PERIPHERAL DRIVERS FOR
 HIGH-VOLTAGE, HIGH-CURRENT DRIVER APPLICATIONS

- Characterized for Use to $\mathbf{3 0 0} \mathbf{~ m A}$
- High-Voltage Outputs
- No Output Latch-Up at 30 V (After Conducting 300 mA)
- Medium-Speed Switching
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) With Copper Lead Frame for Cooler Operation and Improved Reliability
- Package Options Include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

SUMMARY OF SERIES 55461/75461

DEVICE	LOGIC	PACKAGES
SN55461	AND	FK, JG
SN55462	NAND	FK, JG
SN55463	OR	FK, JG
SN75461	AND	D, P
SN75462	NAND	D, P
SN75463	OR	D, P

SN55461, SN55462, SN55463 . . . JG PACKAGE
SN75461, SN75462, SN75463 ... D OR P PACKAGE
(TOP VIEW)

SN55461, SN55462, SN55463 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description

These dual peripheral drivers are functionally interchangeable with SN55451B through SN55453B and SN75451B through SN75453B peripheral drivers, but are designed for use in systems that require higher breakdown voltages than those devices can provide at the expense of slightly slower switching speeds. Typical applications include logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN55461/SN75461, SN55462/SN75462, and SN55463/SN75463 are dual peripheral AND, NAND, and OR drivers respectively (assuming positive logic), with the output of the gates internally connected to the bases of the npn output transistors.

Series SN55461 drivers are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Series SN75461 drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. Voltage values are with respect to network GND unless otherwise specified.
2. This is the voltage between two emitters A and B.
3. This value applies when the base-emitter resistance (R_{BE}) is equal to or less than 500Ω.
4. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	-
FK	1375 mW	$11.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	880 mW	275 mW
JG	1050 mW	$8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	672 mW	210 mW
P	1000 mW	8.0 mW/ ${ }^{\circ} \mathrm{C}$	640 mW	-

recommended operating conditions

	SN55'			SN75'			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V_{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$	2			2			V
Low-level input voltage, V_{IL}			0.8			0.8	V
Operating free-air temperature, T_{A}	-55		125	0		70	${ }^{\circ} \mathrm{C}$

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, JG, and P packages.
FUNCTION TABLE

(each driver)		
A	B	
L	L	
L	Y (on state)	
H	L	
H (on state)		
H	H (on state)	
H (off state)		

positive logic: $Y=A B$ or $\bar{A}+\bar{B}$

logic diagram (positive logic)

schematic (each driver)

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS \dagger	SN55461			SN75461			UNIT	
		MIN	TYP\#	MAX	MIN	TYP \ddagger	MAX			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
${ }^{\text {IOH }}$	High-level output current				300			100	$\mu \mathrm{A}$	
V_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA} \end{aligned}$		0.25	0.5		0.25	0.4	V	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{lOL}=300 \mathrm{~mA} \end{aligned}$		0.5	0.8		0.5	0.7		
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA	
${ }^{\text {IIH }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA	
ICCH	Supply current, outputs high	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$		8	11		8	11	mA	
${ }^{\text {I CCL }}$	Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0$		56	76		56	76	mA	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{l} \mathrm{O} \approx 200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See Figure 1		30	55	ns
tPHL	Propagation delay time, high-to-low-level output					25	40	
tTLH	Transition time, low-to-high-level output					8	20	
t ${ }^{\text {H }}$	Transition time, high-to-low-level output					10	20	
V OH	High-level output voltage after switching	SN55461	$V_{S}=30 \mathrm{~V},$ See Figure 2	$\mathrm{I}=300 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{S}}-10$			mV
		SN75461			$\mathrm{V}_{\mathrm{S}}-10$			

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, JG, and P packages.

FUNCTION TABLE

 (each driver)| A | B | Y |
| :---: | :---: | :---: |
| L | L | H (off state) |
| L | H | H (off state) |
| H | L | H (off state) |
| H | H | L (on state) |

positive logic: $\mathrm{Y}=\overline{\mathrm{AB}}$ or $\overline{\mathrm{A}}+\overline{\mathrm{B}}$

logic diagram (positive logic)

Resistor values shown are nominal.
electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS \dagger	SN55462			SN75462			UNIT	
		MIN	TYP\#	MAX	MIN	TYP\#	MAX			
	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
IOH	High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{OH}}=35 \mathrm{~V} \end{array}$			300			100	$\mu \mathrm{A}$	
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ & \mathrm{IOL}=100 \mathrm{~mA} \end{aligned}$		0.25	0.5		0.25	0.4	V	
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ & \mathrm{IOL}=300 \mathrm{~mA} \end{aligned}$		0.5	0.8		0.5	0.7		
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA	
${ }_{1} \mathrm{H}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$		-1.1	-1.6		-1.1	-1.6	mA	
ICCH	Supply current, outputs high	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0$		13	17		13	17	mA	
${ }^{\text {I CCL }}$	Supply current, outputs low	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$		61	76		61	76	mA	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
tpLH	Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See Figure 1		45	65	ns
${ }_{\text {tPHL }}$	Propagation delay time, high-to-low-level output					30	50	
tTLH	Transition time, low-to-high-level output					13	25	
${ }_{\text {t }}$	Transition time, high-to-low-level output					10	20	
V_{OH}	High-level output voltage after switching	SN55462	$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V},$ See Figure 2	$\mathrm{I}=300 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{S}}-10$			mV
		SN75462			$\mathrm{V}_{\mathrm{S}}-10$			

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, JG, and P packages.

FUNCTION TABLE

 (each driver)| A | B | Y |
| :---: | :---: | :---: |
| L | L | L (on state) |
| L | H | H (off state) |
| H | L | H (off state) |
| H | H | H (off state) |

positive logic: $Y=A+B$ or $\bar{A} \bar{B}$

logic diagram (positive logic)

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS \dagger	SN55463			SN75463			UNIT	
		MIN	TYP \ddagger	MAX	MIN	TYP \ddagger	MAX			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
IOH	High-level output current	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ \mathrm{~V}_{\mathrm{OH}}=35 \mathrm{~V} & \\ \hline \end{array}$			300			100	$\mu \mathrm{A}$	
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{lOL}=100 \mathrm{~mA} \end{aligned}$		0.25	0.5		0.25	0.4	V	
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{lOL}=300 \mathrm{~mA} \end{aligned}$		0.5	0.8		0.5	0.7		
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
IIH	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA	
${ }^{\text {ICCH }}$	Supply current, outputs high	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$		8	11		8	11	mA	
ICCL	Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=0$		58	76		58	76	mA	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Propagation delay time, low-to-high-level output		$\begin{array}{ll} l_{\mathrm{l}}^{0} \approx 200 \mathrm{~mA}, & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, & \text { See Figure } \end{array}$			30	55	ns
Propagation delay time, high-to-low-level output					25	40	
Transition time, low-to-high-level output					8	25	
Transition time, high-to-low-level output					10	25	
High-level output voltage after switching	SN55463	$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V},$ See Figure 2	$\mathrm{I}=300 \mathrm{~mA}$,	$\mathrm{V}_{\mathrm{S}}-10$			mV
	SN75463			$\mathrm{V}_{\mathrm{S}}-10$			

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

Voltage waveforms

NOTES: A. The pulse generator has the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms for Switching Times

NOTES: A. The pulse generator has the following characteristics: $\mathrm{PRR} \leq 12.5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 2. Test Circuit and Voltage Waveforms for Latch-Up Test

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

