
LynxSoft TM 1394 Software
Application Programmer

User’s Guide

SLLU003
October 1996

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR
SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of
TI products in such applications requires the written approval of an appropriate TI officer. Questions
concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

iii

Preface

Read This First

The LynxSoftTM Application Programmer User’s Guide discusses the theory of
operation for the LynxSoft Application Programmer Interface (API). The 1394 bus
driver API commands are also covered. The commands are given as API
functional descriptions or device function requests. Parameter titles for each
function always appears in italics within the parameter listing. An installation
procedure is provided followed by the test application and the source code
needed. The configuration ROM is also described in this user guide.

If You Need Assistance. . .

If you want to. . . Do this. . .

Order Texas Instruments
documentation

Call the TI Literature Response Center:
(800) 477-8924

Ask questions about product
operation or report suspected
problems

Call Texas Instruments Mixed
Technical Support: (972) 480-4546
E-Mail: ANSW@msg.ti.com

Trademarks

LynxSoft and TI are trademarks of Texas Instruments Incorporated.
Sony is a trademark of the Sony Corporation.

This application programmer interface is derived from the Microsoft 1394 BUS Interfaces
document. Portions of this document are copyrighted by Microsoft in their 1394 BUS Interfaces
document and are reprinted here with the permission of Microsoft Corporation. The interfaces
described herein are not guaranteed to remain static in the future. Users should migrate to the
Microsoft Win32 DDK when it is available.

iv

v

Contents

1 Introduction 1-1

2 LynxSoft API Theory of Operation... 2-1

2.1 LynxSoft API Description ... 2-2
2.2 Isochronous Transmission ... 2-3
2.3 Asynchronous Transmission .. 2-5
2.4 Bus Enumeration ... 2-6

2.4.1 Initial Bus Reset .. 2-6
2.4.2 Bus Enumeration... 2-6
2.4.3 Bus Reset After Initial Enumeration .. 2-6

3 1394 Bus Driver API.. 3-1

3.1 cls1394Initialize.. 3-2
3.2 cls1394CreateFile .. 3-3
3.3 GetAdapterAddress ... 3-4
3.4 cls1394GetLastError .. 3-5
3.5 cls1394Terminate .. 3-6
3.6 cls1394CloseHandle .. 3-7
3.7 cls1394DeviceIOControl .. 3-8
3.8 cls1394AllocateAddressRange .. 3-9
3.9 cls1394FreeAddressRange.. 3-13
3.10 cls1394AsyncRead .. 3-14
3.11 cls1394AsyncWrite... 3-15
3.12 cls1394AsyncLock ... 3-16
3.13 cls1394IsochAllocateBandwidth... 3-18
3.14 cls1394IsochAllocateChannel .. 3-20
3.15 cls1394IsochAllocateResources .. 3-21
3.16 cls1394IsochAttachBuffers .. 3-22
3.17 cls1394IsochDetachBuffers ... 3-25
3.18 cls1394IsochFreeBandwidth .. 3-26
3.19 cls1394IsochFreeChannel ... 3-27
3.20 cls1394IsochFreeResources.. 3-28
3.21 cls1394IsochListen .. 3-29
3.22 cls1394IsochQueryCurrentCycleNumber ... 3-30
3.23 cls1394IsochStop... 3-31
3.24 cls1394IsochTalk ... 3-32
3.25 cls1394Get1394AddressFromDeviceObject .. 3-33
3.26 cls1394SetDeviceSpeed.. 3-34

vi

4 Installation 4-1

5 Test Application .. 5-1

5.1 Test Utility Controls and Dialog Boxes ... 5-1
5.1.1 File|Exit ... 5-2
5.1.2 Misc|Device|Open ... 5-2
5.1.3 Misc|Device|Close ... 5-2
5.1.4 Misc|AddressRange|Allocate... 5-2
5.1.5 Misc|Address Range|Free ... 5-2
5.1.6 Misc|Query Cycle Number... 5-2
5.1.7 Misc|Get 1394 Address ... 5-2
5.1.8 Async|Quadlet... 5-2
5.1.9 Async|Block... 5-2
5.1.10 Async|Lock.. 5-2
5.1.11 Isoch|Allocate|Bandwidth .. 5-3
5.1.12 Isoch|Allocate|Channel.. 5-3
5.1.13 Isoch|Allocate|Resources.. 5-3
5.1.14 Isoch|Free|Bandwidth.. 5-3
5.1.15 Isoch|Free|Channel ... 5-3
5.1.16 Isoch|Free|Resources ... 5-3
5.1.17 Isoch|Buffers|Attach .. 5-3
5.1.18 Isoch|Buffers|Detach ... 5-3
5.1.19 Isoch|Listen ... 5-3
5.1.20 Isoch|Talk.. 5-4
5.1.21 Isoch|Stop ... 5-4
5.1.22 ISO Rx|Camera ... 5-4
5.1.23 ISO Rx|Lynx->Lynx ... 5-4
5.1.24 ISO Rx|Stop|Camera... 5-4
5.1.25 ISO Rx|Stop|Lynx->Lynx ... 5-4
5.1.26 ISO Tx|Lynx->Lynx.. 5-4
5.1.27 ISO Tx|Stop... 5-4
5.1.28 Camera|ON ... 5-4
5.1.29 Help|About 1394test.. 5-4

6 Configuration ROM ... 6-1

7 Errata 7-1

vii

Tables

2–1 Isochronous Transmission Sequence ..2-4
2–2 Asychronous Transmission Seuence ...2-5
3–1 CYCLE_TIME Register.. 3-29
4–1 WWUID Configuration ...4-1
6–1 CSR ROM Values ...6-1
7–1 Errata ..7-1

viii

1-1

Chapter 1

Introduction

This document describes the Texas Instruments (TITM) implementation of an
Application Programmer Interface (API) for the 1394 bus. This API closely
follows the Microsoft bus interface to allow easy migration of software
applications to the new Win95/WinNT Microsoft 1394 support. However, due to
this interface being a monolithic driver set and not based on the Windows Device
Model, there are some differences, both additions and deletions. The goal was to
make the data structures, calling sequences, and control mechanisms similar in
order to make this transition easier.

1-2

2-1

Chapter 2

LynxSoft API Theory of Operation

This section describes the architecture of the LynxSoft software product. This
section also provides an overview of the services provided by the software, and a
description of initialization provided by the software. Also described are
operations required during asynchronous and isochronous transmissions.

LynxSoft API Description

2-2

2.1 LynxSoft API Description

The 1394 Lynx API performs the necessary functions required to do 1394
operations of both a synchronous and asynchronous nature. Hereafter the API
code is referred to as a bus driver. Device objects are created upon bus
initialization and 1394 bus resets that describe the currently known properties of
the 1394 bus, including device speed, device nodes, isochronous bandwidth, and
isochronous channel allocations. The use of callbacks allows the programmer to
have a method of controlling the 1394 bus without requiring a large amount of
polling. The states that the bus code exists in are Initialize, Bus Enumeration,
Function Request, Bus Reset and Terminate. The states with a short description
are shown in Figure 2–1.

Figure 2–1. 1394 Bus States

The 1394 bus driver acts as a bus enumerator for the 1394 bus. The 1394
hardware tree is built by discovering hardware devices on the 1394 bus. The
discovery of a device has the effect of creating a new device object for that

Initialize . This state performs data initialization required by
the lower software levels.

Bus Enumeration . The bus code performs bus enumeration.
It creates device objects for each device on the 1394 bus.

Function Request . This state waits for
cls1394DeviceIOControl calls with specific bus codes for
different functions and then performs them.

Bus Reset . Upon a bus reset the bus code renumerates the
bus and reuses existing handles when possible. If the 1394
device does not have a World-Wide Unique Identification
(WWUID) then the handle is invalidated and the application
program is responsible for reopening the correct handle.

Terminate . This state unloads the device driver and disables
callbacks.

Isochronous Transmission

2-3

device. There is a device object created for every device that is found on the
1394 bus. Handles to the device objects created by the 1394 bus driver are used
by the application code to address the 1394 device for which a particular function
is targeted. The attempt is to shield the user application code from the inner-
workings of the 1394 bus. For example, when a bus reset occurs and the actual
device that is pointed to by the device object handle has a World-Wide User ID
(WWUID), then the handle stays valid and the application need not be concerned
that a bus reset has occurred. However, if the actual device has not implemented
a WWUID (noncompliant device), then the handle must be invalidated and the
application program must reopen a handle to the device object in question. In
this case the application would have to connect to the device by opening a
handle to a specific node and then either knowing the bus configuration or
interrogating the noncompliant device. Attempts to perform a function using an
invalid handle results in an error return.

The 1394 bus can be reset infinitely during the course of normal operations. The
bus driver does not attempt to reclaim isochronous resources through a bus
reset. The application programmer is responsible for returning bandwidth and
isochronous channels to the bus driver.

2.2 Isochronous Transmission

Isochronous transmission has a specific sequence that needs to be followed for
successful operation. The sequence of events is shown in Table 2–1, as well as
illustrated in the example code contained in this document.

Note:

It is very important to follow the sequence shown in Table 2–1; unpredictable
results can occur when the sequence is not followed.

Isochronous Transmission Sequence

2-4

Table 2–1. Isochronous Transmission Sequence

Operation Result

cls1394Initialize Initializes the device driver and LynxSoft API code.

cls1394CreateFile Locates and obtains a handle to the device that is to be transmitted to
and received from.

cls1394IsochAllocateBandwidth Ensures that there is enough bandwidth still available on the 1394 bus
for the operation that is to be performed.

cls1394IsochAllocateChannel Ensures that there exists an isochronous channel for transmission.

cls1394AllocateResources Must perform this operation before the buffers are attached.

cls1394AttachBuffers Attaches buffers to be transmitted to or from. This function must follow
allocation of resources. The handle passed in must be valid.

cls1394Listen Begins the operation and monitors the callback routines for status. The
callbacks must be handled in a timely fashion. If callbacks cannot be
handled they start to back up in the queue and eventually cause a
system crash. When the bandwidth is insufficient to perform all
processing before the next callback occurs, the amount of data
transferred per buffer or the packet size transferred should be
decreased. The watermark callback also can allow the processing to
begin before the buffer has completely filled.

cls1394Talk Begins the operation and monitors the callback routines for status. The
callbacks must be handled in a timely fashion. If callbacks cannot be
handled correctly they back up in the queue and eventually cause a
system crash. When the bandwidth to perform all processing before the
next callback occurs, the amount of data transferred per buffer or the
packet size transferred should be decreased. The watermark callback
also can allow the processing to begin before the buffer has completely
filled.

Note: In the case of the talk function, the user must detach and re-
attach the buffers before issuing another talk command after a stop.
This is a known bug that is planned to be corrected in the future.

cls1394Stop Halts the transfer. This must be done before the buffers or resources
are de-allocated.

cls1394DetachBuffers Detaches the buffers used in the transfer. This action must be
completed before the resource handle is freed. However, the allocate
resource handle can be reattached to another buffer.

cls1394FreeResources Frees the resources. This action must performed after the buffers have
been detached.

cls1394FreeBandwith Frees bandwidth

cls1394FreeChannel Frees channel allocation

cls1394CloseHandle Releases the handle opened.

cls1394Terminate Terminates the application.

Asynchronous Transmission

2-5

2.3 Asynchronous Transmission

Asynchronous transmission does not require as precise a calling order as
isochronous transmission. However there are a few rules that must be followed.
Table 2–2 below describes some asynchronous functions and some of the
required sequence considerations before using the functions.

Table 2–2. Asynchronous Transmission Sequence

Operation Result

cls1394Initialize Initializes the device driver and LynxSoft API code.

cls1394CreateFile Locates and obtains a handle to the device that is to be
transmitted to or received from.

cls1394AllocateAddressRange Provides a buffer to handle asynchronous traffic. The
application software can read/write to any configuration
status register (CSR) space that has been made available by
the target device. In the case of another LynxSoft API, the
target device must have allocated their address range for
writing.

cls1394AsyncWrite, cls1394Read Performs a read/write to any CSR space that has been made
available by the target device. In the case of another
LynxSoft API, the target device must have allocated their
address range for writing.

cls1394FreeAddressRange Frees the allocated address range.

cls1394CloseHandle Releases the handle opened.

cls1394Terminate Terminates the application.

Bus Enumeration

2-6

2.4 Bus Enumeration

The bus enumeration process allows the application programmer to access a
device without knowing the device characteristics (bus node, speed...etc.). The
enumeration process happens upon either a bus reset or the execution of the
cls1394Initialize function. This function causes a bus reset to occur. Bus
enumeration is needed to allow the LynxSoft API the opportunity to become the
bus manager and to find devices and create device objects for them. The
enumeration process is described below.

2.4.1 Initial Bus Reset
Upon a bus reset the LynxSoft device driver begins receiving the self-ID packets
from all nodes on the 1394 bus. The API requests the topology and speed maps
from the bus manager functions.

2.4.2 Bus Enumeration
Query all nodes on the bus and request their Configuration Info Block. This block
contains the WWUID for each device. When a WWUID does not exist then the
bus enumeration classifies that device as noncompliant (NC) and creates an NC
device object. All of the device objects are ordered depending on their WWUID
and their bus node addresses. For example, if two SonyTM cameras are on the
bus they are ordered as Sony camera #1 and #2. This allows the application
software to open a Sony camera device object and ask for #1 or #2. The
application can then open Sony camera #2 and perform reads of the
configuration block to determine if that is the type desired.

In the case of an NC device (one without a WWUID), the bus enumeration puts it
in a list according to its node ID. Therefore, an application can open the nth NC
device and communicate. This requires a strong knowledge of the topology of
the 1394 bus. After opening the device, the application can then query the
device, if possible, to determine which device it is. As soon as all 1394 devices
have a WWUID then this is not necessary, the application can read the
information block.

2.4.3 Bus Reset After Initial Enumeration
When a bus reset occurs after the 1394 bus has been enumerated, the devices
that contained a WWUID retains the same handle returned during the
cls1394CreateFile function. This allows the application software to continue
operation without needing knowledge of the bus reset. The handle would
continue to point to the same 1394 device. However, in the case of an NC
device, the handle is no longer valid and must be reopened for communication.
In that case the LynxSoft API returns an error upon attempting an operation with
an invalid handle.

3-1

Chapter 3

1394 Bus Driver API

The LynxSoft API is a set of services that enable 1394 actions. Each service
consists of an input parameter to the cls 1394 Device IO Control function and a
structure containing input parameters. Only cls1394DeviceIOControl is actually
used as a function call.

cls1394Initialize

3-2

3.1 cls1394Initialize

Description Initializes the 1394 bus driver software

Action This function performs needed initialization of the 1394 bus driver software. The
function must be invoked to initiate the connection to the underlying device
drivers. No bus functions can operate if initialization has not taken place. This
function is invoked as follows:

Syntax BOOL cls1394Initialize();

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394CreateFile

1394 Bus Driver API 3-3

3.2 cls1394CreateFile

Description Finds and obtains a handle to a device object

Action This function finds a desired device on the enumerated 1394 bus and returns a
handle to the device. When the device has a WWUID then this handle lives
through a bus reset, otherwise it is invalidated and the application must reopen
the handle.

Syntax cls1394HANDLE cls1394CreateFile (ULONG VendorID_DeviceType, WORD
DeviceEntry);

Parameters VendorID_DeviceType –Is the IEEE vendor ID and vendor device type to open
the vendor ID for the device of interest. For example, a Sony desktop camera
Vendor ID is 08004602. If the VendorID_Device type is 0, then the function
returns a handle to a noncompliant device that is located at the device handle
specified by DeviceEntry. This handle would be used when communicating with
devices that may not have implemented a WWUID. This number is a
hexadecimal number. To open another PCILynx card the VendorID_DeviceType
is 08002850.

DeviceEntry - Is the nth entry for the device type requesting a handle. This
allows multiple devices of the same type to be opened. When the device ID is 0
and the VendorID_DeviceType is 08002850 then a handle to the PCILynx host
adapter is returned. This number is a hexadecimal number.

Return Status When the cls1394HANDLE is null then the last error code should be checked.

GetAdapterAddress

3-4

3.3 GetAdapterAddress

Description Returns a pointer to the 1394 host adapter card

Action This function returns a pointer to the PCILYNX host-adapter card. The pointer
can be cast using the structure defined in the file PCILYNX.H. The base
structure is defined below showing substruct fields that may not be complete.

Syntax PVOID GetAdapterAddress();

Example typedef struct {
union {

QUADLET LynxArr[0x1000 / 4];
struct {
LynxPCICfgSpace PCIRegs;
LynxAuxPortRegs AUXRegs;
LynxDMACtrlRegs DMARegs;
LynxFIFORegs FIFORegs;
LynxLLCRegs LLCRegs;

} PCILynxRegStruct, *pPCILynxRegStruct;

Parameters LynxArr – Is an array of quadlets that maps over all PCILYNX registers

LynxPCICfgSpace - Is a struct that maps the peripheral component interface
(PCI) Configuration registers (000 - 03C)

LynxAuxPortRegs - Is a struct that maps the auxiliary (AUX)-port registers (040 -
0FC)

LynxDMACtrlRegs - Is a struct that maps the direct-memory access (DMA)-
control registers (100 - 9FC)

LynxFIFORegs - Is a struct that maps the first-in, first-out (FIFO) control
registers (A00 - AFC)

LynxLLCRegs - Is a struct that maps the link-layer control registers (B00 - FFF)

cls1394GetLastError

1394 Bus Driver API 3-5

3.4 cls1394GetLastError

Description Obtains the error number upon a status failure

Action This function returns the last error set by any of the bus functions. This function
is invoked as follows:

Syntax ULONG cls1394GetLastError();

Error Codes CLASS1394_RESP_COMPLETE operation completed
CLASS1394_RESP_1 reserved
CLASS1394_RESP_2 reserved
CLASS1394_RESP_3 reserved
CLASS1394_RESP_CONFLICT_ERROR resource conflict,

request can be retried
CLASS1394_RESP_DATA_ERROR hardware error, data

unavailable
CLASS1394_RESP_TYPE_ERROR incorrect request packet
CLASS1394_RESP_ADDRESS_ERROR incorrect address
CLASS1394_RESP_8_15 reserved
CLASS1394_GENERIC_FAILURE generic fail code
CLASS1394_INVALID_REQUEST DeviceIoControl invalid

request
CLASS1394_WWUID_INVALID CreateFile error
CLASS1394_WWUID_NOTFOUND CreateFile error
CLASS1394_HANDLE_INVALID CloseHandle error
CLASS1394_HANDLE_NOTOPEN CloseHandle error
CLASS1394_SPEEDMAP_ERROR Error accessing speed

map
CLASS1394_NUM_DESTINATIONS_ERROR Number of destinations

for speed < 0
CLASS1394_RESPONSE_UNEXPECTED Unexpected response

packet
CLASS1394_RESPONSE_ZERO_DATA Zero data in data

payload packet
CLASS1394_RESPONSE_TIMEOUT Time-out - no response

in allotted time
CLASS1394_ISOALLOCRES_MEM_FAIL Failed to allocated

Internal Class Resource
CLASS1394_SPEED_NOT_AVAIL Failed to acquire speed

requested by the user.
CLASS1394_INVALID_ADDR_RNG Failed to Allocate/Free

1394 Address Range

cls1394Terminate

3-6

3.5 cls1394Terminate

Description Close and terminate the 1394 bus driver software

Action This function terminates the bus driver software and releases resources back to
the operating system.

Syntax BOOL cls1394Terminate();

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394CloseHandle

1394 Bus Driver API 3-7

3.6 cls1394CloseHandle

Description Returns a previously received handle to the bus driver

Action This function closes a previously allocated handle to a device object. This allows
the bus driver to free some resources for use.

Syntax BOOL cls1394CloseHandle(cls1394HANDLE hHnd);

Parameters hHnd - This parameter is a previously allocated handle that was obtained from
the cls1394FileOpen function.

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394DeviceIOControl

3-8

3.7 cls1394DeviceIOControl

Description Performs a 1394 function request

Action All of the 1394 function requests are performed by invoking the
1394DeviceIORequest call. This call is meant to emulate the Microsoft
IORequestCalls that are used in the upcoming Win95 1394 support. The calls
are invoked by performing a cls1394DeviceIoControl call and setting the
dwIoControlCode to the appropriate function call.

Syntax BOOL cls1394DeviceIoControl (cls1394HANDLE hDevice
DWORD dwIoControlCode
LPVOID lpInBuffer
DWORD nInBufferSize
LPVOID lpOutBuffer
DWORD nOutBufferSize
LPDWORD lpBytesReturned
LPOVERLAPPED lpOverlapped)

Parameters: hDevice - Is the device object handle to which the operation is targeted. This
handle is obtained by a call to cls1394FileOpen.

dwIoControlCode - Determines which function of the bus library is invoked. Refer
to the particular function the user desires to be invoked for the correct input
value.

lpInBuffer - Is the input structure required by the function that is desired to be
invoked. The caller must cast this structure to the structure of interest.

nInBufferSize - Is not used

lpOutBuffer - Is not used

nOutBufferSize - Is not used

lpBytesReturned - Is not used

lpOverlapped - Is not used

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394AllocateAddressRange

1394 Bus Driver API 3-9

3.8 cls1394AllocateAddressRange

Description Allocates 1394 space for asynchronous requests

Action This function allocates a 1394 address range to be used in asynchronous
requests to the local 1394 node. To use this function, the caller supplies a buffer.
This buffer does not have to be locked down or fixed in memory. The device
driver performs a scatter/lock on the buffer. The caller supplies the type of
access a remote device has to this memory, as well as optional notification
options so that the caller can be notified after this memory has been accessed.

If the function call is successful, the API driver maps 1394 address(es) to the
caller-supplied memory region, and returns these newly mapped 1394
address(es) to the caller. The caller can then supply these address(es) to remote
1394 nodes, thus allowing the nodes to perform asynchronous requests to this
memory region.

In most cases, the returned 1394 address(es) is an arbitrary one. However,
callers of this API can elect to supply a specific 1394 address as pointed to by
the RequiredP1394Offset parameter. This parameter is necessary to support
devices that issue asynchronous requests to hardcoded 1394 addresses. When
RequiredP1394Offset specifies a required address, then this 1394 address is
always returned. An application cannot overlap 1394 addresses.

Callers of this API can choose not to supply a buffer (i.e. lpBuffer == NULL). This
has the effect of allocating a 1394 address range that does not map to any real
PC memory. When incoming requests try to access this 1394 address range, the
lpCallback routine (must be specified for lpBuffer == NULL) is called and returns
a packet pointer to the transferred data. The application has the responsibility of
moving the data to the desired local-memory location.

An important point to consider when using this API is that lp1394Offset points to
an array of 1394 addresses to be returned. The array of returned addresses
must be big enough to hold the number of memory locations spanned by the
specified buffer.

This API is invoked by calling the 1394DeviceIOCtl function with the
dwIoControlCode equal to the published value of IOCTL_P1394_CLASS, the
FunctionNumber within the P1394_CLASS_REQUEST being equal to
CLS_REQUEST_ALLOCATE_ADDRESS_RANGE, and the request union field
filled in with the following structure:

Input struct {
QUADLET *lpBuffer;
ULONG nLength;
ULONG fulAccessType;
ULONG fulNotificationOptions;
LPVOID lpCallback;
LPVOID lpContext;
P1394_OFFSET Required1394Offset;
PULONG lpAddressesReturned;
PLARGE_INTEGER lp1394Address;

} clsAllocateAddressRange;

cls1394AllocateAddressRange

3-10

Parameters lpBuffer – When specified, points to the application buffer where asynchronous
operations are to be read, written, or locked. When NULL is specified, then
lpCallback must be provided as the caller is consulted with an order to return
whatever results are requested from this address range.

nLength –Specifies the length of the 1394 address to map.

fulAccessType – When specified, dictates what type of access is allowed to the
specified memory region. This field is used to restrict access to specified
devices. These bit definitions can have an OR function performed to achieve the
desired access such as:

❏ AccessTypeRead - The memory region specified can be read by the
device.

❏ AccessTypeWrite - The memory region specified can be written to by the
device.

❏ AccessTypeLock - The memory region specified can be the target of a
lock operation by the device.

fulNotificationOptions –Specifies what kind of post notification the device driver
needs when this region of memory is accessed. The different options are
enabled by using an OR function with the defines specified below into this
parameter. Multiple types of notification are allowed for the same 1394 address.
Types of notification are:

❏ NotifyAfterRead – This option notifies the device driver after carrying out
an AsyncRead operation. This serves only as a notification to the
device driver that their address space was accessed.

❏ NotifyAfterWrite – This option notifies the device driver after carrying out
an AsyncWrite operation. This serves only as a notification to the
device driver that their address space was written.

❏ NotifyAfterLock - This option notifies the device driver after carrying out
an AsyncLock operation. This serves only as a notification to the
device driver that their address was the target of an Atomic
operation.

lpCallback – Points to the device driver callback routine. This routine is called by
the 1394 class driver at deferred process (DPC) time for post notifications, and
possibly at the interrupt level on prenotification. Prenotification callbacks only
occur when the lpBuffer parameter (above) is NULL, which indicates that the
device driver wants to handle each request to this address range itself.

When using post notifications, the callback return code (RESPONSE_CODE) is
ignored. Modifying any of the other parameters also has no effect.

When using prenotification callbacks in all asynchronous cases, the device driver
callback function must return an appropriate 1394 response code, which is put
into the 1394 response packet RCODE field.

cls1394AllocateAddressRange

1394 Bus Driver API 3-11

If the incoming asynchronous request was a Read or Lock, then the device driver
callback function must also set lpData function (*lpData) to point at a buffer
containing the response data, as well as set lpLength to be the length of lpData.
The device-driver callback function should also set the lpEvent parameter
(*lpEvent) to point at an initialized event object, which is signaled when the buffer
pointed at by (*lpData) has been sent, thus signifying that ownership of the buffer
has been returned to the device driver.

If the incoming asynchronous request was a Write request, then lpData and
lpLength specify where the write data is contained in memory and how much is
present. The callback function for an Asynchronous Write request can do
whatever with lpData and lpLength as long as an appropriate response code is
returned.

Callback RESPONSE_CODE
Syntax ddNotificationCallBack(

IN LPVOID lpBuffer,
IN ULONG ulOffset,
IN PVOID * lpData,
IN PULONG * lpLength,
IN DWORD dwSourceAddress,
IN ULONG fulNotificationOption,
IN LPVOID lpContext,
);

Callback
Parameters lpBuffer - Describes the buffer that was originally submitted to

cls1394AllocateAddress.

ulOffset - Specifies the byte offset within lpBuffer where the 1394 operation is
pending.

lpData - Points to the pointer which in turn points to a buffer where
request/response data is stored. When the incoming asynchronous request is a
Write, then the Write request data is pointed at by lpData. When the incoming
asynchronous request is a Read or Lock, the callback function fills in lpData to
point at response data. This lpData field is only used to prenotify
AllocateAddressRange conditions (i.e. original lpBuffer == NULL).

lpLength - Is a pointer which in turn points to the length of the requested 1394
operation. When incoming asynchronous request is a Write, then the Write
request length is pointed at by lpLength. If the incoming asynchronous request is
a Read or Lock, the callback function should fill in lpLength to point at the desired
length of data to be returned.

SourceAddress - Specifies the 1394 address (6-bit node number and 10-bit bus
number) that is requesting the operation.

fulNotificationOption - Is the notification option bit that triggers the notify callback
on an asynchronous operation.

lpContext - Points to the device driver-supplied context data.

cls1394AllocateAddressRange

3-12

The device driver callback returns a RESPONSE_CODE that is used by the
miniport driver for the response code (RCODE) in the 1394 response packet.

lpContext – Points to the device driver context data that is passed to the device
driver callback routine when a notification event occurs.

Required1394Offset – If not equal to 0x000000000000, specifies the 1394
address to be returned in lp1394Address. This is not granted if previous callers
have already allocated this 1394 address.

Note:

The user cannot allocate a 1394 memory address that, when combined with the
buffer length, exceeds a 32-bit address.

For example, a user could not allocate -0xFFFA FFFF FE00 and a buffer length
of 400H bytes since this would exceed a 32-bit address. When equal to
0x000000000000, lp1394Address is an arbitrary 1394 address.

lpAddressesReturned – Points to a location where the number of 1394
addresses returned in lp1394Offset (below).

lp1394Address – If this call request completes successfully, points to the
beginning of the 1394 addresses corresponding to the beginning of the
application buffer. This address can be provided to remote 1394 nodes. The
array pointed at by lp1394 address is an array of LARGE_INTEGER (64 bits);
however, only the lower 48 bits of each LARGE_INTEGER entry is filled in with a
1394 offset. The extra 16 bits of each array element are unused, but are helpful
for alignment purposes. The user should make no assumptions as to how the
mapping between the 1394 address and the physical address is made.

Return Status If successful, a STATUS_SUCCESS code is returned along with lp1394Address
filled in. Device drivers can provide lp1394Address to remote 1394 nodes for
them to use in subsequent asynchronous operations. It is the responsibility of the
caller to ensure that lpBuffer and lpCallback remain valid until the mapping is
freed with the cls1394FreeAddressRange function.

cls1394FreeAddressRange

1394 Bus Driver API 3-13

3.9 cls1394FreeAddressRange

Description Frees previously allocated address range

Action This function releases a 1394 address allocated by
cls1394AllocateAddressRange.

This API is invoked by submitting an IOCtl IRP with the dwIoControlCode equal
to the published value of IOCTL_P1394_CLASS, the function number within the
P1394_CLASS_REQUEST being equal to the
CLS_REQUEST_FREE_ADDRESS_RANGE, and the request union field filled in
with the following structure:

Input struct {
ULONG nAddressesToFree;
PLARGE_INTEGER lp1394Address;

} clsFreeAddressRange;

Parameters nAddressesToFree – Specifies how many offsets are specified in lp1394Offset.

lp1394Address – Specifies a pointer to the 1394 address(es) to be released.
The array pointed at by lp1394Address is an array of LARGE_INTEGER (64
bits), however, only the lower 48 bits of each LARGE_INTEGER entry are
inspected. The extra 16 bits of each array element are unused, but are helpful for
alignment purposes. These address(es) are returned in a prior successful call to
cls1394AllocateAddress.

Return Status A STATUS_SUCCESS code is returned and the lp1394Address is now
invalidated.

cls1394AsynchRead

3-14

3.10 cls1394AsyncRead

Description Performs the Asynchronous Read from the 1394 Node

Action This function performs an Asynchronous Read operation to the device specified.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ASYNC_READ, and the
lpInBuffer structure filled in with the following structure:

Input struct {
P1394_ADDRESS DestinationAddress;
ULONG nNumberOfBytesToRead;
ULONG nBlockSize;
ULONG fulFlags;
PVOID lpBuffer;

} clsAsyncRead;

Parameters DestinationAddress – Specifies the P1394 48-bit destination address for this
Asynchronous Read operation. This function is not valid for reading the user-
operated node.

nNumberOfBytesToRead – Specifies the number of bytes to be read from the
remote 1394 node.

nBlockSize – Is not used, this parameter should be set to 0.

fulFlags - Is not used

lpBuffer – Points to a user-allocated memory location for which data is received
from the remote node.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned along
with the received data placed into the linear address that the lpBuffer represents.
All other errors are reported using cls1394GetLastError.

cls1394AsyncWrite

1394 Bus Driver API 3-15

3.11 cls1394AsyncWrite

Description Performs the Asynchronous Write to the 1394 Node

Action This function performs an Asynchronous Write operation to the device(s)
specified.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ASYNC_WRITE, and the
lpInBuffer structure filled in with the following structure:

Input struct {
P1394_ADDRESS DestinationAddress;
ULONG nNumberOfBytesToWrite;
ULONG nBlockSize;
ULONG fulFlags;
PVOID lpBuffer;

} clsAsyncWrite;

Parameters DestinationAddress – Specifies the P1394 48-bit destination address for this
Asynchronous Write operation. This function is not valid for reading the user-
operated node.

nNumberOfBytesToWrite – Specifies the number of bytes to write to the remote
1394 node.

nBlockSize – If nonzero, specifies the size of each individual block within the
data stream that is written as a whole to the remote node. When this parameter
is zero, then the maximum packet size for the speed selected is used in breaking
up these write requests.

fulFlags – Is not used

lpBuffer – Points to a user-allocated memory location that is transmitted to the
remote node.

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394AsyncLock

3-16

3.12 cls1394AsyncLock

Description Performs the Asynchronous Lock to the 1394 Node

Action This function performs an Asynchronous Lock operation to the device specified.
This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ASYNC_LOCK and the
lpInBuffer structure filled in with the following structure:

Input struct {
P1394_ADDRESS DestinationAddress;
ULONG nNumberOfArgBytes;
ULONG nNumberOfDataBytes;
ULONG fulTransactionType;
ULONG fulFlags;
ULONG Arguments[2];
ULONG DataValues[2];
PVOID lpBuffer;

} clsAsyncLock;

Parameters DestinationAddress – Specifies the P1394 48-bit destination offset for this lock
operation.

Note:

Unless the caller specified the 1394 class-driver Device Object, the upper 16
bits are ignored in addressing.

nNumberOfArgBytes – Specifies the number of argument bytes used in
performing this Asynchronous Lock operation.

nNumberOfDataBytes – Specifies the number of data bytes used in performing
this Asynchronous Lock operation.

fuTransactionType – Specifies which subfunction to use on the remote 1394
node. Currently, only the following operations are valid transaction types:

❏ MaskSwap - refer to IEEE 1394 specification for more details

❏ CompareSwap - refer to IEEE 1394 specification for more details

❏ FetchAdd - refer to IEEE 1394 specification for more details

❏ LittleAdd - refer to IEEE 1394 specification for more details

❏ BoundedAdd - refer to IEEE 1394 specification for more details

❏ WrapAdd - refer to IEEE 1394 specification for more details

fulFlags – Is not used

cls1394AsyncLock

1394 Bus Driver API 3-17

Arguments – Specifies that this array contains the arguments used in this Lock
operation.

DataValues – Specifies that this array contains the data values used in this Lock
operation.

lpBuffer – Points to a buffer that lock data values are returned from the remote
node.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned along
with the results of the Lock returned to the location pointed at by lpBuffer. All
other errors are reported using cls1394GetLastError.

cls1394IsochAllocateBandwidth

3-18

3.13 cls1394IsochAllocateBandwidth

Description Allocates isochronous bandwidth

Action This function allocates isochronous bandwidth to be used in subsequent
operations.

The 1394 bus driver takes the nMaxBytesPerFrameRequested, rounds up to the
nearest quadlet, and adds in the overhead required before making the proper
allocation of bandwidth. If the bandwidth allocation was successful, a bandwidth
handle is assigned in order to free up bandwidth at some later time.

This function performs an Asynchronous Lock operation to the device specified.
This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ALLOCATE_BANDWIDTH
and the lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nMaxBytesPerFrameRequested;
ULONG fulSpeed;
PHANDLE lpBandwidth;
PULONG lpBytesPerFrameAvailable;
PULONG lpSpeedSelected;

} clsIsochAllocateBandwidth;

Parameters nMaxBytesPerFrameRequested – Specifies the number of bytes per isochronous
frame requested. This value is rounded up to the nearest quadlet and the result
is added to the overhead required before the bus driver secures this bandwidth
from the isochronous resource manager.

fulSpeed – Specifies the speed flag to use in allocating bandwidth. Current speed
flags include:

❏ Speed100 - 98.304 Mbit/s

❏ Speed200 - 196.608 Mbit/s

❏ Speed400 - 393.216 Mbit/s

❏ SpeedFastest - Uses the fastest speed that the local transmitter
supports

lpBandwidth – Points to field that contains the returned bandwidth handle to be
used in releasing bandwidth resources at some later time.

lpBytesPerFrameAvailable – Points to field that contains the bytes per frame that
is available after the allocation succeeds or fails. Applications should not count
on this bandwidth being available, as another application could have allocated
bandwidth after this result is returned.

lpSpeedSelected – Points to the speed that was selected in allocating bandwidth.
Possible speed flags returned are:

❏ Speed100 - 98.304 Mbit/s

cls1394IsochAllocateBandwidth

1394 Bus Driver API 3-19

❏ Speed200 - 196.608 Mbit/s

❏ Speed400 - 393.216 Mbit/s

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and an
isochronous bandwidth is secured. In either case, lpBytesPerFrameAvailable is
filled in. All other errors are reported using cls1394GetLastError.

cls1394IsochAllocateChannel

3-20

3.14 cls1394IsochAllocateChannel

Description Allocates isochronous channel number

Action This function allocates an isochronous channel to be used in subsequent
operations.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ALLOCATE_CHANNEL and
the lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nRequestedChannel;
PULONG lpChannel;
PLARGE_INTEGER lpChannelsAvailable;

} clsIsochAllocateChannel;

Parameters nRequestedChannel – Specifies a specific channel requested by the application.
If 0xffffffff (-1) is specified, then an arbitrary channel is returned. Hardware
should be able to use any channel number (0-63) specified.

lpChannel – Points to the field that contains the returned channel when the
allocation of the channel is successful. This channel can be used in subsequent
isochronous operations.

lpChannelsAvailable – Points to the field that contains a bit mask of the available
Isochronous channels after the allocation succeeds or fails. Applications should
not count on these channels being available, as another application could have
allocated channels after this result is returned.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and an
isochronous channel is secured. In either case, lpChannelsAvailable is filled in.
All other errors are reported using cls1394GetLastError.

cls1394IsochAllocateResources

1394 Bus Driver API 3-21

3.15 cls1394IsochAllocateResources

Description Allocates resources for an isochronous stream

Action This function allocates hardware/software resources associated with a given
isochronous stream. Successful hardware/software resource allocation must be
coupled with the attachment of buffers (see cls1394IsochAttachBuffers below)
before the talk or listen function can be performed on an isochronous stream.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ALLOCATE_RESOURCES
and the lpInBuffer structure filled in with the following structure:

Input struct {
ULONG fulSpeed;
ULONG fulFlags;
PHANDLE lpResources;

} clsIsochAllocateResources;

Parameters fulSpeed – This field contains the requested speed for this resource handle.
Current speed flags include:

❏ Speed100 - 98.304 Mbit/s

❏ Speed200 - 196.608 Mbit/s

❏ Speed400 - 393.216 Mbit/s

❏ SpeedFastest - Uses the fastest speed that the local transmitter
supports

fulFlags – Specifies if the isochronous resource is to be used for Talking or
Listening operation.

❏ ResourceUsedInListening - Used in listening to an isochronous
stream

❏ ResourceUsedInTalking - Used in talking to an isochronous stream

lpResources – Points to a field which will contain the returned resource handle to
be used in releasing hardware/software resources at some later time.

Return Status If this function call is successful, a STATUS_SUCCESS code is returned and
hardware/software resources are secured. All other errors are reported using
cls1394GetLastError.

cls1394IsochAttachBuffers

3-22

3.16 cls1394IsochAttachBuffers

Description Attach Isochronous buffers to a resource

Action This function attaches isochronous buffers to a resource. The buffer and
resources must be setup prior to performing any Talk or Listen operation on any
isochronous channel.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ATTACH_BUFFERS and the
lpInBuffer structure filled in with the following structure:

Input struct {
HANDLE hResources;
DWORD Channel;
PISOCH_DESCRIPTOR lpIsochDescriptor;

} clsIsochAttachBuffers;

Parameters hResources – Specifies the resources that this buffer is to be associated with.

Channel - Specifies the channel number to attach this buffer to.

lpIsochBuffer – Points to an isochronous buffer to be used with this resource
handle. This descriptor should reside in locked memory as the 1394 driver stack
could potentially modify this descriptor at interrupt time. The definition of
ISOCH_DESCRIPTOR is as follows:

typedef struct _ISOCH_DESCRIPTOR {
struct _ISOCH_DESCRIPTOR *Next;
ULONG fulFlags;
PMDL lpBuffer;
ULONG ulLength;
ULONG ulSynchronize;
ULONG ulCycle;
LARGE_INTEGER SystemTime;
PVOID lpCallback;
PVOID lpWaterLineCallback;
DWORD ulWaterLine;
PVOID lpContext;
ULONG Status;
ULONG PacketSize;
ULONG ulReserved[4];

} ISOCH_DESCRIPTOR, *PISOCH_DESCRIPTOR;

ISOCH_DESCRIPTOR Parameters

_ISOCH_DESCRIPTOR - Is a singly linked list of isochronous
descriptors. The list may be circular.

cls1394IsochAttachBuffers

1394 Bus Driver API 3-23

fulFlags - Are bit flags used for synchronizing packet acceptance and
packet header removal before moving the data to the user
buffer. Valid bit fields are:

FLAG_SYNCHRONIZE 0x01
FLAG_STRIP_HEADER 0x02

This is used to synchronize data collection with the synchronous
field in the isochronous header packet.

lpBuffer - This pointer represents a buffer in which the data is to be
contained.

ulLength - Contains the length of lpBuffer

ulSynchronize - Is the 4-bit field used to synchronize packet acceptance
with the “sy” field of the 1394 isochronous packet header.

ulCycle - Is not used

lpCallback - Specifies the device driver callback addresses (if supplied).
In this way applications can be notified when the descriptor has
finished being processed.

lpWaterLineCallback - Specifies the device drivers waterline callback
address (if supplied). In this way applications can be notified
when the waterline data mark has been reached.

ulWaterLine - Specifies the amount of data for the attached buffer to
process before the waterline callback is invoked. This is 0-100
percent of the attached buffer.

lpContext - Is user-supplied context parameter to be provided at callback
time. This is returned to the callback routine.

Status - Is not used

PacketSize - Specifies the size of the packet to transfer or receive. This
value is specified in bytes. If the packet encoder is not stripped
off, the packet header size must be included in the packet size.

ulReserved[4] - Is not used

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and this
isochronous buffer is associated with the resource handle. This isochronous
buffer must eventually be freed using cls1394IsochDetachBuffers. All other
errors are reported using cls1394GetLastError.

Callback The two callbacks both have the same calling sequence:
Examples

❏ extern "C" void WINAPI MyBuffCompCallback(DWORD Context)

❏ extern "C" void WINAPI MyWaterLnCallback(DWORD Context)

cls1394IsochAttachBuffers

3-24

Call Back
Parameters Context - Is a user supplied value. It is used by the application software to

determine which callback has been completed. For example, if the application
has attached three separate buffers, the context returned allows the application
to determine which buffer has completed processing.

cls1394IsochDetachBuffers

1394 Bus Driver API 3-25

3.17 cls1394IsochDetachBuffers

Description Detaches previously attached buffers from a resource

Action This function detaches isochronous buffers previously using the
cls1394IsochAttachBuffers function.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_DETACH_BUFFERS and the
lpInBuffer structure filled in with the following structure:

Input struct {
HANDLE hResources;
PISOCH_DESCRIPTOR lpIsochDescriptor;

} clsIsochDetachBuffers;

Parameters hResources – Specifies the resource handle that this buffer is to be detached
from.

lpIsochDescriptor - Is not used

Return Status If this function call is successful, a STATUS_SUCCESS code is returned and the
isochronous buffer descriptor is detached from the resource handle specified. All
other errors are reported using cls1394GetLastError.

cls1394IsochFreeBandwidth

3-26

3.18 cls1394IsochFreeBandwidth

Description Frees previously allocated isochronous bandwidth

Action This function releases isochronous bandwidth allocated using
cls1394IsochAllocateBandwidth.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_FREE_BANDWIDTH and the
lpInBuffer structure filled in with the following structure:

Input struct {
HANDLE hBandWidth;

} clsIsochFreeChannel;

Parameters hBandWidth – Specifies the bandwidth handle to release.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous bandwidth is returned to the pool of available bandwidth. All other
errors are reported using cls1394GetLastError.

cls1394IsochFreeChannel

1394 Bus Driver API 3-27

3.19 cls1394IsochFreeChannel

Description Frees a previously allocated isochronous channel

Action This function releases an allocated isochronous channel using
cls1394IsochAllocateChannel.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_FREE_CHANNEL and the
lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nChannel;

} clsIsochFreeChannel;

Parameters nChannel – Specifies which allocated channel to release.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous channel is returned to the pool of available channels.

cls1394IsochFreeResources

3-28

3.20 cls1394IsochFreeResources

Description Frees prior allocated isochronous stream resources

Action This function releases isochronous hardware/software resources allocated using
cls1394IsochAllocateResources. All isochronous buffers that attach to this
resource must detach prior to issuing this call. When a device driver attempts to
free a resource handle with isochronous buffers still attached to it, the handle is
not freed and an error is returned.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_FREE_RESOURCES and the
lpInBuffer structure filled in with the following structure:

Input struct {
HANDLE hResources;

} clsIsochFreeResources;

Parameters hResources – Specifies the resource handle to release.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous hardware/software resources are returned to the pool of available
resources. All other errors are reported using cls1394GetLastError.

cls1394IsochListen

1394 Bus Driver API 3-29

3.21 cls1394IsochListen

Description Begins listening on an isochronous channel

Action This function begins listening on an isochronous channel and the resource
handle is specified. Resource allocation and attachment of buffers to this
resource handle must have already been done prior to issuing this call.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ISOCH_LISTEN and the
lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nChannel;
HANDLE hResources;
ULONG fulFlags;
ULONG nStartCycle;
LARGE_INTEGER StartTime;
ULONG ulSynchronize;
ULONG ulTag;

} clsIsochListen;

Parameters nChannel – Specifies the channel to listen on.

hResources – Specifies the resource handle to listen on.

fulFlags - Is not used

nStartCycle - Is not used

StartTime - Is not used

ulSynchronize - Is not used

ulTag - Is not used

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394IsochQueryCurrentCycleNumber

3-30

3.22 cls1394IsochQueryCurrentCycleNumber

Description Gets the current cycle number

Action This function returns the current isochronous cycle number.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ISOCH_QUERY_CYCLE_
NUMBER and the lpInBuffer structure filled in with the following structure:

Input struct {
PULONG lpCycleNumber;

} clsIsochQueryCurrentCycleNumber;

Parameters lpCycleNumber – Points to the returned current cycle number.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous cycle number is returned as in the 1394-1995 specification. The
CYCLE_TIME register is shown in Table 3–1 below. The timer is 32 bits wide.
The low-order 12 bits (cycle_offset) counts as a modulo 3072 counter, which
increments once every 24.576 MHz (40.69 ns). The next 13 high-order bits
(cycle_count) are a modulo 8000 counter, which increments on a carry from
cycle_offset. The highest seven bits are a modulo 128 counter, which increments
on a carry from cycle_count. All other errors are reported using
cls1394GetLastError.

Table 3–1. CYCLE_TIME Register

bits 26 - 32 bits 13 - 25 bits 0 - 12
second_count cycle_count cycle_offset

cls1394IsochStop

1394 Bus Driver API 3-31

3.23 cls1394IsochStop

Description Stops isochronous operations on a channel

Action This function stops all isochronous operations on an isochronous channel.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ISOCH_STOP and the
lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nChannel;
HANDLE hResources;
ULONG fulFlags;
ULONG nStopCycle;
LARGE_INTEGER StopTime;
ULONG ulSynchronize;
ULONG ulTag;

} clsIsochStop;

Parameters nChannel – Specifies the channel to stop isochronous operations on.

hResources – Specifies the resource handle to stop isochronous operations on.

fulFlags - Is not used

nStopCycle - Is not used

StopTime - Is not used

ulSynchronize - Is not used

ulTag - Is not used

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous operation stops. All other errors are reported using
cls1394GetLastError.

cls1394IsochTalk

3-32

3.24 cls1394IsochTalk

Description Begins talking on an isochronous channel

Action This function begins transmitting data on an isochronous channel. Resource
allocation and attachment of buffers to this resource handle must have already
been done prior to issuing this call.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ISOCH_TALK and the
lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nChannel;
HANDLE hResource;
ULONG fulFlags;
ULONG nStartCycle;
LARGE_INTEGER StartTime;
ULONG ulSynchronize;
ULONG ulTag;

} clsIsochTalk;

Parameters nChannel – Specifies the channel on which to talk.

hResource – Specifies the resource handle on which to talk.

fulFlags - Is not used

nStartCycle - Is not used

StartTime - Is not used

ulSynchronize - Is not used

ulTag - Is not used

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394Get1394AddressFromDeviceObject

1394 Bus Driver API 3-33

3.25 cls1394Get1394AddressFromDeviceObject

Description Get the Node/Bus Number

Action This function returns a 1394 node address given a Device Object.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_1394_ADDRESS and the
lpInBuffer structure filled in with the following structure:

Input struct {
PP1394_NODE_ADDRESS lpNodeAddress;

} clsGet1394AddressFromDeviceObject;

Parameters lpNodeAddress – If successful, points to the field that contains the 6-bit/10-bit
Node Address and Bus Number.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned with the
lpNodeAddress filled in. All other errors are reported using cls1394GetLastError.

cls1394SetDeviceSpeed

3-34

3.26 cls1394SetDeviceSpeed

Description Sets the transmission speed when given a Device Object

Action This function sets the speed at which the requests are transmitted to a particular
device. By default, the 1394 bus driver has access to a speed map that it uses to
determine what the maximum speed is when transmitting to a device. However,
when the device driver needs to specify a different speed, it can use this service.
This is applicable for asynchronous or isochronous requests.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_SET_DEVICE_SPEED and
the lpInBuffer structure filled in with the following structure:

Input struct {
ULONG fulSpeed;

} clsSetDeviceSpeed;

Parameters fulSpeed –Sets the fastest speed for transmitting requests. Current speed flags
include:

❏ Speed100 - 98.304 Mbit/s

❏ Speed200 - 196.608 Mbit/s

❏ Speed400 - 393.216 Mbit/s

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

4-1

Chapter 4

Installation

The installation procedure for the LynxSoft API software is defined below.
Additional information is contained in the readme.txt file supplied with this
software. There are a few items required before installation of the LynxSoft API
code or the hardware. If the EVM kit contents list includes a power cable, then
the user should have a TSBKPCI card that requires external power. If the kit
content list does not include a power cable then the TSBKPCI card is powered
from the bus and external power is not required. This involves capturing serial
numbers and other items to be placed in the system.ini file. These items are
explained below.

Determine from Table 4–1 which board has been ordered and record the serial
number. This is used to create a WWUID for the device in the system.ini file. The
numbers in bold represent the VendorID_DeviceType as described in
cls1394CreateFile API in Section 3.2, and should be the only thing needed when
performing a device-open function from the test application.

Table 4–1. WWUID Configuration

WWUID TI Order
Number/Name

TI Part
Number

Serial Number
(Obtained from Card)

Description

080028500000xxxx TSBKPCITST 9806004-
0001

PCILynx with ZV
port, AUX port

080028510000xxxx TSBKPCI 9806006-
0001

PCILynx Lite

Installation Procedure

1. Bring up a DOS box on the screen display.

2. Insert the floppy disk into the floppy driver. These instructions assume that is
the A: drive.

3. Type CD A: and change the default drive to the A:

4. Type INSTALL to execute the installation batch file. This file creates a
LynxSoft directory and overwrites all duplicate files in that directory. The
LynxSoft interface file is 1394api.h. The c:\lynxsoft\testutil directory has the
test-utility source code and build files.

Installation Procedure

4-2

5. Open up the system.ini file in the Windows directory. Add the following line to
the [386Enh] section to load the device driver:

 [386Enh]
 device=c:\lynxsoft\pcilynx.vxd

6. Add the following section and lines to the system.ini file. The SerialNo field
should be filled in with the recorded serial number portion of the WWUID in
Table 4-1. For example, if the board serial number were 10 then input xxxx =
0010. This value completes the WWUID for the card. The BoardType
entered should be TSBKPCITST or TSBKPCI. The BoardType is logically
placed in the board configuration ROM space.

 [PCILYNX]
 DebugFlag = 1
 MaxNumberOfPages = 48
 SerialNo = xxxx
 BoardType = TSBKPCITST or TSBKPCI

7. Reboot the machine after modification of the system.ini file.

5-1

Chapter 5

Test Application

The LynxSoft diskette contains a test application for use as well as the source
code for that application. It is a Windows application that exercises all of the API
functions. Some discussion of what happens initially with the application helps
when using it the first time.

In the LynxSoft-to-LynxSoft test application, both applications must be running to
have their CSR space enabled. Therefore, as each LynxSoft application is
brought up and tries to enumerate the 1394 bus, it may or may not see the other
LynxSoft application as a 1394-compliant device. In this case it declares the
other LynxSoft application to be a noncompliant device and only allows it to be
opened by using the noncompliant utilities of the 1394fileopen function. To
ensure that both applications can “see” the other application as a compliant
device, each application should be brought up and then restarted independently
of each other. This allows the LynxSoft API to recognize the other LynxSoft
application as a compliant device.

The test utility only allows communication with one device object at a time.
Therefore, if the user has LynxSoft applications running, to switch from one
target to another, the user would have to close the device handle of the first
target and reopen the second.

To use the isochronous portion of the test utility the computer must be in 16-bit,
65000 color mode. This is due to the transferred data being in YUV format and is
converted to RGB before it is output to the screen.

Note:

The generated callbacks can stack up when the computer cannot perform the
RGB conversion and output to the screen in a timely manner. The system
should be a Pentium-class machine running at 90 MHz (preferably 133 MHz) to
allow this software to keep displaying data at 30 frames per second. If the
computer cannot keep up with the speed, ultimately the operating system (OS)
stacks up too many requests and hangs.

5.1 Test Utility Controls and Dialog Boxes

The main test utility menu contains the a File, Misc, Async, Isoch, ISO Rx, ISO
Tx, Camera, and Help pulldown menus. The following paragraphs gives a short
explanation of the functionality of this test program.

Test Utility Controls and Dialog Boxes

5-2

5.1.1 File|Exit
The file menu item only contains an Exit selection that is valid.

5.1.2 Misc|Device|Open
This menu item brings up a dialog box that allows the user to open a 1394 device
that is on the bus. The user is allowed to enter the IEEE Vendor ID/Device Type
and the Device Entry. A valid device object must be opened before the test
application can communicate with it. Only one device can be opened at a time.
The default is targeted toward another PCILynx card. The API is defined in
section 3.2.

5.1.3 Misc|Device|Close
This menu item closes the previously opened device object.

5.1.4 Misc|AddressRange|Allocate
This menu item brings up a dialog box that allows the user to allocate an address
range that an external 1394 device can access. This dialog box allows the user
to specify the 1394 address, the buffer length, the access type and the
notification method for the operation. The API call used for this menu item is
defined in section 3.8.

5.1.5 Misc|Address Range|Free
This menu item frees the address range that was previously allocated.

5.1.6 Misc|Query Cycle Number
This file menu returns the current 1394 cycle number.

5.1.7 Misc|Get 1394 Address
This file menu item returns the 1394 node number of the previously opened
device object.

5.1.8 Async|Quadlet
This menu item allows the user to perform quadlet reads and writes to remote
1394 devices. The user is allowed to enter the 1394 address and a field is
provided for the data. The address may either be read or written.

5.1.9 Async|Block
This menu item allows the user to perform block reads and writes to remote 1394
devices. The user is allowed to enter the 1394 address, a data length and a field
is provided for the data. The addresses may either be read or written.

5.1.10 Async|Lock
This menu item allows the user to perform lock functions on 1394 devices. The
user is allowed to enter the 1394 address, the lock-transaction type, the number
of argument bytes, the number of data bytes, and fields that are provided for
entering the lock arguments and data values. The API calls used for this menu
item is cls1394AsyncLock in Section 3.12.

Test Utility Controls and Dialog Boxes

Test Application 5-3

5.1.11 Isoch|Allocate|Bandwidth
This menu item allows the user to allocate bandwidth from the bus manager. The
user is allowed to select a speed and the number of bytes of bandwidth desired.
This function returns a bandwidth handle. The user should save this handle for
use when the bandwidth is freed.

5.1.12 Isoch|Allocate|Channel
This menu item allows the user to allocate an isochronous channel from the bus
manager. The user is allowed to select a channel number desired.

5.1.13 Isoch|Allocate|Resources
This menu item allows the user to allocate isochronous resources. The user is
allowed to specify whether the resources are send or receive resources and the
speed desired.

5.1.14 Isoch|Free|Bandwidth
This menu item allows the user to free a previously allocated bandwidth. The
user should input the bandwidth handle previously allocated.

5.1.15 Isoch|Free|Channel
This menu item allows the user to free a previously allocated channel.

5.1.16 Isoch|Free|Resources
This menu item allows the user to free previously allocated isochronous
resources. The user is asked to enter whether the resources were send or
receive resources. The resource handle is imbedded in the application and is not
required for this call.

5.1.17 Isoch|Buffers|Attach
This menu item allows the user to attach isochronous buffers to an isochronous
channel. The user is allowed to set the direction for the buffer, the buffer type
(linear or circular), the isochronous flags that allow the headers to be stripped,
and synchronize with the synchronous field and set the watermark for this buffer.
Also the isochronous channel, number of buffers, buffer size and packets per
buffer are input. The API call for this menu item is cls1394IsochAttachBuffers in
Section 3.16.

5.1.18 Isoch|Buffers|Detach
This menu item allows the user to detach previously allocated isochronous
buffers.

5.1.19 Isoch|Listen
This menu item begins listening on an isochronous channel. Application
callbacks begin occurring and data begins to be transferred to isochronous
buffers already allocated and attached.

Test Utility Controls and Dialog Boxes

5-4

5.1.20 Isoch|Talk
This menu item begins the talking on an isochronous channel. Application
callbacks begin occurring and data begins to be transferred using an isochronous
channel to a remote node.

5.1.21 Isoch|Stop
This menu item stops all isochronous transmission.

5.1.22 ISO Rx|Camera
This menu item performs all of the necessary function calls to begin receiving
data from a Sony desktop camera. The data is received, converted, and
transmitted to the user screen.

5.1.23 ISO Rx|Lynx->Lynx
This menu item performs all of the necessary function calls to begin receiving
isochronous data from another PCILynx. The data transmitted is a frame of video
captured from a Sony desktop camera. The data is received, converted, and
transmitted to the user screen.

5.1.24 ISO Rx|Stop|Camera
This menu item halts the reception of isochronous data from an external camera.

5.1.25 ISO Rx|Stop|Lynx->Lynx
This menu item halts the reception of isochronous data from an external lynx.

5.1.26 ISO Tx|Lynx->Lynx
This menu item performs all of the necessary function calls to begin transmitting
isochronous data to another PCILynx. The data transmitted is a frame of video
captured from a Sony desktop camera.

5.1.27 ISO Tx|Stop
This menu item halts the transmission of isochronous data to an external
PCILynx card.

5.1.28 Camera|ON
This menu item communicates and turns on the Sony desktop camera and then
commands it to begin transmitting isochronous data at the frame rate and data
size expected from the ISO Rx|Camera menu item.

5.1.29 Help|About 1394test
This menu item displays the version of the test code.

6-1

Chapter 6

Configuration ROM

The configuration ROM installed in the Texas Instruments evaluation cards is
described in Table 6–1. This ROM configuration may or may not be implemented
in actual ROM, it can be implemented as a software service but is transparent to
the user or remote node.

CSR ROM Description for Texas Instruments 1394 card

The offsets below are added to the start of the CSR ROM offset 0x10 when
actually written to the serial EEPROM.

The last hex quad address is 0xFC minus 0x10 from the starting offset, which
means that the last possible quad address in this file is 0EC.

Note:

QUADLET is big endian to match specification and makes the ASCII strings
appear more readable.

Table 6–1. CSR ROM Values

Offset 0 - 7 8 - 15 16 - 23 24 - 31 Comments
400h 04h 04h rom crc value

Bus 404h 31h 33h 39h 34h ‘1394’
Info 408h 1 1 1 1 0h 64h 90h 00h

Block 40Ch 08h 00 28 50
51

TSBKPCITST
TSBKPCI

410h 00h 00h xx xx xxxx = Serial #

414h 00h 09h xx xx xxxx = CRC
418h 03h 08h 00h 28h Module Vendor ID
41Ch 81h 00h 00h 09h Textual Descriptor
420h 0Ch 00h 02h 00 Node_Capabilities

Root 424h 8Dh 00h 00h 0Eh Node_Unique_ID
Directory 428h C7h 00h 00h 10h Module_Independent_Info

42Ch 04h 00h 00h 00h Module_Hardware_Version
430h 81h 00h 00h 26h Textual_Descriptor
434h 09h 00h 00h 00h Node_Hardware_Version
438h 81h 00h 00h 26h Textual_Descripton

CS ROM Values

6-2

Table 6–1. CSR ROM Values (continued)

Offset 0-7 8-15 16-23 24-31 Comments
Leaf 1 43Ch 00h 08h xx xx Leaf Len, xxxx = Leaf CRC
Module 440h 00h 00h 00h 00h
Vendor 444h 00h 00h 00h 00h

Id 448h 54h 45h 58h 41h “Texas Instruments”
Textual 44Ch 53h 20h 49h 4Eh

Descriptor 450h 53h 54h 52h 55h
454h 4Dh 45h 4Eh 54h
458h 53h 00h 00h 00h

45Ch 00h 02h xx xx Leaf_Len, xxxx = Leaf CRC
Leaf 2 460h 08h 00h 28h 01h Node_Vendor_ID, Chip_ID_Hi

464h 00h 00h 00h 00h Chip_Id_Lo

468h 00h 06h xx xx Dir_len, Dir_Crc
Dir. 1 46Ch B8h 00h 00h 06h TI_Module_Name

Module 470h 81h 00h 00h 04h Textual Descriptor
Dependent 474h 39h 00h 40h 00h TI_SRAM_QUADS

Info. 478h 3Ah 00h 40H 00h TI_AUXRAM_QUADS
47Ch 3Bh 00h 00h 00h TI_AUX_DEVICE

480h 00h 05h xx xx leaf_len, xxxx = leaf_crc
Dir 1 484h 00h 00h 00h 00h

Leaf 1 488h 00h 00h 00h 00h
TI 48Ch 54h 53h 42h 31h “TSB12LV21”

Module 490h 32h 4Ch 56h 32h
Name 494h 31h 00h 00h 00h

498h 00h 06h xx xx leaf_len, xxxx = leaf_crc
Dir 1 49Ch 00h 00h 00h 00h

Leaf 2 4A0h 00h 00h 00h 00h
Part 4A4h 39h 38h 30h 36h “980600x-0001”

Number 4A8h 30h 30h 34h 2Dh
4ACh 30h 30h 34h 31h
4B0h 20h xxh xxh xxh Revision

Dir 1 4B4h 00h 05h xx xx leaf_len, xxxx = leaf_crc
Leaf 3 4B8h 00h 00h 00h 00h
Module 4BCh 00h 00h 00h 00h

Hardware
Version

4C0h 54h 53h 42h 4Bh “TSBKPCITST”,
”TSBPKPCI”

Textual 4C4h 50h 43h 49h 54h
Descriptor 4C8h 53h 54h 00h 00h

Dir 1 Leaf 4 4CCh 00h 05h xx xx leaf_len, xxxx = leaf_crc
Node 4D0h 00h 00h 00h 00h

Hardware 4D4h 00h 00h 00h 00h
Version 4D8h 54h 53h 42h 32h “TSB21LV03”
Textual 4DCh 31h 3Ch 56h 30h

Descriptor 4E0h 33h 00h 00h 00h

7-1

Chapter 7

Errata

Table 7–1 is a list of unimplemented functions/limitations of the current software
suite along with a schedule for incorporation.

Table 7–1. Errata

Item Description Schedule for
incorporation

Asynchronous
Transmission while
performing
isochronous
transmission

When a PCILynx node is transmitting isochronous data,
the node cannot accept asynchronous data. Once
isochronous transmission is halted, asynchronous traffic is
again enabled. This is not true for the isochronous
listener.

Dec. 1996

little_add Lock
Function

The little_add Lock function does not perform according to
specification. It performs a fetch_add function.

Dec. 1996

7-2

