D OR DGN PACKAGE (TOP VIEW)

 V_O1 IN1– BYPASS GND

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

V_{DD} $\mathbb{I} \vee_{\Omega} 2$ IN2–

SHUTDOWN

- \bullet **150 mW Stereo Output**
- \bullet **PC Power Supply Compatible – Fully Specified for 3.3 V and 5 V Operation**
	- **Operation to 2.5 V**
- \bullet **Pop Reduction Circuitry**
- \bullet **Internal Mid-Rail Generation**
- \bullet **Thermal and Short-Circuit Protection**
- \bullet **Surface Mount Packaging**
	- **PowerPAD MSOP**
	- **SOIC**
- \bullet **Pin Compatible with LM4880 amd LM4881 (SOIC)**

description

The TPA122 is a stereo audio power amplifier packaged in either an 8-pin SOIC, or an 8-pin PowerPAD™ MSOP package capable of delivering 150 mW of continuous RMS power per channel into 8- Ω loads. Amplifier gain is externally configured by means of two resistors per input channel and does not require external compensation for settings of 1 to 10.

THD+N when driving an 8-Ω load from 5 V is 0.1% at 1 kHz, and less than 2% across the audio band of 20 Hz to 20 kHz. For 32-Ω loads, the THD+N is reduced to less than 0.06% at 1 kHz, and is less than 1% across the audio band of 20 Hz to 20 kHz. For 10-kΩ loads, the THD+N performance is 0.01% at 1 kHz, and less than 0.02% across the audio band of 20 Hz to 20 kHz.

typical application circuit

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments Incorporated.

Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

PRODUCTION DATA information is current as of publication date. **Copyright Capyright Capyrigh**

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

† The D and DGN package is available in left-ended tape and reel only (e.g., TPA122DR, TPA122DGNR).

Terminal Functions

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

‡ Please see the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report (literature number SLMA002), for more information on the PowerPAD package. The thermal data was measured on a PCB layout based on the information in the section entitled Texas Instruments Recommended Board for PowerPAD on page 33 of the before mentioned document.

recommended operating conditions

dc electrical characteristics at T_A = 25°C, V_{DD} = 3.3 V

ac operating characteristics, V_{DD} = 3.3 V, T_A = 25°C, R_L = 8 Ω

† Measured at 1 kHz

dc electrical characteristics at T_A = 25°C, V_{DD} = 5 V

ac operating characteristics, V_{DD} = 5 V, T_A = 25°C, R_L = 8 Ω

† Measured at 1 kHz

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

ac operating characteristics, V_{DD} = 3.3 V, T_A = 25°C, R_L = 32 Ω

† Measured at 1 kHz

ac operating characteristics, V_{DD} = 5 V, T_A = 25°C, R_L = 32 Ω

† Measured at 1 kHz

TYPICAL CHARACTERISTICS

Table of Graphs

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

TYPICAL CHARACTERISTICS

STRUMENTS 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

Figure 30

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

APPLICATION INFORMATION

gain setting resistors, R_F and R_I

The gain for the TPA122 is set by resistors R_F and R_I according to equation 1.

$$
Gain = -\left(\frac{R_F}{R_I}\right) \tag{1}
$$

Given that the TPA122 is a MOS amplifier, the input impedance is very high. Consequently input leakage currents are not generally a concern, although noise in the circuit increases as the value of R_F increases. In addition, a certain range of R_F values are required for proper start-up operation of the amplifier. Taken together it is recommended that the effective impedance seen by the inverting node of the amplifier be set between 5 kΩ and 20 kΩ. The effective impedance is calculated in equation 2.

$$
EffectiveImpedance = \frac{R_F R_I}{R_F + R_I}
$$
 (2)

As an example, consider an input resistance of 20 kΩ and a feedback resistor of 20 kΩ. The gain of the amplifier would be –1 and the effective impedance at the inverting terminal would be 10 kΩ, which is within the recommended range.

For high performance applications, metal film resistors are recommended because they tend to have lower noise levels than carbon resistors. For values of R_F above 50 kΩ, the amplifier tends to become unstable due to a pole formed from R_F and the inherent input capacitance of the MOS input structure. For this reason, a small compensation capacitor of approximately 5 pF should be placed in parallel with R_F . This, in effect, creates a low-pass filter network with the cutoff frequency defined in equation 3.

$$
f_{\text{co(lowpass)}} = \frac{1}{2\pi R_{\text{F}} C_{\text{F}}} \tag{3}
$$

For example, if R_F is 100 kΩ and C_F is 5 pF then f_{co(lowpass)} is 318 kHz, which is well outside the audio range.

input capacitor, CI

In the typical application, an input capacitor, C_I , is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation. In this case, C_1 and R_1 form a high-pass filter with the corner frequency determined in equation 4.

$$
f_{\text{co(highpass)}} = \frac{1}{2\pi R_{\text{I}} C_{\text{I}}} \tag{4}
$$

The value of ${\sf C}_{\sf I}$ is important to consider, as it directly affects the bass (low frequency) performance of the circuit. Consider the example where R_I is 20 k Ω and the specification calls for a flat bass response down to 20 Hz. Equation 4 is reconfigured as equation 5.

$$
C_1 = \frac{1}{2\pi R_1 f_{\text{co(highpass)}}}
$$
(5)

In this example, C_I is 0.40 µF, so one would likely choose a value in the range of 0.47 µF to 1 µF. A further consideration for this capacitor is the leakage path from the input source through the input network $(R₁, C₁)$ and the feedback resistor (R_F) to the load. This leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially in high-gain applications (> 10). For this reason a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applications, as the dc level there is held at $V_{DD}/2$, which is likely higher that the source dc level. Please note that it is important to confirm the capacitor polarity in the application.

APPLICATION INFORMATION

power supply decoupling, C_S

The TPA122 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure that the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling is achieved by using two capacitors of different types that target different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1 μ F, placed as close as possible to the device V_{DD} lead, works best. For filtering lower-frequency noise signals, a larger aluminum electrolytic capacitor of 10 μ F or greater placed near the power amplifier is recommended.

midrail bypass capacitor, C_B

The midrail bypass capacitor, C_B, serves several important functions. During start-up or recovery from shutdown mode, C_B determines the rate at which the amplifier starts up. This helps to push the start-up pop noise into the subaudible range (so slow it can not be heard). The second function is to reduce noise produced by the power supply caused by coupling into the output drive signal. This noise is from the midrail generation circuit internal to the amplifier. The capacitor is fed from a 160-kΩ source inside the amplifier. To keep the start-up pop as low as possible, the relationship shown in equation 6 should be maintained.

$$
\frac{1}{\left(C_{\mathsf{B}} \times 160 \text{ k}\Omega\right)} \le \frac{1}{\left(C_{\mathsf{I}}\mathsf{R}_{\mathsf{I}}\right)}\tag{6}
$$

As an example, consider a circuit where C_B is 1 µF, C_I is 1 µF, and R_I is 20 kΩ. Inserting these values into the equation 9 results in:

 $6.25 \le 50$

which satisfies the rule. Bypass capacitor, C_B , values of 0.1 μ F to 1 μ F ceramic or tantalum low-ESR capacitors are recommended for the best THD and noise performance.

output coupling capacitor, CC

In the typical single-supply single-ended (SE) configuration, an output coupling capacitor (C_C) is required to block the dc bias at the output of the amplifier, thus preventing dc currents in the load. As with the input coupling capacitor, the output coupling capacitor and impedance of the load form a high-pass filter governed by equation 7.

$$
f_{\text{(out high)}} = \frac{1}{2\pi R_L C_C} \tag{7}
$$

The main disadvantage, from a performance standpoint, is that the typically small load impedances drive the low-frequency corner higher. Large values of C_{C} are required to pass low frequencies into the load. Consider the example where a C_C of 68 µF is chosen and loads vary from 32 Ω to 47 kΩ. Table 1 summarizes the frequency response characteristics of each configuration.

APPLICATION INFORMATION

Table 1. Common Load Impedances Vs Low Frequency Output Characteristics in SE Mode

As Table 1 indicates, headphone response is adequate and drive into line level inputs (a home stereo for example) is very good.

The output coupling capacitor required in single-supply SE mode also places additional constraints on the selection of other components in the amplifier circuit. With the rules described earlier still valid, add the following relationship:

$$
\frac{1}{\left(C_{\mathsf{B}} \times 160 \text{ k}\Omega\right)} \le \frac{1}{\left(C_{\mathsf{I}} R_{\mathsf{I}}\right)} \ll \frac{1}{R_{\mathsf{L}} C_{\mathsf{C}}}
$$
\n
$$
\tag{8}
$$

output pull-down resistor, R_C + R_O

Placing a 100- Ω resistor, R_C, from the output side of the coupling capacitor to ground insures the coupling capacitor, C_{C} , is charged before a plug is inserted into the jack. Without this resistor, the coupling capacitor would charge rapidly upon insertion of a plug, leading to an audible pop in the headphones.

Placing a 20-kΩ resistor, R_O, from the output of the IC to ground insures that the coupling capacitor fully discharges at power down. If the supply is rapidly cycled without this capacitor, a small pop may be audible in 10-kΩ loads.

using low-ESR capacitors

Low-ESR capacitors are recommended throughout this application. A real capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance, the more the real capacitor behaves like an ideal capacitor.

5-V versus 3.3-V operation

The TPA122 was designed for operation over a supply range of 2.7 V to 5.5 V. This data sheet provides full specifications for 5-V and 3.3-V operation since these are considered to be the two most common standard voltages. There are no special considerations for 3.3-V versus 5-V operation as far as supply bypassing, gain setting, or stability. Supply current is slightly reduced from 3.5 mA (typical) to 2.5 mA (typical). The most important consideration is that of output power. Each amplifier in the TPA122 can produce a maximum voltage swing the contract of the cont

 V_{DD} – 1 V. This means, for 3.3-V operation, clipping starts to occur when $V_{O(PP)}$ = 2.3 V as opposed when $V_{O(PP)} = 4$ V while operating at 5 V. The reduced voltage swing subsequently reduces maximum output power into the load before distortion begins to become significant.

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

MECHANICAL DATA

D (R-PDSO-G) PLASTIC SMALL-OUTLINE PACKAGE**

14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

SLOS211B – AUGUST1998 – REVISED OCTOBER 1998

MECHANICAL DATA

DGN (S-PDSO-G8) PowerPAD™ PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions include mold flash or protrusions.

D. The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad. This pad is electrically and thermally connected to the backside of the die and possibly selected leads. The dimension of the thermal pad is 1.4 mm (height as illustrated) \times 1.8 mm (width as illustrated) (maximum). The pad is centered on the bottom of the package.

E. Falls within JEDEC MO-187

PowerPAD is a trademark of Texas Instruments Incorporated.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Ti's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 1998, Texas Instruments Incorporated