
- Input Offset Voltage ... 5 μV Max at 25°C
- Temperature Coefficient of Input Offset Voltage ... 0.001 μV/°C Typ
- Long-Term Drift of Input Offset Voltage 100 nV/mo Typ
- Maximum Input Bias Current . . . 30 pA at 25°C
- Minimum Differential Voltage Amplification Over Full Temperature Range . . . 120 dB
- Minimum Common-Mode Rejection Ratio Over Full Temperature Range . . . 120 dB
- Minimum Supply Voltage Rejection Ratio Over Full Temperature Range ... 120 dB
- Single-Supply Operation from 4.75 V to 16 V (Input Voltage Range Extends to Ground)
- External Capacitors Can Be Returned to V_{CC} with No Noise Degradation

SLOS089A - D3238, MAY 1988-REVISED JULY 1991

AVA	ILABL	Ε ΟΡΤ	IONS

		PACKAGE				
TA	VIO MAX at 25°C	SMALL OUTLINE (D)	PLASTIC DIP (P)			
-40°C to 85°C	5 μV	LTC1052CD	LTC1052CP			
−55°C to 125°C	5 μV	LTC1052MD	LTC1052MP			

The D package is available taped and reeled. Add the suffix R, (e.g., LTC1052CDR).

description

The LTC1052 is a low-noise chopper-stabilized operational amplifier manufactured using CMOS silicon-gate technology. The device is well-suited for applications such as thermocouple amplifiers, strain-gauge amplifiers, low-level signal processing, and medical instrumentation.

Chopper stabilization constantly corrects input offset voltage errors, including both errors in the initial input offset voltage and errors in input offset voltage due to time, temperature, and common-mode input voltage. The chopper circuitry is internal and completely transparent to the user. Only two external capacitors are required to alternately sample and hold the offset correction voltage and the amplified input signal.

Low-frequency (1/f) noise is also improved by the chopping technique. Instead of noise increasing continuously at a rate of 3 dB/octave, the internal chopping causes noise to decrease at low frequencies. Picoampere input currents further enhance the performance of this device.

The C-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

LTC1052 CHOPPER-STABILILZED OPERATIONAL AMPLIFIER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{DD+} (see Notes 1 and 2)	8 V
Supply voltage, V _{DD} (see Notes 1 and 2)	8 V
Input voltage range, V _I (any input, see Note 1)	±16 V
Duration of short-circuit current at (or below) 25°C (see Note 2)	unlimited
Operating free-air temperature, T _A : C-suffix	. −40°C to 85°C
M-suffix	-55°C to 125°C
Storage temperature range	-65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{DD+} and V_{DD-} .

2. Connecting any terminal to voltages greater than V_{DD+} or less than V_{DD} may cause destructive latch-up. No sources operating from external supplies should be applied prior to device power up.

3. The output may be shorted to either supply.

electrical characteristics at specified free-air temperature, $V_{DD\pm} = \pm 5 V$ (unless otherwise noted)

PARAMETER			TA [†]	Ľ	LTC1052C			LTC1052M				
		TEST CONDITIONS		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT		
VIO	Input offset voltage			25°C		0.5	5		0.5	5	μV	
αΛΙΟ	Temperature coefficient of input offset voltage]		Full range		0.01	0.05		0.01	0.05	μV/°C	
	Long-term drift of input offset voltage	V _{IC} = 0, R _S = 50 Ω	25°C		100			100		nV/mo		
lio	Input offset current			25°C		5	30		5	30	۳Å	
IIO	Input onset current			Full range			350			2000	рА	
L. I	Input bias current]		25°C		1	30		1	30	54	
IIB	input bias current			Full range			175			1000	pА	
VICR	Common-mode input voltage range	R _S = 50 Ω		Full range	-5 to 2.7			5 to 2.7			V	
	Maximum peak output	R _L = 100 kΩ,	See Note 4	25°C		4.95			4.95		1	
VOM	voltage swing	$R_L = 10 k\Omega$,	See Note 4	Full range	4.7			4.7			V	
	Large-signal differential			25°C	120	150		120	150			
AVD	voltage amplification	$V_{O} = \pm 4 V,$	$R_L = 10 \ k\Omega$	Full range	120			120			dB	
fch	Internal chopping frequency			25°C		330			330		Hz	
	On state slame summert	Rι = 100 kΩ		25°C		100			100			
	On-state clamp current	KL = 100 Ksz		Full range	25			25			μA	
	Off-state clamp current	$V_{O} = -4 V \text{ to } 4 V$	25°C		10	100		10	100	pА		
			Full range			1			2	nA		
	Common-mode	V _O = 0,	$V_{IC} = V_{ICR} min,$	25°C	120	140		120	140			
CMRR	rejection ratio	R _S = 50 Ω		Full range	120			120			dB	
	Supply-voltage rejection	$V_{CC\pm} = 2.375 \text{ V to } \pm 8 \text{ V},$		25°C	120	150		120	150		15	
k SVR	ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{O} = 0,$	R _S = 50 Ω	Full range	120			120			dB	
I _{DD}	Supply current	$V_{O} = 0$, No load	Noload	25°C		1.7	2		1.7	2	mA	
.00			Full range			3			3	IIIA		

[†] Full range is -40°C to 85°C for the LTC1052C and -55°C to 125°C for the LTC1052M.

[‡] All typical values are at $T_A = 25^{\circ}C$.

NOTE 4: Output clamp is not connected.

operating characteristics, $V_{DD\pm}$ = ±5 V, T_A = 25°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 50 \text{ pF}$		4		V/µs
V _{NPP} Pe	Peak-to-peak equivalent input noise voltage	$R_S = 100 \text{ k}\Omega \text{ to } 10 \text{ Hz}$	1.5			
		$R_S = 100 \text{ k}\Omega \text{ to } 1 \text{ Hz}$		0.5		μV
In	Input noise current (see Note 5)	f = 10 Hz		0.6		fA/√Hz
GBP	Gain bandwidth product			1.2		MHz

NOTE 5: Equivalent input noise current is calculated as follows: $I_n = (2q \times I_{IB})^{1/2}$, where $q = 1.6 \times 10^{-19}$.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated