- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Designed to Be Interchangeable With Motorola MC1558/MC1458 and Signetics S5558/N5558

description

The MC1458 and MC1558 are dual generalpurpose operational amplifiers with each half electrically similar to the μ A741 except that offset null capability is not provided.

The high-common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

The MC1458 is characterized for operation from 0°C to 70°C. The MC1558 is characterized for operation over the full military temperature range of -55° C to 125°C.

symbol (each amplifier)

MC1458 D OR P PACKAGE MC1558 JG PACKAGE (TOP VIEW)									
1OUT [1	8 V _{CC} +								
1IN – [2	7 2OUT								
1IN+ [3	6 2IN –								
V _{CC} – [4	5 2IN+								
MC1558	. U PACKAGE								
(TOI	P VIEW)								
NC [•1	10] NC								
1OUT [2	9] V _{CC} +								
1IN - [3	8] 2OUT								
1IN+ [4	7] 2IN –								
V _{CC} - [5	6] 2IN+								
MC1558	FK PACKAGE								
(TOF	? VIEW)								
NC 11N - 10 11N - 5 11N - 6 11N+ NC - 9 10 NC - 0 NC - 0 N	$ \begin{array}{c} + \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$								

SLOS069 - FEBRUARY 1971 - REVISED OCTOBER 1990

NC - No internal connection

	V _{IO} max AT 25°C	PACKAGE									
тд		SMALL CHIP OUTLINE CARRIER (D) (FK)		CERAMIC DIP (JG)	PLASTIC DIP (P)	CERAMIC FLAT PACK (U)					
0°C to 70°C	6 mV	MC1458CD	—	—	MC1458CP	_					
-55°C to 125°C	5 mV	—	MC1558MFK	MC1558MSG	—	MC1558MU					

AVAILABLE OPTIONS

The D packages are available taped and reeled. Add the suffix R to the device type (i.e., MC1458DR)

SLOS069 - FEBRUARY 1971 - REVISED OCTOBER 1990

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		MC1458	MC1558	UNIT	
Supply voltage V _{CC} + (see Note 1)		18	22	V	
Supply voltage V _{CC} – (see Note 1)	-18	-22	V		
Differential input voltage (see Note 2)		±30	±30	V	
Input voltage at either input (see Notes 1 and 3)	±15	±15	V		
Duration of output short circuit (see Note 4)	unlimited	unlimited			
Continuous total dissipation		See Dissipation Rating Table			
Operating free-air temperature range		0 to 70	-55 to 125	°C	
Storage temperature range		65 to 150	-65 to 150	°C	
Case temperature for 60 seconds: FK package		260	°C		
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG or U package		300	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or P package	260		°C	

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC} + and V_{CC} -.

2. Differential voltages are at IN+ with respect to IN-.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.

4. The output can be shorted to ground or either power supply. For the MC1558 only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 70°C free-air temperature.

	DISSIPATION RATING TABLE											
PACKAGE	$T_A \le 25^{\circ}C$	DERATING	DERATE	T _A = 70°C	T _A = 125°C							
	POWER RATING	FACTOR	ABOVE T _A	POWER RATING	POWER RATING							
D	680 mW	5.8 mW/°C	33°C	464 mW								
FK	680 mW	11.0 mW/°C	88°C	880 mW	275 mW							
JG	680 mW	8.4 mW/°C	69°C	672 mW	210 mW							
P	680 mW	8.0 mW/°C	65°C	640 mW								
U	675 mW	5.4 mW/°C	25°C	432 mW	135 mW							

SLOS069 - FEBRUARY 1971 - REVISED OCTOBER 1990

recommended operating conditions

	MIN	NOM MA	X _	UNIT
Supply voltage, $V_{CC\pm}$	±5	±1	5	V

electrical characteristics at specified free-air temperature, V_{CC\pm} = ± 15 V

DADAMETED			1	NC1458		I I	LINUT				
	PARAMETER	TEST CONDITION	51	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
Vie	Input offect veltage		25°C		1	6		1	5	m\/	
VI0	input onset voltage	vO = 0	Full range			7.5			6	IIIV	
1.0	Input offect ourrest		25°C		20	200		20	200	-	
OIL	input onset current	vO = 0	Full range			300			500	IIA	
lun.	Input bios current	Vo = 0	25°C		80	500		80	500	n۸	
ЧВ	input bias current	vO = 0	Full range			800			1500		
Vien	Common-mode input		25°C	±12	±13		±12	±13		V	
VICR	voltage range		Full range	±12			±12			v	
		RL = 10 kΩ	25°C	±12	±14		±12	±14			
V _{OM} ^{Ma} vo	Maximum peak output	$R_L \ge 10 \ k\Omega$	Full range	±12			±12				
	voltage swing	$R_L = 2 k\Omega$	25°C	±10	±13		±10	±13		v	
		$R_L \ge 2 \ k\Omega$	Full range	±10			±10				
A	Large-signal differential	$R_L \ge 2 k\Omega$,	25°C	20	200		50	200		\//m\/	
AVD	voltage amplification	$V_{O}^{-} = \pm 10 V$	Full range	15			25			V/IIIV	
BOM	Maximum-output-swing bandwidth (closed loop)	$\label{eq:relation} \begin{array}{l} R_L = 2 \ k\Omega, \\ V_O \geq \pm 10 \ V, \\ A_{VD} = 1, \\ THD \geq 5\% \end{array}$	25°C		14			14		kHz	
B ₁	Unity-gain bandwidth		25°C		1			1		MHz	
φm	Phase margin	$A_{VD} = 1$	25°C		65			65		°C	
	Gain margin		25°C		11			11		dB	
r _i	Input resistance		25°C	0.3*	2		0.3*	2		MΩ	
r _o	Output resistance	V _O = 0, See Note 5	25°C		75			75		Ω	
Ci	Input capacitance		25°C		1.4			1.4		pF	
z _{ic}	Common-mode input impedance	f = 20 Hz	25°C		200			200		MΩ	
CMPD	Common-mode rejection	V _{IC} = V _{ICR} min,	25°C	70	90		70	90		dB	
CIVINA	ratio	VO = 0	Full range	70			70			uв	
k _{SVS}	Supply voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC})$	$V_{CC} = \pm 9 V \text{ to } \pm 15 V,$ $V_{O} = 0$	25°C Full range		30	150 150		30	150 150	μ٧/٧	
Vn	Equivalent input noise voltage (closed loop)	$A_{VD} = 100, R_S = 0, \\ f = 1 \text{ kHz}, BW = 1 \text{ Hz}$	25°C		45			45		nV/√Hz	

*This parameter is not production tested.

[†] All characteristics are specified under open-loop operating conditions with zero common-mode input voltage unless otherwise specified. Full range for MC1458 is 0°C to 70°C and for MC1558 is –55°C to 125°C.

NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effect of drift and thermal feedback.

SLOS069 - FEBRUARY 1971 - REVISED OCTOBER 1990

electrical characteristics at specified free-air temperature, V_{CC \pm} = ±15 V (continued)

DADAMETED		TEO	TEST CONDITIONS			MC1458			MC1558		
	PARAMETER	IES	TEST CONDITIONS			TYP	MAX	MIN	TYP	MAX	UNIT
IOS	Short-circuit output current			25°C		±25	±40		±25	±40	mA
100	Supply surront (both amplifiars)		No load	25°C		3.4	5.6		3.4	5	mA
I'CC	Supply current (both ampimers)	VO = 0,	NU IUAU	Full range			6.6			6.6	IIIA
De	Total power dissipation	Vo = 0	No lood	25°C		100	170		100	150	m\//
۳D	(both amplifiers)	VO = 0,	NU IUau	Full range			200			200	IIIVV
V ₀₁ /V ₀₂	Crosstalk attenuation			25°C		120			120		dB

[†] All characteristics are specified under open-loop operating conditions with zero common-mode input voltage unless otherwise specified. Full range for MC1458 is 0°C to 70°C and for MC1558 is –55°C to 125°C.

operating characteristics, V_{CC\pm} = ± 15 V, T_A = 25°C

PARAMETER		TEST CONDITIONS		MC1458			MC1558			
				MIN	TYP	MAX	MIN	TYP	MAX	
t _r	Rise time	V _I = 20 mV,	$R_L = 2 k\Omega$,		0.3			0.3		μs
	Overshoot factor	C _L = 100 pF,	See Figure 1		5%			5%		
SR	Slew rate at unity gain	V _I = 10 V, C _L = 100 pF,	R _L = 2 kΩ, See Figure 1		0.5			0.5		V/µs

PARAMETER MEASUREMENT INFORMATION

Figure 1. Rise Time, Overshoot, and Slew Rate Waveform and Test Circuit

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated