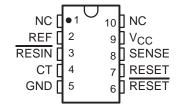
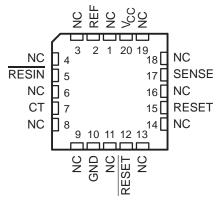

- **Power-On Reset Generator**
- **Automatic Reset Generation After Voltage Drop**
- **RESET** Output Defined From V_{CC} ≥ 1 V
- Precision Voltage Sensor
- **Temperature-Compensated Voltage** Reference
- **True and Complement Reset Outputs**
- **Externally Adjustable Pulse Duration**


description

The TL7702B and TL7705B are monolithic integrated-circuit supply-voltage supervisors designed for use as reset controllers in microcomputer and microprocessor systems. The supply-voltage supervisor monitors the supply for undervoltage conditions at the SENSE input. During power up, the RESET output becomes active (low) when V_{CC} attains a value approaching 1 V. As V_{CC} approaches 3 V (assuming that SENSE is above V_{T+}), the delay timer function activates a time delay, after which outputs RESET and RESET go inactive (high and low, respectively). When an undervoltage condition occurs during normal operation, outputs RESET and RESET go active. To ensure that a complete reset occurs, the reset outputs remain active for a time delay after the voltage at the SENSE input exceeds the positive-going threshold value. The time delay is determined by the value of the external capacitor CT: $t_d \approx 2.6 \times 10^4 \times C_T$, where C_T is in farads (F) and t_d is in seconds (s).

TL77xxBC...D OR P PACKAGE TL77xxBM . . . JG PACKAGE (TOP VIEW)



TL77xxBM . . . U PACKAGE (TOP VIEW)

NC - No internal connection

TL77xxBM . . . FK PACKAGE (TOP VIEW)

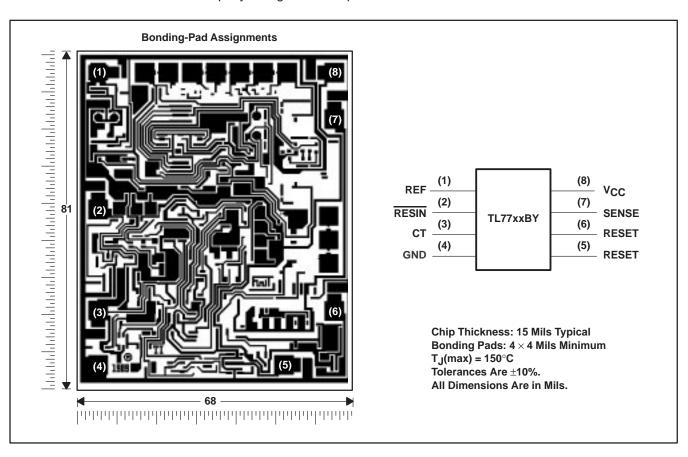
NC - No internal connection

An external capacitor (typically 0.1 μF) must be connected to REF to reduce the influence of fast transients in the supply voltage.

The TL7702BC and TL7705BC are characterized for operation from 0°C to 70°C. The TL7702BI and TL7705BI are characterized for operation from -40°C to 85°C. The TL7702BQ and TL7705BQ are characterized for operation from -40°C to 125°C. The TL7702BM and TL7705BM are characterized for operation from -55°C to 125°C.

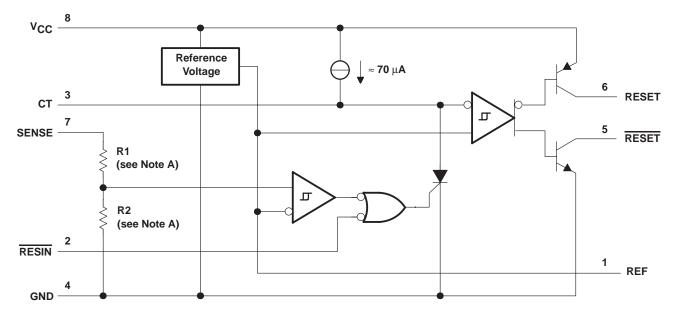
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of



AVAILABLE OPTIONS

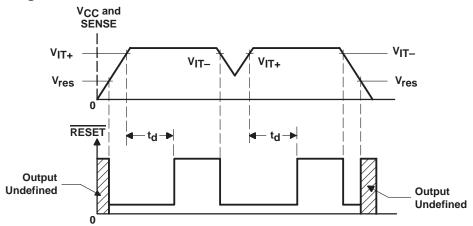
		PA	CKAGED DEVIC	ES		
TA	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)	CERAMIC FLATPACK (U)	CHIP FORM (Y)
0°C to 70°C	TL7702BCD	_	_	TL7702BCP	_	
0 0 10 70 0	TL7705BCD	_	_	TL7705BCP	_	
–40°C to 85°C	TL7702BID	_	_	TL7702BIP	_	
-40 C to 65 C	TL7705BID	_	_	TL7705BIP	_	TL7702BY
-40°C to 125°C	TL7702BQD	_	_	TL7702BQP	_	TL7705BY
-40 C to 125 C	TL7705BQD	_	_	TL7705BQP	_	
–55°C to 125°C	_	TL7702BMFK	TL7702BMJG	_	TL7702BMU	
-55 C to 125°C	_	TL7705BMFK	TL7705BMJG	_	TL7705BMU	


TL7702BY and TL7705BY chip information

These chips, when properly assembled, have characteristics similar to the TL7702BC and the TL7705BC. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. The chips can be mounted with conductive epoxy or a gold-silicon preform.

functional block diagram

The functional block diagram is shown for illustrative purposes only; the actual circuit includes a trimming network to adjust the reference voltage and sense-comparator trip point.



Pin numbers shown are for the D, JG, and P packages.

NOTE A: TL7702B: R1 = 0 Ω , R2 = open

TL7705B: R1 = 23 k Ω , R2 = 10 k Ω , nominal

typical timing diagram

TL7702B, TL7702BY, TL7705B, TL7705BY SUPPLY VOLTAGE SUPERVISORS

SLVS037G - SEPTEMBER 1989 - REVISED OCTOBER 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	20 V
Input voltage range, V _I : RESIN	0.3 V to 20 V
SENSE	0.3 V to 20 V
High-level output current, IOH (RESET)	
Low-level output current, I _{OL} (RESET)	30 mA
Continuous total power dissipation	See Dissipation Rating Table
Storage temperature range, T _{stq}	–65°C to 150°C
Case temperature for 60 seconds, T _C : FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or U pack	ages 300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	200 mW
U	700 mW	5.5 mW/°C	453 mW	370 mW	150 mW

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V _{CC}		3.6	18	V
High-level input voltage, V _{IH}	RESIN	2	18	V
Low-level input voltage, V _{IL}	RESIN	0	0.8	V
Input voltage, V _I	SENSE	0	18	V
High-level output current, IOH	RESET		-16	mA
Low-level output current, IOL	RESET		16	mA
	TL770xBC	0	70	
Operating free oir temperature range. To	TL770xBI	-40	85	°C
Operating free-air temperature range, T _A	TL770xBQ	-40	125	-0
	TL770xBM	<i>–</i> 55	125	

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER			TEST COND	TEST CONDITIONS†		TL77xxBC TL77xxBI TL77xxBQ			
						MIN	TYP	MAX		
Vон	High-level output vo	oltage, RES	ET	I _{OH} = -16 mA		V _{CC} -1.5			V	
VOL	Low-level output vo	ltage, RES	ET	I _{OL} = 16 mA				0.4	V	
V _{ref}	Reference voltage			I _{ref} = 500 μA,	T _A = 25°C	2.48	2.53	2.58	V	
			TL7702B	T _A = 25°C		2.505	2.53	2.555		
,_	Negative-going		TL7705B		4.5	4.55	4.6] ,		
VIT-	input threshold volta at SENSE input	age	TL7702B		2.48	2.53	2.58	l ' l		
			TL7705B	T _A = full range‡		4.45	4.55	4.65]	
1/4	Hysteresis, SENSE		TL7702B	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	T. 25°C		10		m)/	
V _{hys}	$(V_{\text{IT+}} - V_{\text{IT-}})$		TL7705B	$V_{CC} = 3.6 \text{ V to } 18 \text{ V},$	$T_A = 25^{\circ}C$		30		mV	
V _{res} §	Power-up reset vol	tage		I _{OL} at RESET = 2 mA,	T _A = 25°C			1	V	
	land to compare	RESIN		$V_I = 0.4 \text{ V to V}_{CC}$				-10	^	
'1	Input current	SENSE	TL7702B	V _I = V _{ref} to 18 V			-0.1	-2	μΑ	
ЮН	High-level output co	rrent, RESET		V _O = 18 V,	See Figure 1			50	μΑ	
l _{OL}	Low-level output cu	ırrent, RESI	ĒΤ	$V_{O} = 0 V$,	See Figure 1			-50	μΑ	
laa	Cupply ourront			V _{SENSE} = 15 V,	RESIN ≥ 2 V		1.8	3	mA	
lcc	Supply current			V _{CC} = 18 V,	T _A = full range [‡]			3.5	mA	

switching characteristics, V_{CC} = 5 V, CT open, T_A = 25°C

PARAMETER		PARAMETER FROM TO (OUTPL		TEST CONDITIONS	TL77xxBC TL77xxBI TL77xxBQ			UNIT
					MIN	TYP	MAX	
tPLH	Propagation delay time from low- to high-level output	RESIN	RESET	See Figures 1, 2, and 2		270	500	ns
tPHL	Propagation delay time from high- to low-level output	RESIN	RESET	See Figures 1, 2, and 3		270	500	ns
	Effective pulse duration	RESIN		See Figure 2		150		ns
t _W	Effective pulse duration	SENSE		See Figure 2		100		115
t _r	Rise time		DECET				75	no
tf	Fall time		RESET			150	200	ns
t _r	Rise time		See Figures 1 and 3			75	150	ns
t _f	Fall time		RESET				50	115

[†] All electrical characteristics are measured with 0.1-μF capacitors connected at REF, CT, and V_{CC} to GND. ‡ Full range for the C-suffix device is 0°C to 70°C, full range for the I-suffix device is—40°C to 85°C, and full range for the Q-suffix device is -40°C to 125°C.

[§] This is the lowest voltage at which RESET becomes active.

TL7702B, TL7702BY, TL7705B, TL7705BY SUPPLY VOLTAGE SUPERVISORS

SLVS037G - SEPTEMBER 1989 - REVISED OCTOBER 1998

electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER			TEST CONDI	TIONS [†]	TL7702BM TL7705BM			UNIT	
					MIN	TYP	MAX		
Vон	High-level output vo	oltage, RES	ET	I _{OH} = -16 mA		V _{CC} -1.5			V
VOL	Low-level output vo	Itage, RES	ET	I _{OL} = 16 mA				0.4	V
V _{ref}	Reference voltage			$I_{ref} = 500 \mu A$,	T _A = 25°C	2.48	2.53	2.58	V
			TL7702B	T. 0500		2.505	2.53	2.555	
,_	Negative-going		TL7705B	T _A = 25°C		4.5	4.55	4.6	v I
V _{IT} _	at CENICE in and I IL//02B I		+		2.48	2.53	2.58	\ \ \	
			TL7705B	T _A = full range‡		4.45	4.55	4.65	
,,	Hysteresis, SENSE		TL7702B		T 0500		10		,,
V _{hys}	$(V_{\text{IT+}} - V_{\text{IT-}})$		TL7705B	$V_{CC} = 3.6 \text{ V to } 18 \text{ V},$	$T_A = 25^{\circ}C$		30		mV
V _{res} §	Power-up reset volt	age		I _{OL} at RESET = 2 mA,	T _A = 25°C			1	V
	land to compare	RESIN		$V_I = 0.4 \text{ V to V}_{CC}$				-10	
11	Input current	SENSE	TL7702B	$V_I = V_{ref}$ to $V_{CC} - 1.5 V$			-0.1	-2	μΑ
ЮН	High-level output cu	ırrent, RES	ET	V _O = 18 V				50	μΑ
l _{OL}	Low-level output cu	rrent, RESI	ĒΤ	V _O = 0				-50	μΑ
la a	Cumply augreent			V _{SENSE} = 15 V,	RESIN ≥ 2 V		1.8	3	A
Icc	Supply current			V _{CC} = 18 V,	T _A = full range [‡]			4	mA

[†] All electrical characteristics are measured with 0.1-μF capacitors connected at REF, CT, and V_{CC} to GND.

switching characteristics, V_{CC} = 5 V, CT open, T_A = 25°C

PARAMETER		FROM TO (INPUT) (OUTPUT)		TEST CONDITIONS	TL7702BM TL7705BM			UNIT	
		(INFOT)	(0011-01)		MIN	TYP	MAX		
tPLH	Propagation delay time from low- to high-level output	RESIN	RESET	Coo Figures 4 2 and 2		270	500*	ns	
tPHL	Propagation delay time from high- to low-level output	RESIN	RESET	See Figures 1, 2, and 3		270	500*	ns	
	Effective pulse duration	RESIN		See Figure 2		150		20	
t _W	Effective pulse duration	SENSE		See Figure 2		100		ns	
t _r	Rise time		DECET				75*	ns	
t _f	Fall time		RESET	See Figures 1 and 3		150	200*	115	
t _r	Rise time		RESET	See Figures 1 and 3		75	150*		
t _f	Fall time		RESET				50*	ns	

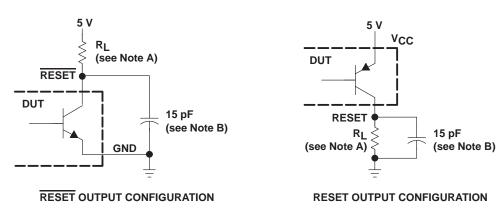
^{*} On products compliant to MIL-PRF-38535, these parameters are not production tested.

[‡] Full range for the M-suffix device <u>is-55°C</u> to 125°C.

[§] This is the lowest value at which RESET becomes active.

SLVS037G - SEPTEMBER 1989 - REVISED OCTOBER 1998

electrical characteristics over recommended operating conditions, T_A = 25°C (unless otherwise noted)


	PARAMETER			TEST CON	DITIONS†	TL7702BY TL7705BY			UNIT
						MIN	TYP	MAX	
Vон	High-level output voltage, RE	SET		$I_{OH} = -16 \text{ mA}$		V _{CC} -1.5			V
VOL	Low-level output voltage, RE	SET		I _{OL} = 16 mA				0.4	V
V _{ref}	Reference voltage			I _{ref} = 500 μA		2.48	2.53	2.58	V
\/	T		TL7702BY			2.505	2.53	2.555	V
VIT-			TL7705BY	1 i		4.5	4.55	4.6	\ \ \
1/4	Lhystorosis CENICE (\/ \)	/ \	TL7702BY	Van 26 V to 49 V			10		mV
V _{hys}	Hysteresis, SENSE (V _{IT+} – V	VIT—)	TL7705BY	V _{CC} = 3.6 V to 18	V		30		IIIV
V _{res} ‡	Power-up reset voltage			I _{OL} at RESET = 2	mA			1	V
[i.	long to commont	RESIN		$V_I = 0.4 \text{ V to V}_{CC}$				-10	
'1	Input current	SENSE	TL7702BY	$V_I = V_{ref}$ to 18 V			-0.1	-2	μΑ
ЮН	IOH High-level output current, RESET		V _O = 18 V,	See Figure 1			50	μΑ	
loL	IOL Low-level output current, RESET		$V_O = 0 V$,	See Figure 1			-50	μΑ	
ICC	Supply current			V _{SENSE} = 15 V,	RESIN ≥ 2 V		1.8	3	mA

[†] All electrical characteristics are measured with 0.1- μ F capacitors connected at REF, CT, and V_{CC} to GND. ‡ This is the lowest voltage at which RESET becomes active.

switching characteristics, V_{CC} = 5 V, CT open, T_A = 25°C

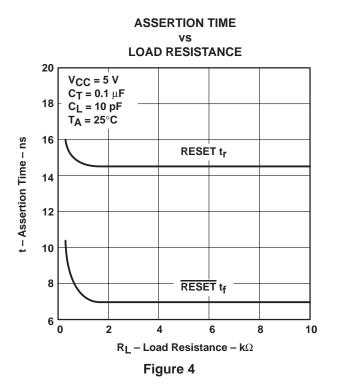
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TL7702BY TL7705BY			UNIT	
		(1141 01)	(001101)		MIN	TYP	MAX		
tPLH	Propagation delay time from low- to high-level output	RESIN	RESET			270	500	ns	
^t PHL	Propagation delay time from high- to low-level output	RESIN	RESET	See Figures 1, 2, and 3		270	500	ns	
	Effective pulse duration	RESIN		See Figure 2		150		20	
t _W	Effective pulse duration	SENSE		See Figure 2		100		ns	
t _r	Rise time		DEGET				75	ns	
t _f	Fall time		RESET	See Figures 1 and 3		150	200	115	
t _r	Rise time		RESET	See Figures 1 and 3		75	150		
tf	Fall time		KESET				50	ns	

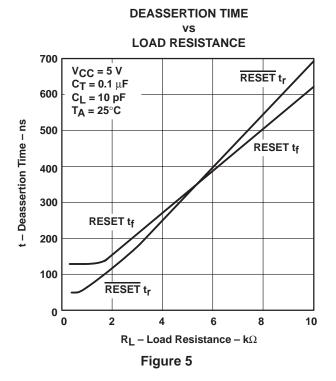
PARAMETER MEASUREMENT INFORMATION

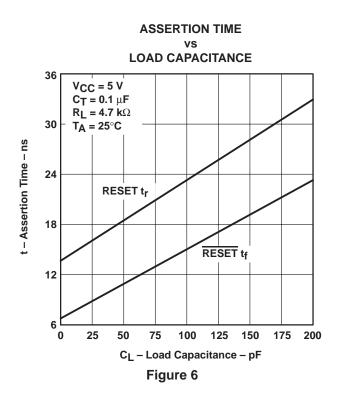
NOTES: A. For I_{OL} and I_{OH}, R_L = 10 k Ω . For all switching characteristics, R_L = 511 Ω .

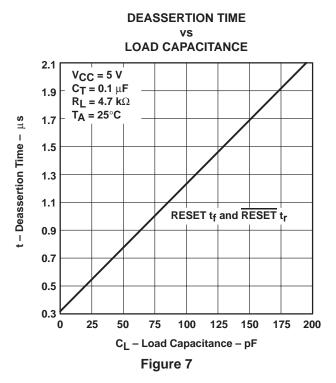
B. This figure includes jig and probe capacitance.

Figure 1. RESET and RESET Output Configurations


Figure 2. Input Pulse Definition




Figure 3. Voltage Waveforms



TYPICAL CHARACTERISTICS[†]

[†] For proper operation, both RESET and RESET should be terminated with resistors of similar value. Failure to do so may cause unwanted plateauing in either output waveform during switching.

APPLICATION INFORMATION

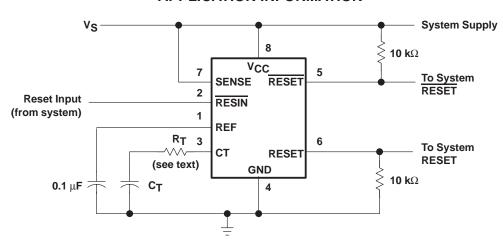


Figure 8. System Reset Controller With Undervoltage Sensing

When the TL770xB SENSE terminal is used to monitor V_{CC} , a current-limiting resistor in series with C_T is recommended. During normal operation, the timing capacitor is charged by the on-board current source to approximately V_{CC} or an internal voltage clamp (\approx 7.1-V zener), whichever is less. When the circuit is then subjected to an undervoltage condition during which V_{CC} is rapidly slewed down, the voltage on CT exceeds that on V_{CC} . This forward biases a secondary path internally, which falsely activates the outputs. A fault is indicated when V_{CC} drops below V_{CCT} , not when V_{SENSE} falls below V_{T-} .

Texas Instruments performs a 100% electrical screen to verify that the outputs do not switch with 1 mA forced into the CT terminal. Adding the external resistor, R_T, prevents false triggering. Its value is calculated as follows:

$$\frac{V_{(CT)}-V_{T-}}{R_{\tau}}$$

Where:

 $V_{(CT)} = V_{CC}$ or 7.1 V, whichever is less

 $V_{T_{-}}^{*}$ = 4.55 V (nom)

R_T = value of series resistor required

For $V_{CC} = 5 \text{ V}$:

$$\frac{5-4.55}{R_{\scriptscriptstyle T}} \ < \ 1 \ \text{mA}$$

Therefore,

$$R_{\scriptscriptstyle T}$$
 > 450 Ω

Using a 20% tolerance resistor, R_T should be greater than 560 Ω .

Adding this series resistor changes the duration of the reset pulse by no more than 10%. R_T extends the discharge of C_T , but also skews the $V_{(CT)}$ threshold. These effects tend to cancel one another. The precise percentage change can be derived theoretically, but the equation is complicated by this interaction and is dependent upon the duration of the supply-voltage fault condition.

Both outputs of the TL770xB should be terminated with similar value resistors, even when only one is being used. This prevents unwanted plateauing in either output waveform during switching, which may be interpreted as an undefined state or delay system reset.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated