE1, and CDE2 are at 0 V.


Figure 1. Receiver Test Circuit and Input Conditions

SLLS133D - AUGUST 1992 - REVISED MAY 1995

PARAMETER MEASUREMENT INFORMATION

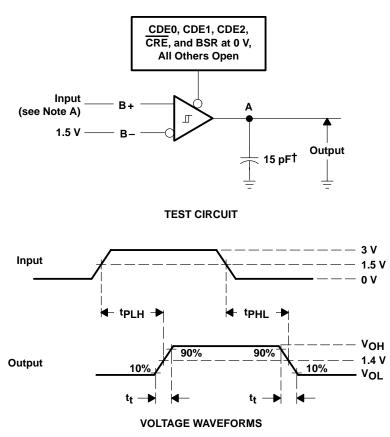


NOTE A: For the $I_{\mbox{\scriptsize OZ}}$ test, the BSR input is at 5 V and all others are at 0 V.

Figure 3. Driver Test Circuit and Input Conditions

SLLS133D - AUGUST 1992 - REVISED MAY 1995

PARAMETER MEASUREMENT INFORMATION

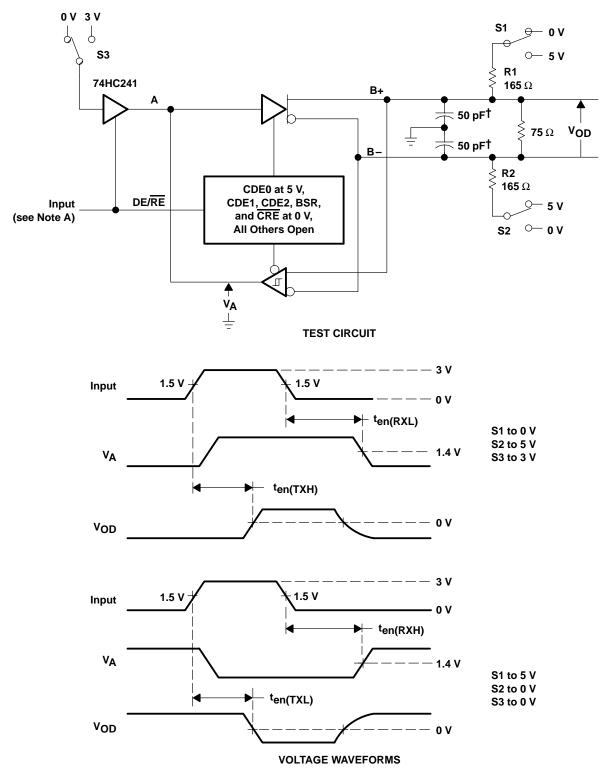

[†] Includes probe and jig capacitance.

NOTE A: The input is provided by a pulse generator with an output of 0 to 3 V, PRR of 1 MHz, 50% duty cycle, t_r and $t_f < 6$ ns, and $Z_O = 50 \Omega$.

Figure 4. Driver Test Circuit and Voltage Waveforms

SLLS133D - AUGUST 1992 - REVISED MAY 1995

PARAMETER MEASUREMENT INFORMATION

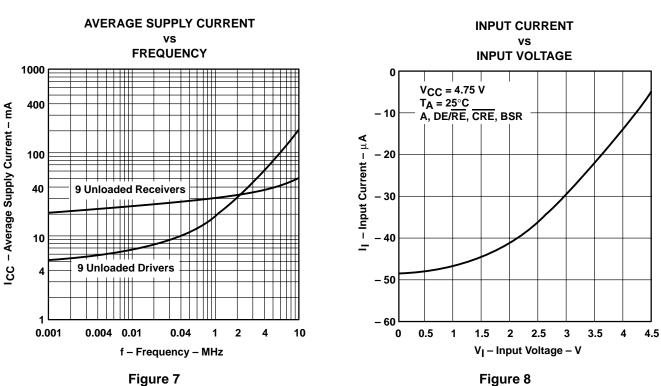

[†] Includes probe and jig capacitance.

NOTE A: The input is provided by a pulse generator with an output of 0 to 3 V, PRR of 1 MHz, 50% duty cycle, t_r and $t_f < 6$ ns, and $Z_O = 50 \Omega$.

Figure 5. Receiver Test Circuit and Voltage Waveforms

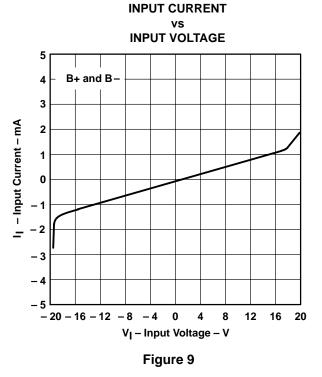
SLLS133D - AUGUST 1992 - REVISED MAY 1995

PARAMETER MEASUREMENT INFORMATION

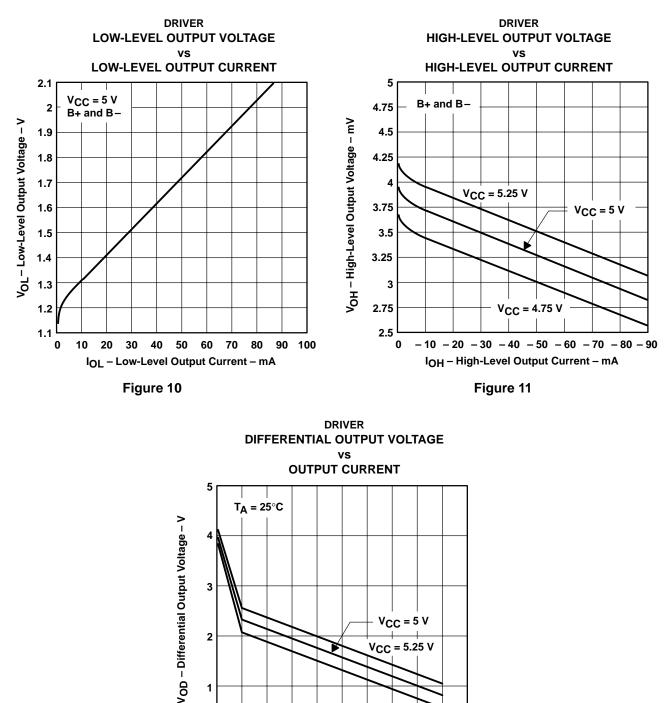

[†] Includes probe and jig capacitance.

NOTE A: The input is provided by a pulse generator with an output of 0 to 3 V, PRR of 1 MHz, 50% duty cycle, t_r and $t_f < 6$ ns, and $Z_O = 50 \Omega$.

Figure 6. Enable Time Test Circuit and Voltage Waveforms



SLLS133D - AUGUST 1992 - REVISED MAY 1995


TYPICAL CHARACTERISTICS

SLLS133D - AUGUST 1992 - REVISED MAY 1995

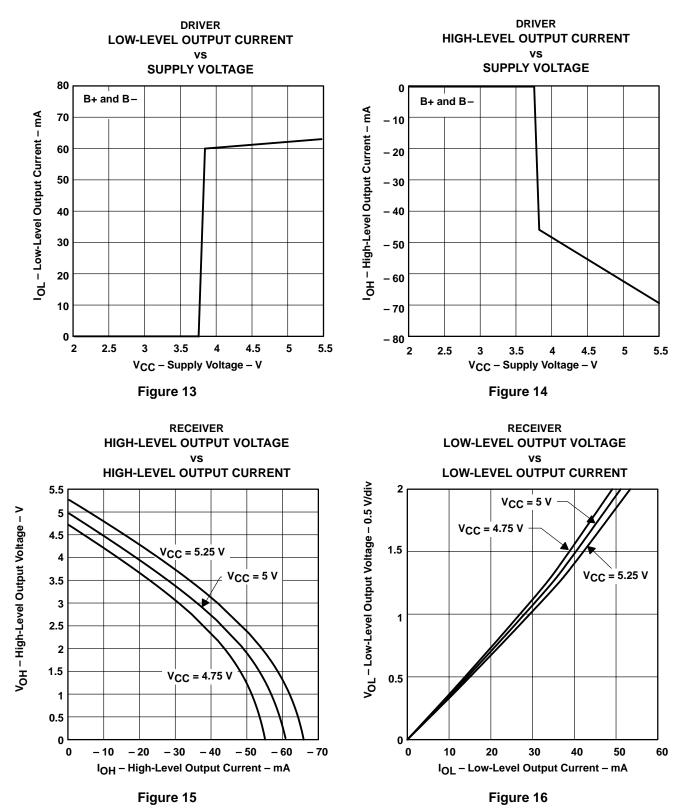
TYPICAL CHARACTERISTICS

30 40 50 60

Figure 12

IO - Output Current - mA

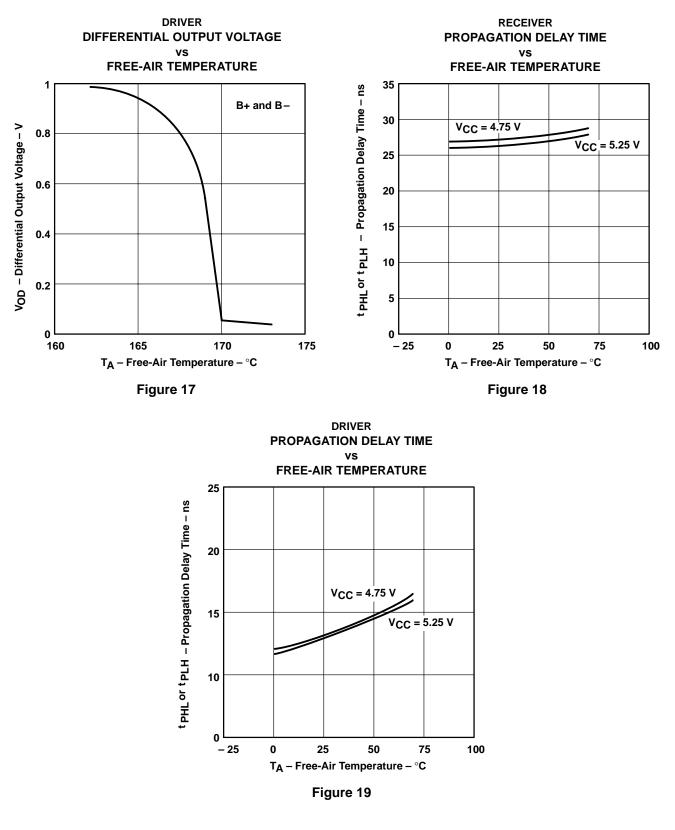
V_{CC} = 4.75 V


80 90 100

70

1

0 0 10 20


SLLS133D - AUGUST 1992 - REVISED MAY 1995

TYPICAL CHARACTERISTICS

SLLS133D - AUGUST 1992 - REVISED MAY 1995

SLLS133D - AUGUST 1992 - REVISED MAY 1995

APPLICATION INFORMATION

SIGNAL	TERMINAL	SCSI DATA	SCSI CONTROL	IPI DATA	IPI CONTROL
CDE0	54	DIFFSENSE	DIFFSENSE	VCC	Vcc
CDE1	55	GND	GND	XMTA, XMTB	GND
CDE2	56	GND	GND	XMTA, XMTB	SLAVE/MASTER
BSR	2	GND	GND	GND, BSR	GND
CRE	3	GND	GND	GND	VCC
1A	4	DB0, DB8	ATN	AD7, BD7	NOT USED
1DE/RE	5	DBE0, DBE8	INIT EN	GND	GND
2A	6	DB1, DB9	BSY	AD6, BD6	NOT USED
2DE/RE	7	DBE1, DBE9	BSY EN	GND	GND
ЗA	8	DB2, DB10	ACK	AD5, BD5	SYNC IN
3DE/RE	9	DBE2, DBE10	INIT EN	GND	GND
4A	10	DB3, DB11	RST	AD4, BD4	SLAVE IN
4DE/RE	11	DBE3, DBE11	GND	GND	GND
5A	19	DB4, DB12	MSG	AD3, BD3	NOT USED
5DE/RE	20	DBE4, DBE12	TARG EN	GND	GND
6A	21	DB5, DB13	SEL	AD2, BD2	SYNC OUT
6DE/RE	22	DBE5, DBE13	SEL EN	GND	GND
7A	23	DB6, DB14	C/D	AD1, BD1	MASTER OUT
7DE/RE	24	DBE6, DBE14	TARG EN	GND	GND
8A	25	DB7, DB15	REQ	AD0, BD0	SELECT OUT
8DE/RE	26	DBE7, DBE15	TARG EN	GND	GND
9A	27	DBP0, DBP1	I/O	AP, BP	ATTENTION IN
9DE/RE	28	DBPE0, DBPE1	TARG EN	XMTA, XMTB	V _{CC}

Table 1. Typical Signal and Terminal Assignments

ABBREVIATIONS:

DBn, data bit n, where n = (0, 1, ..., 15)

DBEn, data bit n enable, where n = (0, 1, ..., 15)

DBP0, parity bit for data bits 0 through 7 or IPI bus A

DBPE0, parity bit enable for P0

DBP1, parity bit for data bits 8 through 15 or IPI bus B

DBPE1, parity bit enable for P1

ADn or BDn, IPI Bus A – Bit n (ADn) or Bus B – Bit n (BDn), where n = (0, 1, ..., 7)

AP or BP, IPI parity bit for bus A or bus B

XMTA or XMTB, transmit enable for IPI bus A or B

BSR, bit significant response

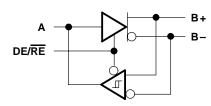
INIT EN, common enable for SCSI initiator mode

TARG EN, common enable for SCSI target mode

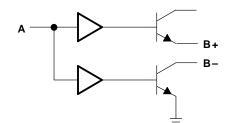
NOTE: Signal inputs are shown as active high. If only active-low inputs are available, logic inversion is accomplished by reversing the B + and B – connecter terminal assignments.

SLLS133D - AUGUST 1992 - REVISED MAY 1995

APPLICATION INFORMATION


Function Tables

RECEIVER


INP	INPUTS		
в+†	в_†	Α	
L	Н	L	
н	L	н	

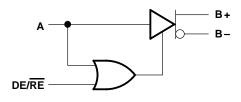
TRANSCEIVER

	INPUTS			OUTPUTS		
DE/RE	Α	в+†	в_†	Α	B+	В-
L	-	L	Н	L	-	-
L	_	н	L	Н	-	-
н	L	-	-	-	L	н
Н	Н	-	-	-	Н	L

WIRED-OR DRIVER

INPUT	OUTPUTS	
Α	B+	В-
L	Z	Ζ
Н	н	L

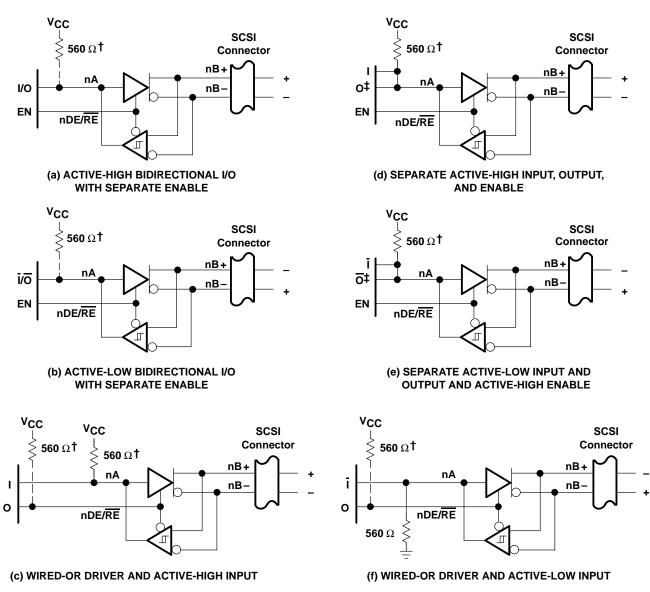
DRIVER


INPUT	OUTPUTS		
Α	B+	В-	
L	L	Н	
Н	н	L	

DRIVER WITH ENABLE

INPUT	INPUTS		OUTPUTS		
DE/RE	Α	B+	B-		
L	L	Z	Z		
L	н	Z	Z		
Н	L	L	н		
Н	Н	Н	L		

TWO-ENABLE INPUT DRIVER


INPUTS		OUTPUTS		
DE/RE	Α	B+	В-	
L	L	Z	Z	
L	Н	н	L	
н	L	L	н	
Н	Н	Н	L	

H = high level, L = low level, X = irrelevant, Z = high impedance (off)

[†] An H in this column represents a voltage 200 mV higher than the other bus input. An L represents a voltage 200 mV lower than the other bus input. Any voltage less than 200 mV results in an indeterminate receiver output.

SLLS133D - AUGUST 1992 - REVISED MAY 1995

APPLICATION INFORMATION

† If 0, is open drain

[‡] Must be open-drain or 3-state output

NOTE: The BSR, CRE, A, and DE/RE inputs have internal pullups. CDE0, CDE1, and CDE2 have internal pulldowns.

Figure 20. Typical SCSI Transceiver Connections

SLLS133D - AUGUST 1992 - REVISED MAY 1995

APPLICATION INFORMATION

channel logic configurations with control input logic

The following logic diagrams show the positive-logic representation for all combinations of control inputs. The control inputs are from MSB to LSB; BSR, CDE0, CDE1, CDE2, and \overline{CRE} , and are shown below the diagrams. Channel 1 is at the top and channel 9 is at the bottom of the logic diagrams.

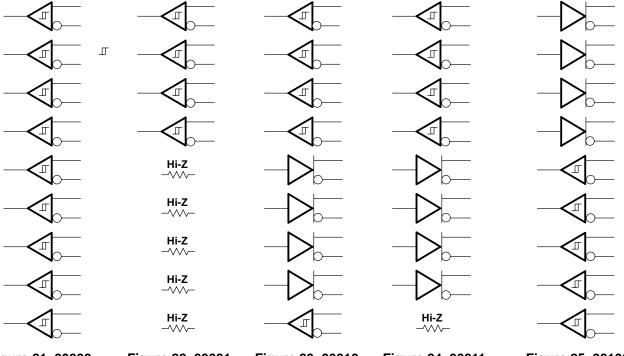


Figure 21. 00000

Figure 22. 00001

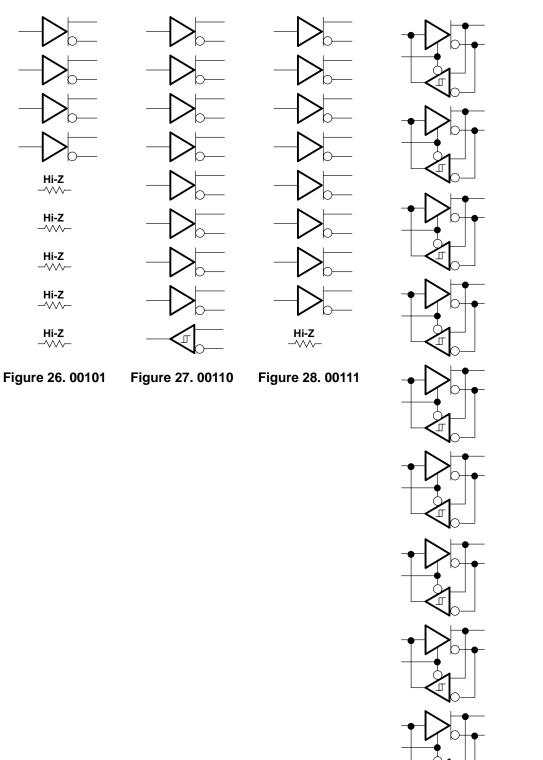
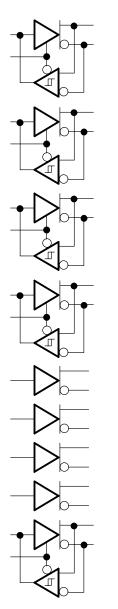

Figure 23. 00010

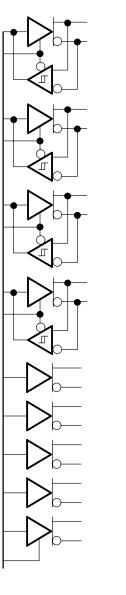
Figure 24. 00011

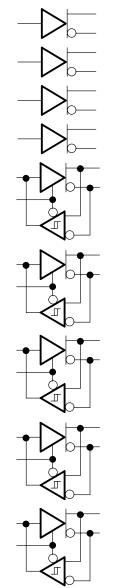
Figure 25. 00100

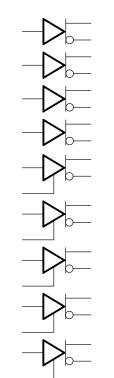
SLLS133D - AUGUST 1992 - REVISED MAY 1995

APPLICATION INFORMATION


Figure 30. 01001




Figure 29. 01000


SLLS133D - AUGUST 1992 - REVISED MAY 1995

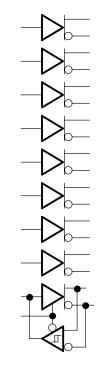

APPLICATION INFORMATION

Figure 34. 01101

Figure 35. 01110

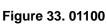
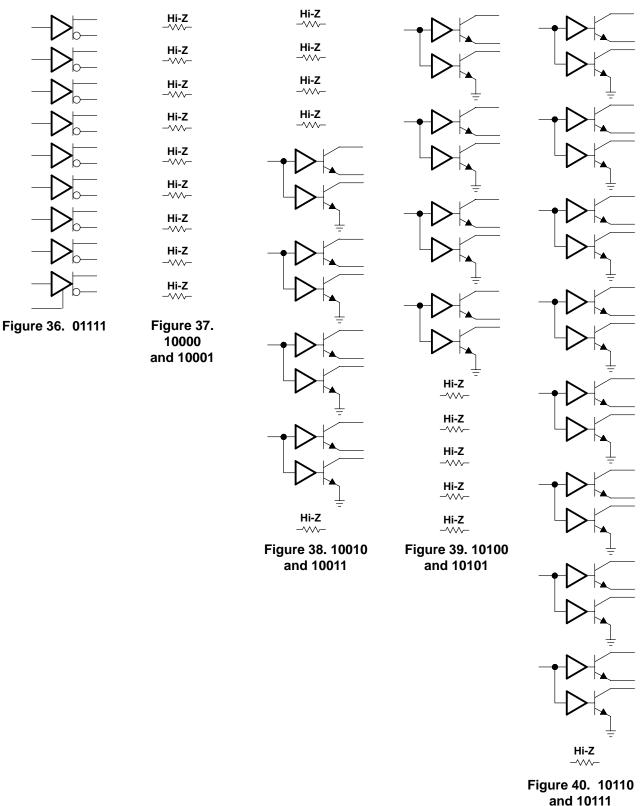
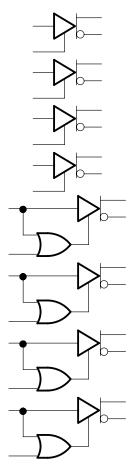




Figure 32. 01011

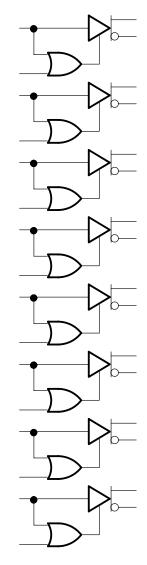
SLLS133D - AUGUST 1992 - REVISED MAY 1995


APPLICATION INFORMATION

SLLS133D - AUGUST 1992 - REVISED MAY 1995

Hi-Z

Figure 41. 11000 and 11001



APPLICATION INFORMATION

Hi-Z *−*√√√−

Figure 42. 11010 and 11011 Figure 43. 11100 and 11101

Hi-Z

Hi-Z

Figure 44. 11110 and 11111

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated