PERIPHERAL DRIVERS FOR
 HIGH-VOLTAGE HIGH-CURRENT DRIVER APPLICATIONS

- Characterized for Use to $\mathbf{3 0 0} \mathbf{~ m A}$
- High-Voltage Outputs
- No Output Latch-Up at 55 V (After Conducting $\mathbf{3 0 0} \mathrm{mA}$)
- Medium-Speed Switching
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) With Copper Lead Frame Provides Cooler Operation and Improved Reliability

description

Series SN75471 dual peripheral drivers are functionally interchangeable with series SN75451B and series SN75461 peripheral drivers, but are designed for use in systems that require higher breakdown voltages than either of those series can provide at the expense of slightly slower switching speeds than series 75451B (limits are the same as series SN75461). Typical applications include high-speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.
The SN75471, SN75472, and SN75473 are dual peripheral AND, NAND, and OR drivers, respectively, (assuming positive logic), with the output of the logic gates internally connected to the bases of the npn output transistors.

Series SN75471 drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1) 7 V
Input voltage, V_{I} 5.5 V
Inter-emitter voltage (see Note 2) 5.5 V
Off-state output voltage, V_{O} 70 V
Continuous collector or output current (see Note 3) 400 mA
Peak collector or output current ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 50 \%$, see Note 3) 500 mA
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A} $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range, $T_{\text {sto }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds $260^{\circ} \mathrm{C}$
NOTES: 1. Voltage values are with respect to the network GND, unless otherwise specified.
2. This is the voltage between two emitters, A and B.
3. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq \mathbf{2 5 ^ { \circ }} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=\mathbf{2 5}^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW
P	1000 mW	8.0 mW/ ${ }^{\circ} \mathrm{C}$	640 mW

recommended operating conditions

	MIN	NOM
MAX	UNIT	
Supply voltage, V_{CC}	4.75	5
High-level input voltage, V_{IH}	2	
Low-level input voltage, V_{IL}		V
Operating free-air temperature, T_{A}	0	$\mathrm{~V}^{2}$

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN75471 FUNCTION TABLE

 (each driver)| A | B | \mathbf{Y} |
| :---: | :---: | :---: |
| L | L | L (on state) |
| L | H | L (on state) |
| H | L | L (on state) |
| H | H | H (off state) |

positive logic $Y=A B$ or $\bar{A}+\bar{B}$

logic diagram (positive logic)

SN75471 schematic (each driver)

Resistor values shown are nominal.
electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			SN75471			UNIT			
		MIN	TYP\#	MAX							
$\mathrm{V}_{\text {IK }}$	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{I}=-12 \mathrm{~mA}$				-1.2	-1.5	V
${ }^{\mathrm{IOH}}$	High-level output current	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=70 \mathrm{~V}$			100	$\mu \mathrm{A}$			
VOL	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.75$	$\mathrm{V}_{\mathrm{IL}}=0.8$	$\mathrm{lOL}=100 \mathrm{~mA}$		0.25	0.4	V			
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	$\mathrm{IOL}=300 \mathrm{~mA}$		0.5	0.7				
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA			
${ }_{1} \mathrm{H}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$			
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-1	-1.6	mA			
${ }^{\text {I CCH }}$	Supply current, outputs high	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{V}_{1}=5 \mathrm{~V}$			7	11	mA			
$\mathrm{I}_{\text {CCL }}$	Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{V}_{1}=0$			52	65	mA			

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		SN75471			UNIT		
		MIN	TYP	MAX					
tple	Propagation delay time, low-to-high-level output			$\left\{\begin{array}{l} \mathrm{l}=200 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{array}\right.$	$C_{L}=15 \mathrm{pF},$ See Figure 1		30	55	ns
tPHL	Propagation delay time, high-to-low-level output		25			40			
tTLH	Transition time, low-to-high-level output		8			20			
$\mathrm{t}_{\text {THL }}$	Transition time, high-to-low-level output		10			20			
VOH	High-level output voltage after switching	$\mathrm{V}_{\mathrm{S}}=55 \mathrm{~V},$ See Figure 2	$\mathrm{I}=300 \mathrm{~mA},$	$\mathrm{V}_{\mathrm{S}}-18$			mV		

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN75472 FUNCTION TABLE (each driver)

A	B	Y
L	L	H (off state)
L	H	H (off state)
H	L	H (off state)
H	H	L (on state)

positive logic:
$\mathrm{Y}=\overline{\mathrm{AB}}$ or $\overline{\mathrm{A}}+\overline{\mathrm{B}}$

logic diagram (positive logic)

SN75472 schematic (each driver)

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			SN75472			UNIT			
		MIN	TYP\#	MAX							
$\mathrm{V}_{\text {IK }}$	Input clamp voltage				$\mathrm{V}_{\mathrm{CC}}=4.75$	$\mathrm{I}=-12 \mathrm{~m}$			-1.2	-1.5	V
IOH^{2}	High-level output current	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$,	$\mathrm{V} \mathrm{OH}=70 \mathrm{~V}$			100	$\mu \mathrm{A}$			
VOL	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.75$	$\mathrm{V}_{\mathrm{IL}}=0.8$	$\mathrm{IOL}=100 \mathrm{~mA}$		0.25	0.4	V			
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	$\mathrm{IOL}=300 \mathrm{~mA}$		0.5	0.7				
1	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=5.25$	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA			
${ }^{\text {IIH }}$	High-level input current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$			
IIL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-1	-1.6	mA			
${ }^{\text {I CCH }}$	Supply current, outputs high	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$	$\mathrm{V}_{1}=5 \mathrm{~V}$			13	17	mA			
${ }^{\text {I CCL }}$	Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\mathrm{V}_{1}=0$			61	76	mA			

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	SN75472			UNIT
		MIN	TYP	MAX	
tpLH Propagation delay time, low-to-high-level output	$\begin{cases}\mathrm{l}=200 \mathrm{~mA}, & C_{\mathrm{L}}=15 \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, & \text { See Fig }\end{cases}$		45	65	ns
tPHL Propagation delay time, high-to-low-level output			30	50	
tTLH Transition time, low-to-high-level output			13	25	
tTHL Transition time, high-to-low-level output			10	20	
VOH High-level output voltage after switching	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{S}}=55 \mathrm{~V}, & \mathrm{I}_{\mathrm{O}} \approx 300 \mathrm{~mA}, \\ \text { See Figure 2 } \end{array}$	$\mathrm{V}_{\mathrm{S}}-18$			mV

SN75471 THRU SN75473 DUAL PERIPHERAL DRIVERS

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (each driver)
A B Y L L L (on state) L H H (off state) H L H (off state) H H H (off state)

$$
Y=A+B \text { or } \bar{A} \bar{B}
$$

logic diagram (positive logic)

electrical characteristics over recommended operating free-air temperature range

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		SN75473			UNIT		
		MIN	TYP	MAX					
tpLH	Propagation delay time, low-to-high-level output			$\begin{aligned} & \mathrm{l}=200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See Figure 1		30	55	ns
tPHL	Propagation delay time, high-to-low-level output		25			40			
tTLH	Transition time, low-to-high-level output		8			25			
tTHL	Transition time, high-to-low-level output		10			25			
VOH	High-level output voltage after switching	$\mathrm{V}_{\mathrm{S}}=55 \mathrm{~V},$ See Figure 2	$\mathrm{I}=300 \mathrm{~mA},$	V S-18			mV		

NOTES: A. The pulse generator has the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 1. Switching Times

NOTES: A. The pulse generator has the following characteristics: $\mathrm{PRR} \leq 12.5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 2. Latch-Up Test

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

