SLOS101 - FEBRUARY 1979 - REVISED SEPTEMBER 1990


 Wide Range of Supply Voltages Single Supply 3 V to 36 V or Dual Supplies 	D OR N PACKAGE (TOP VIEW)
Class AB Output Stage	
True Differential Input Stage	10UT 1 14 40UT 1IN - 2 13 4IN -
Low Input Bias Current	1IN+[] 3 12[] 4IN+
 Internal Frequency Compensation 	V_{CC+} 4 11 V _{CC-}
Short-Circuit Protection	2IN+[5 10] 3IN+
 Designed to Be Interchangeable With Motorola MC3303, MC3403 	2IN-[69]3IN- 2OUT[78]3OUT

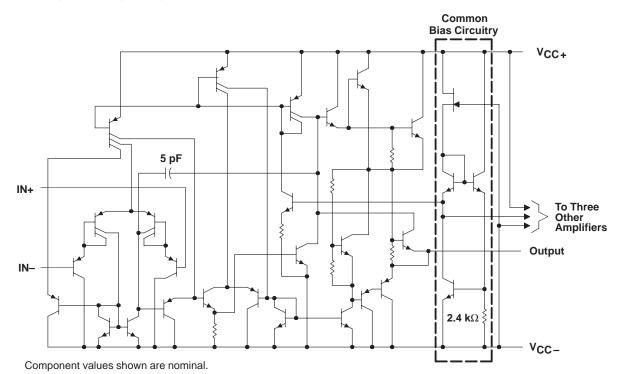
description

The MC3303 and the MC3403 are quadruple operational amplifiers similar in performance to the μ A741 but with several distinct advantages. They are designed to operate from a single supply over a range of voltages from 3 V to 36 V. Operation from split supplies is also possible provided the difference between the two supplies is 3 V to 36 V. The common-mode input range includes the negative supply. Output range is from the negative supply to V_{CC} – 1.5 V. Quiescent supply currents are less than one-half those of the μ A741.

The MC3303 is characterized for operation from -40° C to 85° C, and the MC3403 is characterized for operation from 0° C to 70° C.

symbol (each amplifier)

Viemax		PACKAGE					
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	PLASTIC DIP (N)				
0°C to 70°C	10 mV	MC3403D	MC3403N				
-40° C to 85° C	8 mV	MC3303D	MC3303N				


AVAILABLE OPTIONS

The D packages are available taped and reeled. Add R suffix to the device type (e.g., MC3403DR).

SLOS101 - FEBRUARY 1979 - REVISED SEPTEMBER 1990

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	MC3303	MC3403	UNIT
Supply voltage V _{CC+} (see Note 1)	18	18	V
Supply voltage V _{CC} (see Note 1)	-18	-18	V
Supply voltage V _{CC+} with respect to V _{CC-}	36	36	V
Differential input voltage (see Note 2)	±36	±36	V
Input voltage (see Notes 1 and 3)	±18	±18	V
Continuous total power dissipation	See Diss	ipation Rating T	able
Operating free-air temperature range	- 40 to 85	0 to 70	°C
Storage temperature range	– 65 to 150	- 65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	°C

NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at IN+ with respect to IN-.

3. Neither input must ever be more positive then V_CC+ or more negative than V_CC- .

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW

SLOS101 - FEBRUARY 1979 - REVISED SEPTEMBER 1990

recommended operating conditions

	MIN	MAX	UNIT
Single-supply voltage, V _{CC}	5	30	V
Dual-supply voltage, V _{CC+}	2.5	15	V
Dual-supply voltage, V _{CC} _	-2.5	-15	V

electrical characteristics at specified free-air temperature, V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303, V_{CC±} = ±15 V for MC3403 (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]			MC3303			MC3403		UNIT
	PARAMETER	TEST CONDITIO	NSI	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	See Note 4	25°C		2	8		2	10	mV
۷IO	niput onset voltage	See Note 4	Full range			10			12	IIIV
ανιο	Temperature coefficient of input offset voltage	See Note 4	Full range		10			10		μV/°C
lio.	Input offset current	See Note 4	25°C		30	75		30	50	nA
lio	input onset current	See Note 4	Full range			250			200	IIA
αllO	Temperture coefficient of input offset current	See Note 4	Full range		50			50		pA/C
lun	Input bias current	See Note 4	25°C		-0.2	-0.5		-0.2	-0.5	μA
IВ	Input bias current	See Note 4	Full range			-1			-0.8	μΑ
VICR	Common-mode input voltage range‡		25°C		V _{CC} _ to 12.5		V _{CC} - to 13	V _{CC} _ to 13.5		V
		R _L = 10 kΩ	25°C	12	12.5		±12	±13.5		
VOM	Peak output voltage swing	R _L = 2 kΩ	25°C	10	12		±10	±13		V
		$R_L = 2 k\Omega$	Full range	10			±10			
A	Large-signal differential	$V_{O} = \pm 10 V,$	25°C	20	200		20	200		V/mV
AVD	voltage amplification	$R_L = 2 k\Omega$	Full range	15			15			V/IIIV
B _{OM}	Maximum-output-swing bandwidth	$V_{OPP} = 20 \text{ V},$ $A_{VD} = 1,$ $THD \le 5\%,$ $R_L = 2 \text{ k}\Omega$	25°C		9			9		kHz
В ₁	Unity-gain bandwidth	$V_{O} = 50 \text{ mV},$ R _L = 10 k Ω	25°C		1			1		MHz
φm	Phase margin	$C_L = 200 \text{ pF},$ $R_L = 2 \text{ k}\Omega$	25°C		60°			60°		
rj	Input resistance	f = 20 Hz	25°C	0.3	1		0.3	1		MΩ
r _o	Output resistance	f = 20 Hz	25°C		75			75		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	25°C	70	90		70	90		dB
k _{SVS}	Supply voltage sensitivity $(\Delta V_{IO} / \Delta V_{CC})$	$V_{CC\pm} = \pm 2.5$ to ± 15 V	25°C		30	150		30	150	μV/V
los	Short-circuit output current§		25°C	±10	±30	±45	±10	±30	±45	mA
ICC	Total supply current	No load, See Note 4	25°C		2.8	7		2.8	7	mA

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T_A is -40°C to 85°C for MC3303, and 0°C to 70°C for MC3403.

[‡]The VICR limits are directly linked volt-for-volt to supply voltage; the positive limit is 2 V less than V_{CC+}.

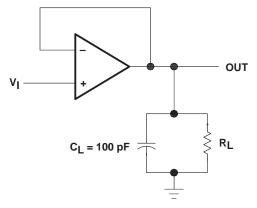
§ Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

NOTE 4: V_{IO} , I_{IO} , I_{IB} , and I_{CC} are defined at $V_O = 0$ for MC3403 and $V_O = 7$ V for MC3303.

SLOS101 - FEBRUARY 1979 - REVISED SEPTEMBER 1990

electrical characteristics, $V_{CC+} = 5 V$, $V_{CC-} = 0 V$, $T_A = 25^{\circ}C$ (unless otherwise noted)

	DADAMETED	TEST CONDITIONS [†]	1	MC3303		ľ	/IC3403		
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 2.5 V			10		2	10	mV
IIO	Input offset current	V _O = 2.5 V			75		30	50	nA
I _{IB}	Input bias current	V _O = 2.5 V			-0.5		-0.2	-0.5	pА
		RL = 10 kΩ	3.3	3.5		3.3	3.5		
VOM	Peak output voltage swing‡	$R_{L} = 10 \text{ k}\Omega,$ $V_{CC+} = 5 \text{ V to } 30 \text{ V}$	V _{CC+} -1.7		V _{CC+} -1.7			V	
AVD	Large-signal differential voltage amplification	$V_{O} = 1.7 V$ to 3.3 V, R _L = 2 k Ω	20	200		20	200		V/mV
^k S∨S	Supply voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC\pm})$	$V_{CC\pm} = \pm 2.5 \text{ V to } \pm 15 \text{ V}$			150			150	μV/V
ICC	Supply current	$V_{O} = 2.5 V$, No load		2.5	7		2.5	7	mA
V01/V02	Crosstalk attenuation	f = 1 kHz to 20 kHz		120			120		dB


[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

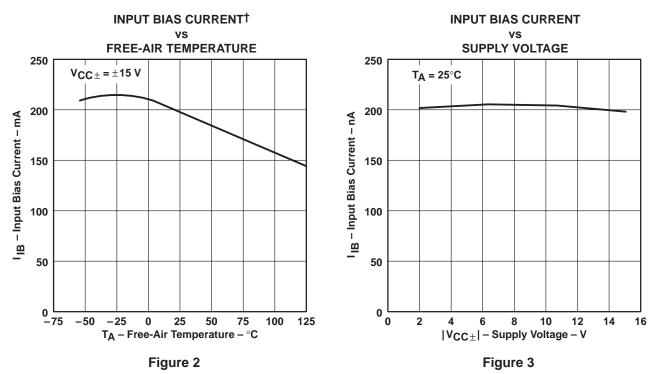
[‡]Output will swing essentially to ground.

operating characteristics, V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303, V_{CC±} = ±15 V for MC3403, T_A = 25°C, A_{VD} = 1 (unless otherwise noted)

	PARAMETER TEST CONDITIONS						TYP	MAX	UNIT
SR	Slew rate at unity gain	$V_{I} = \pm 10 V$,	C _L = 100 pF,	$R_L = 2 k\Omega$,	See Figure 1		0.6		V/µs
t _r	Rise time						0.35		μs
t _f	Fall time	$\Delta V_{O} = 50 \text{ mV},$	C _L = 100 pF,	$R_L = 10 \ k\Omega$,	See Figure 1		0.35		μs
	Overshoot factor						20%		
	Crossover distortion	$V_{I(PP)} = 30 \text{ mV},$	V _{OPP} = 2 V,	f = 10 kHz			1%		

PARAMETER MEASUREMENT INFORMATION

Figure 1. Unity-Gain Amplifier

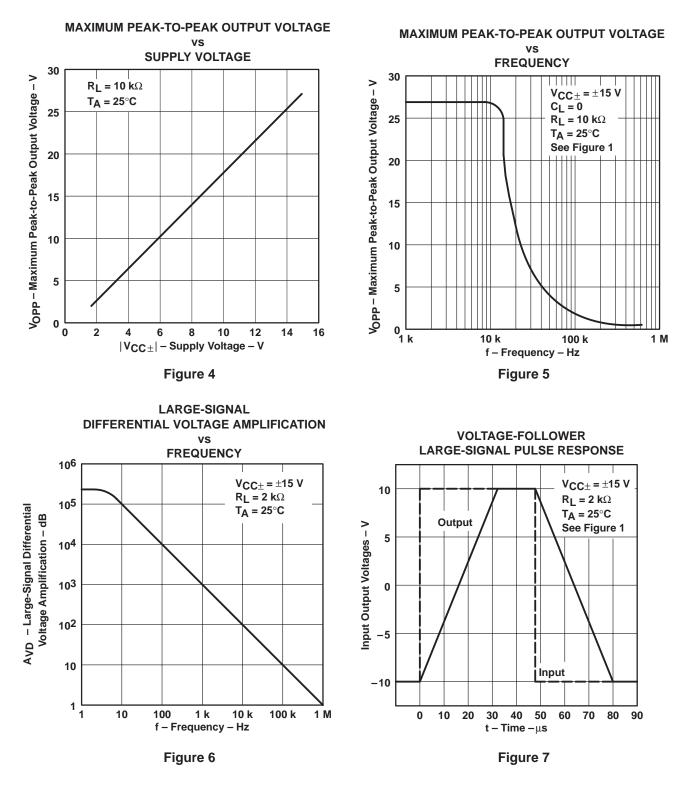


SLOS101 - FEBRUARY 1979 - REVISED SEPTEMBER 1990

TYPICAL CHARACTERISTICS

			FIGURE
IIB	Input bias current	vs Free-air temperature	2
	input bias current	vs Supply voltage	3
	Maximum peak-to-peak output voltage	vs Supply voltage	4
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	5
AVD	Large-signal differential voltage amplification	vs Frequency	6
	Large-signal pulse response	vs Time	7

Table of Graphs



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS101 - FEBRUARY 1979 - REVISED SEPTEMBER 1990

TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated