- Very Low Dropout Voltage, Less Than 0.6 V at 750 mA
- Low Quiescent Current
- TTL- and CMOS-Compatible Enable on TL751M Series
- 60-V Load-Dump Protection
- Overvoltage Protection
- Internal Thermal Overload Protection
- Internal Overcurrent Limiting Circuitry

description

The TL750M and TL751M series are low-dropout positive voltage regulators specifically designed for battery-powered systems. The TL750M and TL751M incorporate on-board overvoltage and current-limit protection circuitry to protect the TL75xM devices and the regulated system. Both series are fully protected against 60-V load-dump and reverse battery conditions. Extremely low quiescent current, even during full-load conditions, makes the TL750M and TL751M series ideal for standby power systems.

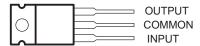
The TL750M series of fixed-output voltage regulators offers 5-V, 8-V, 10-V, and 12-V options available in 3-lead KC (TO-220AB) and KTE plastic packages.

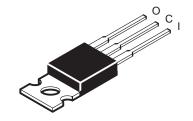
The TL751M series of fixed-output voltage regulators also offers 5-V, 8-V, 10-V, and 12-V options with the addition of an enable input. The enable input gives the designer complete control over power up, allowing sequential power up or emergency shutdown. When taken high, the enable input places the regulator output in a high-impedance state. The enable input is completely TTL- and CMOS-compatible. The TL751M series is offered in 5-lead KTG plastic packages.

The TL750MxxC and TL751MxxC are characterized for operation from 0°C to 125°C virtual junction temperature, and the TL750MxxQ and TL751MxxQ series are characterized for operation from –40°C to 125°C virtual junction temperature. The TL751M05M and TL751M12M are characterized for operation over the full military temperature range of –55°C to 125°C.

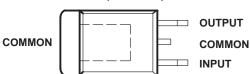
AVAILABLE OPTIONS

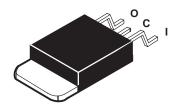
				PACKAG				
ТЈ	V _O TYP (V)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	HEAT-SINK MOUNTED (3-PIN) (KC)	PLASTIC FLANGE MOUNT (KTE) [†]	PLASTIC FLANGE MOUNT (KTG) [†]	PLASTIC FLANGE MOUNT (KTP) [†]	CHIP FORM (Y)
	5	_	_	TL750M05CKC	TL750M05CKTE	TL751M05CKTG	TL750M05CKTP	TL750M05Y
0°C to	8	_	_	TL750M08CKC	TL750M08CKTE	TL751M08CKTG	TL750M08CKTP	TL750M08Y
125°C	10	_	_	TL750M10CKC	TL750M10CKTE	TL751M10CKTG	TL750M10CKTP	TL750M10Y
	12	_	_	TL750M12CKC	TL750M12CKTE	TL751M12CKTG	TL750M12CKTP	TL750M12Y
	5	_	_	TL750M05QKC	TL750M05QKTE	TL751M05QKTG	_	_
-40°C	8	_	_	TL750M08QKC	TL750M08QKTE	TL751M08QKTG	_	_
125°C	10	_	_	TL750M10QKC	TL750M10QKTE	TL751M10QKTG	_	_
	12	_	_	TL750M12QKC	TL750M12QKTE	TL751M12QKTG	_	_
−55°C to	5	TL751M05MFK	TL751M05MJG	_	_	_	_	_
125°C	12	TL751M12MFK	TL751M12MJG	_	_	_	_	_

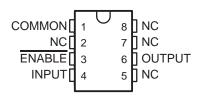

[†]The KTE and KTG packages also are available taped and reeled. The KTP is only available taped and reeled.



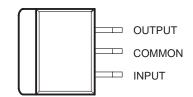
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

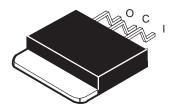



TL750M . . . 3-LEAD KC (TO-200AB) PACKAGE[†] (TOP VIEW)

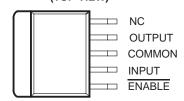


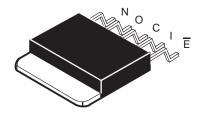
TL750M . . . KTP PACKAGE[†] (TOP VIEW)

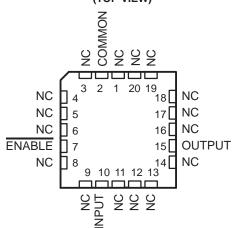




TL751M . . . JG PACKAGE (TOP VIEW)

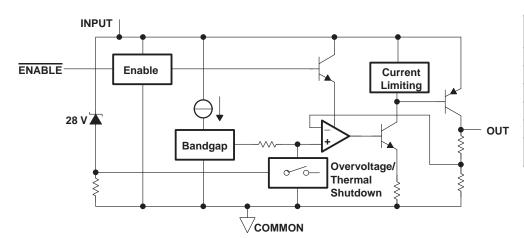



TL750M . . . 3-LEAD KTE PACKAGE[†] (TOP VIEW)



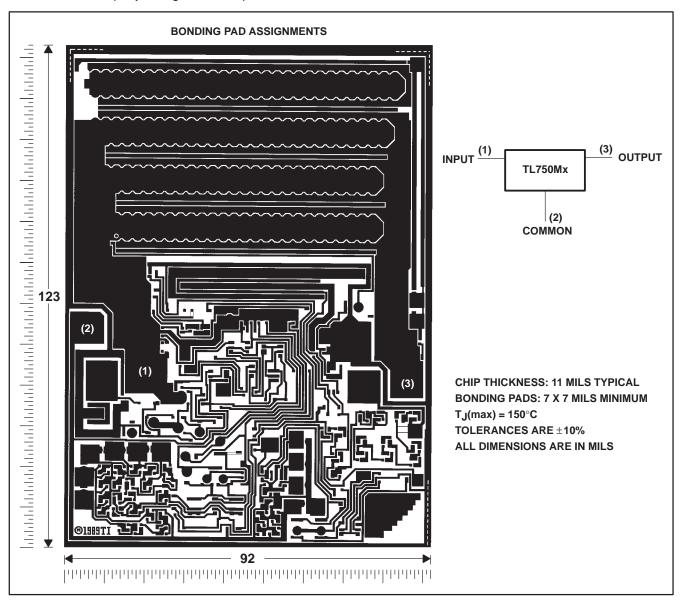
TL751M . . . 5-LEAD KTG PACKAGE[†] (TOP VIEW)

TL751M . . . FK PACKAGE (TOP VIEW)



NC - No internal connection

[†] The common terminal is in electrical contact with the mounting base.


TL751Mxx functional block diagram

DEVI COMPONEN	
Transistors	46
Diodes	14
Resistors	44
Capacitors	4
JFET	1
Tunnels (emitter R)	2

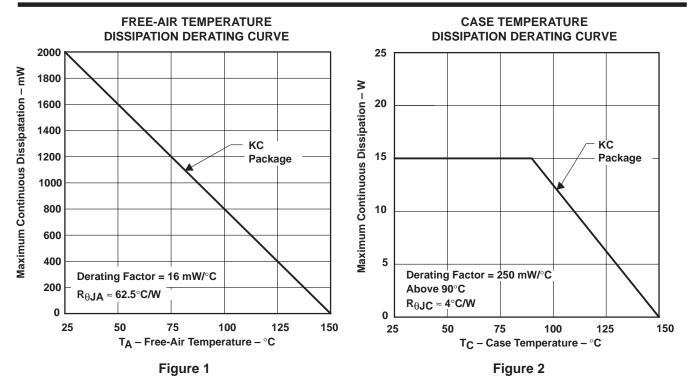
TL750MxxY chip information

This chip, when properly assembled, displays characteristics similar to the TL750MxxC. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. The chip can be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over virtual junction temperature range (unless otherwise noted)†

Continuous input voltage
Transient input voltage (see Figure 5)
Continuous reverse input voltage
Transient reverse input voltage: t = 100 ms
Continuous total power dissipation at (or below) $T_A = 25^{\circ}C$ See Dissipation Rating Tables
Continuous total power dissipation at (or below) T _C = 40°C:
FK Package 5.5 W
JG Package 3.9 W
All other packages (see Note 1) See Dissipation Rating Tables
Operating free-air (T _A) case (T _C) or virtual-junction (T _J) temperature range
Storage temperature range, T _{stg} 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.


NOTE 1: For operation above T_A = 25°C and T_C = 40°C, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

DISSIPATION RATING TABLE — FREE-AIR TEMPERATURE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 105°C POWER RATING	T _A = 125°C POWER RATING
FK	1920 mW	15.4 mW/°C	1227 mW	688 mW	380 mW
JG	1050 mW	8.4 mW/°C	672 mW	378 mW	210 mW
KC	2000 mW	16 mW/°C	1280 mW	720 mW	400 mW
KTE/KTG	1900 mW	15.2 mW/°C	1216 mW	684 mW	380 mW
KTP	1800 mW	14.5 mW/°C	1147 mW	653 mW	363 mW

DISSIPATION RATING TABLE — CASE TEMPERATURE

PACKAGE	T _C ≤ 90°C POWER RATING	DERATING FACTOR ABOVE T _C = 90°C	T _C = 125°C POWER RATING
KC	15000 mW	250 mW/°C	6250 mW
KTE/KTG	14300 mW	238 mW/°C	5970 mW
KTP	13000 mW	217 mW/°C	5417 mW

recommended operating conditions over recommended virtual junction temperature range

		MIN	MAX	UNIT
	TL75xM05	6	26	
Innut valtage gange V	TL75xM05 6 TL75xM08 9 TL75xM10 11 TL75xM12 13 ABLE input voltage, V _{IH} TL751Mxx 2 ABLE input voltage, V _{IL} TL751Mxx 0 TL75xMxxC, TL75xMxxQ 7 TL751MxxM 2 TL75xMxxC, TL75xMxxQ 7 TL75xMxxC 0 1 TL75xMxxC 0 1	26	V	
Input voltage range, V _I	TL75xM10	11	26	V
	TL75xM12	13	6 26 9 26 1 26 3 26 2 15 0 0.8 750 480 0 125 0 125	
High-level ENABLE input voltage, VIH	TL751Mxx	2	15	V
Low-level ENABLE input voltage, V _{IL}	TL751Mxx	0	0.8	V
ow-level ENABLE input voltage, V _{IL}	TL75xMxxC, TL75xMxxQ		750	mA
Output current range, 10	TL751MxxM		480	mA
	TL75xMxxC	0	125	
Operating virtual junction temperature range, T _J	TL75xMxxQ	-40	125	°C
	TL75xMxxM	-55	125	

electrical characteristics, $V_I = 14 \text{ V}$, $I_O = 300 \text{ mA}$, $T_J = 25^{\circ}\text{C}$

PARAMETER	TL751Mxxx			UNIT
PARAMETER	MIN	TYP	MAX	UNII
Response time, ENABLE to output		50		μs

electrical characteristics, V_I = 14 V, I_O = 300 mA, \overline{ENABLE} at 0 V for TL751M05, T_J = 25°C (unless otherwise noted) (see Note 2)

PARAMETER	TEST CONDITIONS	TL750M0 TL750M0	5C, TL75 ² 5Q, TL75 ²	1M05C 1M05Q	UNIT
		MIN	TYP	\$\begin{align*} \textbf{M05C} \\ \textbf{MAX} \\ 5.05 \\ 5.1 \\ 25 \\ 50 \\ 0.5 \\ 0.5 \\ 0.6 \\ 75 \\ 50 \\ 200 \\ Control of Sign Sign Sign Sign Sign Sign Sign Sign	
Output voltage	T _J = 25°C	4.95	5	5.05	V
Output voitage	$T_J = MIN \text{ to } MAX^{\dagger}$	4.9		5.1	V
lanut valtage regulation	$V_I = 9 \text{ V to } 16 \text{ V}, I_O = 250 \text{ mA}$		10	5.1 25 50	mV
input voltage regulation	rejection $V_{I} = 6 \text{ V to } 26 \text{ V}, I_{O} = 250 \text{ mA}$ 12 50 $V_{I} = 8 \text{ V to } 18 \text{ V}, f = 120 \text{ Hz}$ 50 55	50	IIIV		
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz	50	55		dB
Output voltage regulation	I _O = 5 mA to 750 mA		20	50	mV
Dranaut valtage	I _O = 500 mA			0.5	V
Dropout voltage	I _O = 750 mA			0.6	V
Output noise voltage	f = 10 Hz to 100 kHz		500		μV
Pice current	I _O = 750 mA		60	75	A
Bias current	I _O = 10 mA			5	mA
Bias current (TL751M05C and TL751M05Q only)	ENABLE V _{IH} ≥ 2 V			200	μΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

electrical characteristics, V_I = 14 V, I_O = 300 mA, \overline{ENABLE} at 0 V for TL751M08, T_J = 25°C (unless otherwise noted) (see Note 2)

PARAMETER	TEST CONDITIONS	TL750M0	TL750M08x, TL751M08x			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output voltage	T _J = 25°C	7.92	8	8.08	V	
Output voltage	$T_J = MIN \text{ to } MAX^{\dagger}$ 7.8			8.16	V	
Input voltage regulation	$V_I = 10 \text{ V to } 17 \text{ V}, I_O = 250 \text{ mA}$		12	40	mV	
	$V_1 = 9 \text{ V to } 26 \text{ V}, \qquad I_O = 250 \text{ mA}$		15	68		
Ripple rejection	V _I = 11 V to 21 V, f = 120 Hz	50	55		dB	
Output voltage regulation	$I_O = 5$ mA to 750 mA		24	80	mV	
Dronout voltage	I _O = 500 mA			0.5	V	
Dropout voltage	I _O = 750 mA		MIN TYP MAX 7.92 8 8.08 7.84 8.16 12 40 15 68 50 55 24 80 0.5 0.6 500 60 75 5	V		
Output noise voltage	f = 10 Hz to 100 kHz		500		μV	
Bias current	I _O = 750 mA		60	75	m A	
Dias current	I _O = 10 mA			5	mA	
Bias current (TL751Mxx only)	ENABLE V _{IH} ≥ 2 V			200	μΑ	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

electrical characteristics, V_I = 14 V, I_O = 300 mA, ENABLE at 0 V for TL751M10, T_J = 25°C (unless otherwise noted) (see Note 2)

PARAMETER	TEST CONDITIONS	TL750M1	TL750M10x, TL751M10x			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output voltage	T _J = 25°C	9.9	10	10.1	\/	
Output voltage	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V				
Input voltage regulation	$V_I = 12 \text{ V to } 18 \text{ V}, \qquad I_O = 250 \text{ mA}$		15	43	>/	
input voitage regulation	$V_I = 11 \text{ V to } 26 \text{ V}, \qquad I_O = 250 \text{ mA}$		20	75	IIIV	
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	50	55		dB	
Output voltage regulation	I _O = 5 mA to 750 mA		30	100	mV	
Dropout voltage	I _O = 500 mA			0.5	V	
Diopout voitage	I _O = 750 mA			0.6	V	
Output noise voltage	f = 10 Hz to 100 kHz		1000		μV	
Bias current	I _O = 750 mA		60	75	A	
Dids current	I _O = 10 mA			5	mA	
Bias current (TL751Mxx only)	ENABLE V _{IH} ≥ 2 V			200	μΑ	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

electrical characteristics, V_I = 14 V, I_O = 300 mA, \overline{ENABLE} at 0 V for TL751M12, T_J = 25°C (unless otherwise noted) (see Note 2)

PARAMETER	TEST CONDITIONS	TL750M12C, TL751M12C TL750M12Q, TL751M12Q			UNIT	
		MIN	TYP	MAX		
Output voltage	T _J = 25°C	11.88	12	12.12	V	
Output voltage	$T_J = MIN \text{ to } MAX^{\dagger}$	11.76		12.24	V	
Input voltage regulation	$V_I = 14 \text{ V to } 19 \text{ V}, \qquad I_O = 250 \text{ mA}$		15	43	mV	
nput voltage regulation Ripple rejection	$V_I = 13 \text{ V to } 26 \text{ V}, \qquad I_O = 250 \text{ mA}$		20	78	mv	
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	50	55		dB	
Output voltage regulation	I _O = 5 mA to 750 mA		30	120	mV	
Dropout voltage	I _O = 500 mA			0.5	V	
Diopout voltage	I _O = 750 mA			0.6	V	
Output noise voltage	f = 10 Hz to 100 kHz		1000		μV	
Diag gurrant	I _O = 750 mA		60	75	A	
Bias current	I _O = 10 mA			5	mA	
Bias current (TL751Mxx only)	ENABLE V _{IH} ≥ 2 V			200	μΑ	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

electrical characteristics, $V_I = 14 \text{ V}$, $I_O = 300 \text{ mA}$, $\overline{\text{ENABLE}}$ at 0 V, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted) (see Note 2)

PARAMETER		TEST CONDITIONS			TL751M05M			
PARAMETER		TEST CONDITIONS		MIN TYP MAX			UNIT	
Output voltage	V _I = 6 V to 26 V,	I _O = 0 mA to 480 mA	T _J = 25°C	4.95	5	5.05	V	
	V = 6 V to 26 V, IO = 0 HIA to 480 HIA	$T_J = -55^{\circ}C$ to $125^{\circ}C$	4.9		5.1	٧		
Input voltage regulation	$V_{I} = 9 V \text{ to } 16 V,$	I _O = 250 mA			10	25	mV	
Input voltage regulation	$V_{I} = 6 \text{ V to } 26 \text{ V},$	I _O = 250 mA			12	50	IIIV	
Ripple rejection	V _I = 8 V to 18 V,	f = 120 Hz		50*	55		dB	
Output voltage regulation	I _O = 5 mA to 480 mA				20	50	mV	
Dropout voltage	I _O = 480 mA					0.5	V	
Output noise voltage	f = 10 Hz to 100 kHz				500		μV	
	$I_O = 480 \text{ mA}$				60	75	m ^	
Bias current	I _O = 10 mA					5	mA	
	ENABLE V _{IH} ≥ 2 V					200	μΑ	

^{*} This parameter is not production tested.

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

electrical characteristics, $V_I = 14 \text{ V}$, $I_O = 300 \text{ mA}$, $\overline{\text{ENABLE}}$ at 0 V, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted) (see Note 2)

PARAMETER		TEST CONDITIONS		TL751M12M			UNIT
FARAMETER		TEST CONDITIONS			TYP	MAX	ONII
Contract contract to the	V: - 12 V to 26 V	$I V_1 = 13 V \text{ to } 26 V$ $I \cap = 0 \text{ mA to } 480 \text{ mA} = 10 \text{ mA}$	T _J = 25°C	11.88	12	12.12	V
Output voltage	V = 13 V 10 20 V,		$T_J = -55^{\circ}C$ to $125^{\circ}C$	11.76		12.24	
Input voltage regulation	V _I = 14 V to 19 V,	I _O = 250 mA			15	43	mV
Input voltage regulation	$V_I = 13 \text{ V to } 26 \text{ V},$	I _O = 250 mA			20	78	
Ripple rejection	V _I = 13 V to 23 V,	f = 120 Hz		50*	55		dB
Output voltage regulation	I _O = 5 mA to 480 mA				30	120	mV
Dropout voltage	I _O = 480 mA					0.5	V
Output noise voltage	f = 10 Hz to 100 kHz				1000		μV
Bias current	I _O = 480 mA				60	75	A
	I _O = 10 mA					5	mA
	ENABLE V _{IH} ≥ 2 V	_	·			200	μΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

electrical characteristics, $V_I = 14 \text{ V}$, $I_O = 300 \text{ mA}$, $\overline{\text{ENABLE}}$ at 0 V, $T_J = 25 ^{\circ}\text{C}$ (unless otherwise noted) (see Note 2)

PARAMETER	TEST CONDITIONS	TL75	UNIT	
PARAMETER	TEST CONDITIONS		TYP MA	X
Output voltage			5	V
Land and the second of the second	$V_{I} = 9 \text{ V to } 16 \text{ V}, \qquad I_{O} = 250 \text{ mA}$		10	mV
Input voltage regulation	$V_{I} = 6 \text{ V to } 26 \text{ V}, \qquad I_{O} = 250 \text{ mA}$		12	IIIV
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz		55	dB
Output voltage regulation	I _O = 5 mA to 750 mA		20	mV
Output noise voltage	f = 10 Hz to 100 kHz		500	μV
Bias current	I _O = 750 mA		60	mA

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-µF capacitor across the input and a 10-µF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

electrical characteristics, $V_I = 14 \text{ V}$, $I_Q = 300 \text{ mA}$, $\overline{\text{ENABLE}}$ at 0 V, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted) (see Note 2)

PARAMETER	TEST CONDITIONS		TL750M08Y			
PARAMETER			TYP	MAX	UNIT	
Output voltage			8		V	
Leave to the many mula Can	$V_I = 10 \text{ V to } 17 \text{ V}, \qquad I_O = 250 \text{ mA}$		12		mV	
Input voltage regulation	$V_{I} = 9 \text{ V to 26 V}, \qquad I_{O} = 250 \text{ mA}$		15			
Ripple rejection	V _I = 11 V to 21 V, f = 120 Hz		55		dB	
Output voltage regulation	$I_O = 5$ mA to 750 mA		24		mV	
Output noise voltage	f = 10 Hz to 100 kHz		500		μV	
Bias current	I _O = 750 mA		60		mA	

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

electrical characteristics, V_I = 14 V, I_O = 300 mA, ENABLE at 0 V, T_J = 25°C (unless otherwise noted) (see Note 2)

PARAMETER	TEST CONDITIONS	TL750M10Y	UNIT	
	TEST CONDITIONS	MIN TYP MAX		
Output voltage		10	V	
Input voltage regulation	$V_{I} = 12 \text{ V to } 18 \text{ V}, \qquad I_{O} = 250 \text{ mA}$	15	mV	
	$V_I = 11 \text{ V to } 26 \text{ V}, \qquad I_O = 250 \text{ mA}$	20	1117	
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	55	dB	
Output voltage regulation	$I_O = 5 \text{ mA to } 750 \text{ mA}$	30	mV	
Output noise voltage	f = 10 Hz to 100 kHz	1000	μV	
Bias current	$I_{O} = 750 \text{ mA}$	60	mA	

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

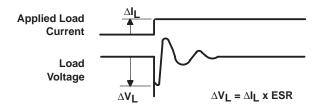
TL751M12Y electrical characteristics, $V_I = 14 \text{ V}$, $I_O = 300 \text{ mA}$, $\overline{\text{ENABLE}}$ at 0 V, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted) (see Note 2)

PARAMETER	TEST CONDITIONS	TL750M	UNIT		
PARAMETER	TEST CONDITIONS	MIN TYF	MAX	ONT	
Output voltage		12	!	V	
land on the man on the time	$V_I = 14 \text{ V to } 19 \text{ V}, \qquad I_O = 250 \text{ mA}$	15	;	mV	
Input voltage regulation	$V_I = 13 \text{ V to } 26 \text{ V}, \qquad I_O = 250 \text{ mA}$	20)	IIIV	
Ripple rejection	$V_{I} = 13 \text{ V to } 23 \text{ V}, \qquad f = 120 \text{ Hz}$	55	;	dB	
Output voltage regulation	$I_O = 5$ mA to 750 mA	30)	mV	
Output noise voltage	f = 10 Hz to 100 kHz	1000)	μV	
Bias current	I _O = 750 mA	60)	mA	

NOTE 2: Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 3.

PARAMETER MEASUREMENT INFORMATION

The TL751Mxx is a low-dropout regulator. This means that the capacitance loading is important to the performance of the regulator because it is a vital part of the control loop. The capacitor value and the equivalent series resistance (ESR) both affect the control loop and must be defined for the load range and the temperature range. Figures 3 and 4 can establish the capacitance value and ESR range for the best regulator performance.


Figure 3 shows the recommended range of ESR for a given load with a 10- μ F capacitor on the output. This figure also shows a maximum ESR limit of 2 Ω and a load-dependent minimum ESR limit.

For applications with varying loads, the lightest load condition should be chosen since it is the worst case. Figure 4 shows the relationship of the reciprocal of ESR to the square root of the capacitance with a minimum capacitance limit of 10 μF and a maximum ESR limit of 2 Ω . This figure establishes the amount that the minimum ESR limit shown in Figure 3 can be adjusted for different capacitor values. For example, where the minimum load needed is 200 mA, Figure 4 suggests an ESR range of 0.8 Ω to 2 Ω for 10 μF . Figure 4 shows that changing the capacitor from 10 μF to 400 μF can change the ESR minimum by greater than 3/0.5 (or 6). Therefore, the new minimum ESR value is 0.8/6 (or 0.13 Ω). This now allows an ESR range of 0.13 Ω to 2 Ω , achieving an expanded ESR range by using a larger capacitor at the output. For better stability in low-current applications, a small resistance placed in series with the capacitor (see Table 1) is recommended, so that ESRs better approximate those shown in Figures 3 and 4.

PARAMETER MEASUREMENT INFORMATION

Table 1. Compensation for Increased Stability at Low Currents

MANUFACTURER	CAPACITANCE	ESR TYP	PART NUMBER	ADDITIONAL RESISTANCE
AVX	15 μF	0.9 Ω	TAJB156M010S	1 Ω
KEMET	33 μF	0.6 Ω	T491D336M010AS	0.5 Ω

OUTPUT CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR)

LOAD CURRENT RANGE

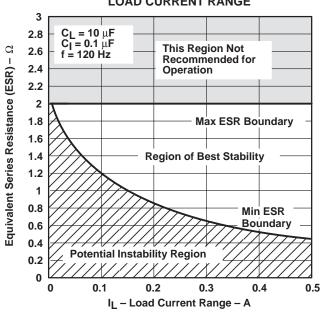
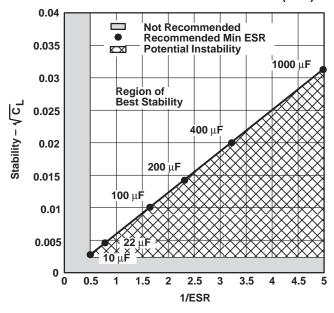
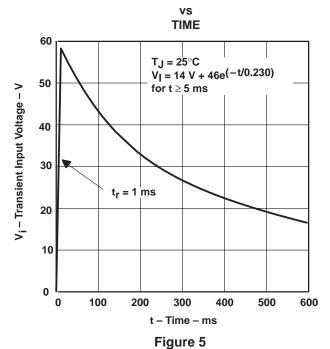


Figure 3

STABILITY vs **EQUIVALENT SERIES RESISTANCE (ESR)**

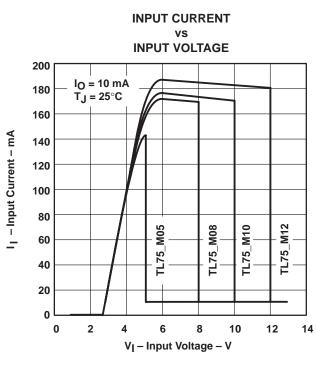



Figure 4

TYPICAL CHARACTERISTICS

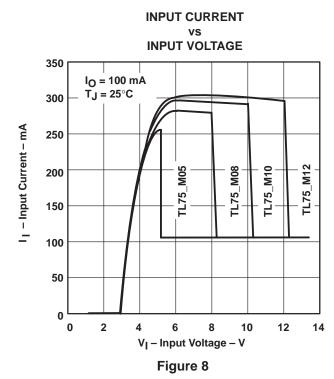
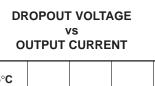
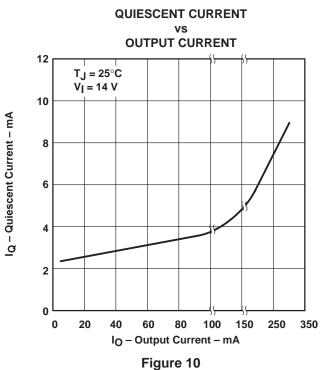
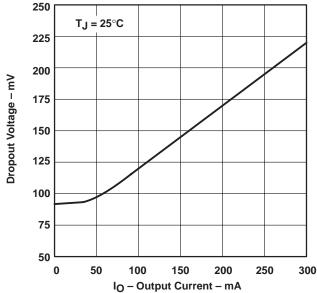

Table of Graphs

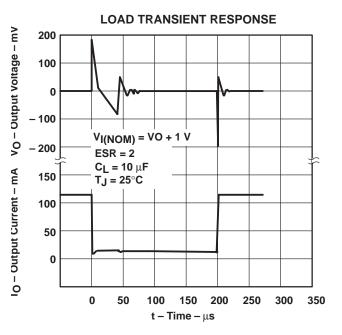
			FIGURE
Transient input voltage vs Time		5	
Output voltage vs Input voltage			6
Lawrence to the second control of the second	I _O = 10 mA		7
Input current vs Input voltage	I _O = 100 mA		8
Dropout voltage vs Output current		9	
Quiescent current vs Output current			10
Load transient response			11
Line transient response			12


TRANSIENT INPUT VOLTAGE

OUTPUT VOLTAGE vs

TYPICAL CHARACTERISTICS


Figure 7

TYPICAL CHARACTERISTICS

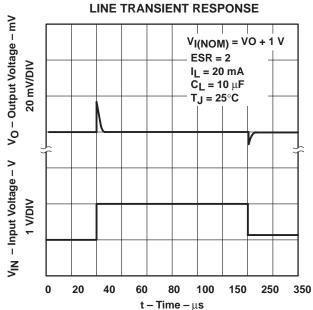


Figure 11 Figure 12

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated