
available features

- **Power-On Reset Generator**
- **Automatic Reset Generation After Voltage** Drop
- Low Standby Current . . . 20 µA
- Reset Output Defined When V_{CC} Exceeds 1 V

- **Complementary Reset Output**
- **Precision Threshold Voltage** $4.55~V\pm120~mV$
- High Output Sink Capability . . . 20 mA
- **Comparator Hysteresis Prevents Erratic** Resets

TYPICAL APPLICATION DIAGRAM

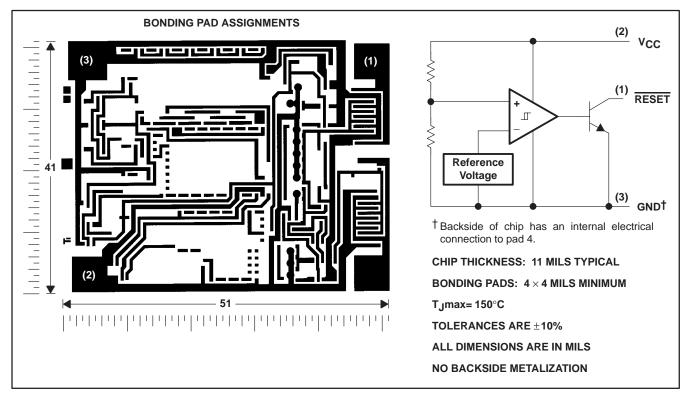
description

The TL7757 is a monolithic supply voltage supervisor designed for use in microcomputer and microprocessor systems. The supervisor monitors the supply voltage for undervoltage conditions. During power up, when the supply voltage, V_{CC}, attains a value approaching 1 V, the RESET output becomes active (low) to prevent undefined operation. If at any time, the supply voltage drops below threshold voltage level (VIT-), the RESET output goes to the active (low) level until the supply undervoltage fault condition is eliminated.

The C-suffix device is characterized for operation from 0°C to 70°C. The I-suffix device is characterized for operation from -40°C to 85°C. The M-suffix device is characterized for operation from -55°C to 125°C.

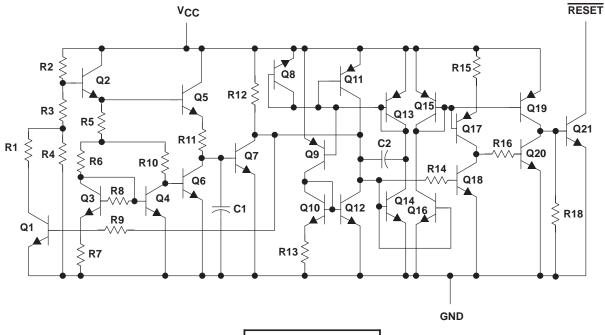
	AVAILABLE OPTIONS								
	PACK	AGED DEVICES		CHIP FORM					
TA	SMALL OUTLINE (D)	TO-226AA (LP)	SOT-89 (PK)	(Ү)					
0°C to 70°C	TL7757CD	TL7757CLP	TL7757CPK						
-40°C to 85°C	TL7757ID	TL7757ILP	TL7757IPK	TL7757Y					
-55°C to 125°C	TL7757MD	TL7757MLP	—						

D and LP packages are available taped and reeled. Add R suffix to device type (e.g., TL7757CDR). Chips are tested at 25°C.


D PACKAGE LP PACKAGE **PK PACKAGE** (TOP VIEW) (TOP VIEW) (TOP VIEW) RESET [8 NC Π GND 7 🛛 NC V_{CC} 2 Π V_{CC} 6 NC NC [3 0 RESET GND [5] NC 4 Vcc GND RESET

NC-No internal connection

GND is in electrical contact with the tab.


TL7757Y chip information

This chip, when properly assembled, displays characteristics similar to the TL7757C. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

equivalent schematic

ACTUAL D					
Transistors 27					
Resistors	20				
Capacitors	2				

SLVS041D - SEPTEMBER 1991 - REVISED AUGUST 1995

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage range, V _{CC} (see Note 1)	
Output current, I _O	30 mA
Operating free-air temperature range, T _A : C-suffix	0°C to 70°C
I-suffix	40°C to 85°C
M-suffix	–55°C to 125°C
Continuous total power dissipation	See Dissipation Rating Tables
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to network terminal ground.

DISSIPATION RATING TABLE 1 – FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE	T _A = 70°C	T _A = 85°C	T _A = 125°C
D	725 mW	5.8 mW/°C	$T_A = 25^{\circ}C$	464 mW	377 mW	145 mW
LP	775 mW	6.2 mW/°C	$T_A = 25^{\circ}C$	496 mW	403 mW	155 mW
PK	500 mW	4.0 mW/°C	$T_A = 25^{\circ}C$	320 mW	260 mW	—

DISSIPATION RATING TABLE 2 – CASE TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE	T _A = 70°C	T _A = 85°C
PK	3125 mW	25 mW/°C	T _C =110°C	2000 mW	1625 mW

recommended operating conditions

	C-SU	FFIX	I-SUF	FIX	M-SU	FFIX	UNIT
	MIN MAX		MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{CC}	1	7	1	7	1	7	V
High-level output voltage, V _{OH}		15		15		15	V
Low-level output current, IOL		20		20		20	mA
Operating free-air temperature, T _A	0	70	-40	85	-55	125	°C

SLVS041D - SEPTEMBER 1991 - REVISED AUGUST 1995

	DADAMETED	TEST CONDITIONS	+ +	Т	L7757C		
	PARAMETER	TEST CONDITIONS	T _A †	MIN	TYP	MAX	UNIT
V	Negative going input threshold voltage at Ver		25°C	4.43	4.55	4.67	V
VIT-	Negative-going input threshold voltage at V_{CC}		Full range	4.4		4.7	V
v. †	Hysteresis at V _{CC}		25°C	40	50	60	mV
V _{hys} ‡		25	Full range	30		70	IIIV
Ver	Low-level output voltage	101 - 20 m $100 - 4.2 V$	25°C		0.4	0.8	V
VOL	Low-level output voltage	$I_{OI} = 20 \text{ mA}$. $V_{CC} = 4.3 \text{ V}$	Full range			0.8	v
lou	High-level output current	V _{CC} = 7 V, V _{OH} = 15 V,	25°C			1	μA
ЮН	ngn-level output current	See Figure 1	Full range			1	μΑ
v _{res} §	Power-up reset voltage	$R_L = 2.2 \text{ k}\Omega$,	25°C		0.8	1	V
vres ³	Power-up reser voltage	V_{CC} slew rate $\leq 5 \text{ V/}\mu\text{s}$	Full range			1.2	v
		$\lambda = 42\lambda$	25°C		1400	2000	
ICC	Supply current	$V_{CC} = 4.3 V$	Full range			2000	μA
		V _{CC} = 5.5 V	Full range			40	

electrical characteristics at specified free-air temperature

[†] Full range is 0°C to 70°C. [‡] This is the difference between positive-going input threshold voltage, V_{IT+}, and negative-going input threshold voltage, V_{IT-}. § This is the lowest voltage at which RESET becomes active.

switching characteristics at T_{A} = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	. . +	Т	L7757C		
	FARAMETER	TEST CONDITIONS	ΤA [†]	MIN	TYP	MAX	UNIT
touu	Propagation delay time, low-to-high-level output	V_{CC} slew rate $\leq 5 V/\mu s$,	25°C		3.4	5	μs
^t PLH	Propagation delay time, low-to-nigh-level output	but See Figures 2 and 3 Ful See Figures 2 and 3 Ful Ful	Full range			5	μs
tou	Propagation delay time, high-to-low-level output	Soo Eiguros 2 and 2	25°C		2	5	
^t PHL	Propagation delay time, high-to-low-level output	See Figures 2 and 5	Full range			5	μs
	Rise time	V _{CC} slew rate \leq 5 V/µs,	25°C		0.4	1	
t _r	Rise une	See Figures 2 and 3	Full range			1	μs
	Fall time	See Figures 2 and 3	25°C		0.05	1	
tf		See Figures 2 and 5	Full range			1	μs
			25°C			5	
^t w(min)	Minimum pulse duration at V_{CC} for output response		Full range			5	μs

[†] Full range is 0°C to 70°C.

SLVS041D - SEPTEMBER 1991 - REVISED AUGUST 1995

electrical characteristics at specified free-air temperature

	PARAMETER	TEST CONDITIONS	T . †	1	L7757I		
	PARAMETER	TEST CONDITIONS	T _A †	MIN	TYP	MAX	UNIT
V	Negative-going input threshold voltage at V_{CC}		25°C	4.43	4.55	4.67	V
VIT-	Negative-going input theshold voltage at VCC		Full range	4.4		4.7	v
V. +	Hyptorosic at Vac		25°C	40	50	60	mV
V _{hys} ‡	Hysteresis at V _{CC}	2	Full range	30		70	IIIV
Vai		a = 20 m $ a = 4.2 //$	25°C		0.4	0.8	V
VOL	Low-level output voltage	I _{OL} = 20 mA, V _{CC} = 4.3 V	Full range			0.8	v
1	High lovel output ourrest	V _{CC} = 7 V, V _{OH} = 15 V,	25°C			1	
ЮН	High-level output current	See Figure 1	Full range			1	μA
V 8		$R_{I} = 2.2 \text{ k}\Omega,$	25°C		0.8	1	V
V _{res} §	Power-up reset voltage	V_{CC}^{-} slew rate $\leq 5 V/\mu s$	Full range			1.2	v
		1/22 - 421/2	25°C		1400	2000	
ICC	Supply current	V _{CC} = 4.3 V	Full range			2100	μΑ
		V _{CC} = 5.5 V	Full range			40	

[†] Full range is -40°C to 85°C.

^{\ddagger} This is the difference between positive-going input threshold voltage, V_{IT+}, and negative-going input threshold voltage, V_{IT-}. § This is the lowest voltage at which RESET becomes active.

switching characteristics at $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T . †	1	L7757I		
	PARAMETER	TEST CONDITIONS	Τ _Α †	MIN	TYP	MAX	UNIT
touu	Propagation delay time, low-to-high-level output	V_{CC} slew rate $\leq 5 V/\mu s$,	25°C		3.4	5	μs
^t PLH	Propagation delay time, low-to-high-level output	It See Figures 2 and 3 Ful See Figures 2 and 3 Ful Ful	See Figures 2 and 3 Full range		5	μs	
tou	Propagation delay time, high-to-low-level output	Soo Eiguros 2 and 2	25°C		2	5	
^t PHL	Propagation delay time, high-to-low-level output	See Figures 2 and 5	Full range			5	μs
	Rise time	V _{CC} slew rate \leq 5 V/µs,	25°C		0.4	1	
tr	Rise une	See Figures 2 and 3	Full range			1	μs
	Fall time	See Figures 2 and 2	25°C		0.05	1	
tf	Failume	See Figures 2 and 3	Full range			1	μs
			25°C			5	
^t w(min)	Minimum pulse duration at V_{CC} for output response		Full range			5	μs

[†] Full range is -40° C to 85° C.

SLVS041D - SEPTEMBER 1991 - REVISED AUGUST 1995

electrical characteristics at specified free-air temperature

		TEST CONDITIONS	T . †	Т	L7757M		
	PARAMETER	TEST CONDITIONS	T _A †	MIN	TYP	MAX	UNIT
V	Negative-going input threshold voltage at V _{CC}		25°C	4.43	4.55	4.67	V
VIT-			Full range	4.35		4.7	v
V. +	Hyptoropia at Vala		25°C	40	50	60	mV
V _{hys} ‡	Hysteresis at V _{CC}		Full range	30		70	IIIV
Vai			25°C		0.4	0.8	V
VOL	Low-level output voltage	I _{OL} = 20 mA, V _{CC} = 4.3 V Fu	Full range			0.8	v
1	High lovel output ourrept	V _{CC} = 7 V, V _{OH} = 15 V,	25°C			1	
ЮН	High-level output current	See Figure 1	Full range			1	μA
V 8	Power up react voltage	$R_{L} = 2.2 \text{ k}\Omega,$	25°C		0.8	1	V
V _{res} §	Power-up reset voltage	V_{CC} slew rate $\leq 5 V/\mu s$	Full range			1.2	v
		V/22 42V/	25°C		1400	2000	
ICC	Supply current	V _{CC} = 4.3 V	Full range			2500	μA
		V _{CC} = 5.5 V	Full range			40	

[†]Full range is –55°C to 125°C.

[‡]This is the difference between positive-going input threshold voltage, V_{IT+} , and negative-going input threshold voltage, V_{IT-} . § This is the lowest voltage at which RESET becomes active.

switching characteristics at $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	. . +	Т	L7757M		
	FARAMETER	TEST CONDITIONS	ΤA [†]	MIN	TYP	MAX	UNIT
t	Propagation delay time, low-to-high-level output	V_{CC} slew rate $\leq 5 V/\mu s$,	25°C		3.4	5*	μs
^t PLH	Propagation delay time, tow-to-high-level output	See Figures 2 and 3	Full range			5*	μs
tou	Propagation delay time, high-to-low-level output	See Figures 2 and 3	25°C		2	5*	
^t PHL	Propagation delay time, high-to-low-level output	See Figures 2 and 5	Full range			5*	μs
	Rise time	V _{CC} slew rate \leq 5 V/µs,	25°C		0.4	1*	
tr	Rise time	See Figures 2 and 3	Full range			1*	μs
	Fall time	See Figures 2 and 2	25°C		0.05	1*	
tf	Failume	See Figures 2 and 3	Full range			1	μs
+	Minimum pulse duration at V/a a for output reaponed		25°C			5*	
^t w(min)	Minimum pulse duration at V_{CC} for output response		Full range			5*	μs

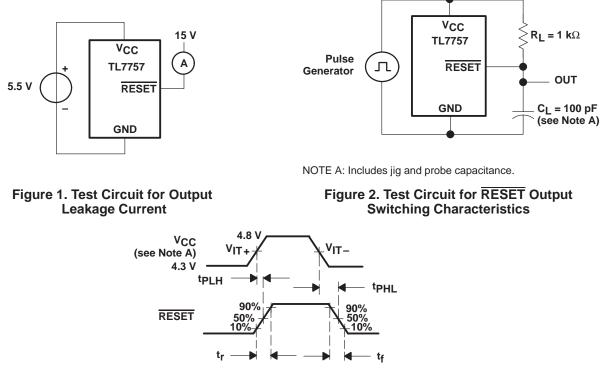
*On products compliant to MIL-STD-883, Class B, this parameter is not production tested.

[†] Full range is –55°C to 125°C.

electrical characteristics at T_A = 25°C

PARAMETER		TEST CONDITIONS	TL7757Y				
		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V_{IT-}	Negative-going input threshold voltage at V_{CC}			4.55		V	
V _{hys} †	Hysteresis at V_{CC}			50		mV	
VOL	Low-level output voltage	$I_{OL} = 20 \text{ mA}, V_{CC} = 4.3 \text{ V}$		0.4		V	
ЮН	High-level output current	$V_{CC} = 7 V$, $V_{OH} = 15 V$, See Figure 1				μA	
V _{res} ‡	Power-up reset voltage	$R_L = 2.2 \text{ k}\Omega$, V_{CC} slew rate $\leq 5 \text{ V/}\mu\text{s}$		0.8		V	
ICC	Supply current	$V_{CC} = 4.3 V$		1400		μA	
		V _{CC} = 5.5 V					

[†] This is the difference between positive-going input threshold voltage, V_{IT+}, and negative-going input threshold voltage, V_{IT-}. [‡] This is the lowest voltage at which RESET becomes active.


switching characteristics at T_{A} = 25°C

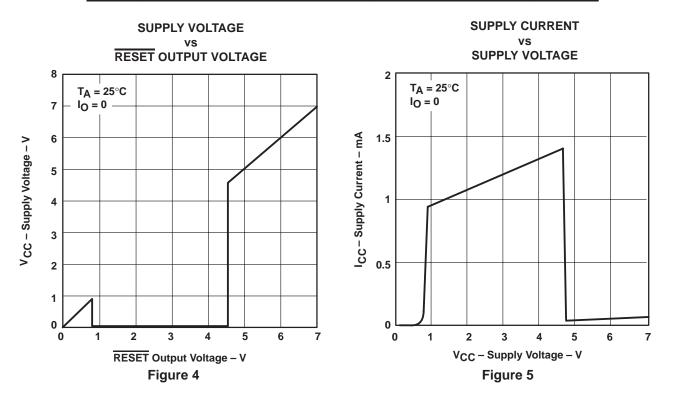
PARAMETER		TEST CONDITIONS	TL7757Y			
		TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	V_{CC} slew rate \leq 5 V/µs, See Figures 2 and 3		3.4		μs
^t PHL	Propagation delay time, high-to-low-level output	See Figures 2 and 3		2		μs
tr	Rise time	V_{CC} slew rate $\leq 5 \text{ V/}\mu\text{s}$, See Figures 2 and 3		0.4		μs
t _f	Fall time	See Figures 2 and 3		0.05		μs

SLVS041D - SEPTEMBER 1991 - REVISED AUGUST 1995

PARAMETER MEASUREMENT INFORMATION

NOTE A: V_{CC} slew rate \leq 5 µs

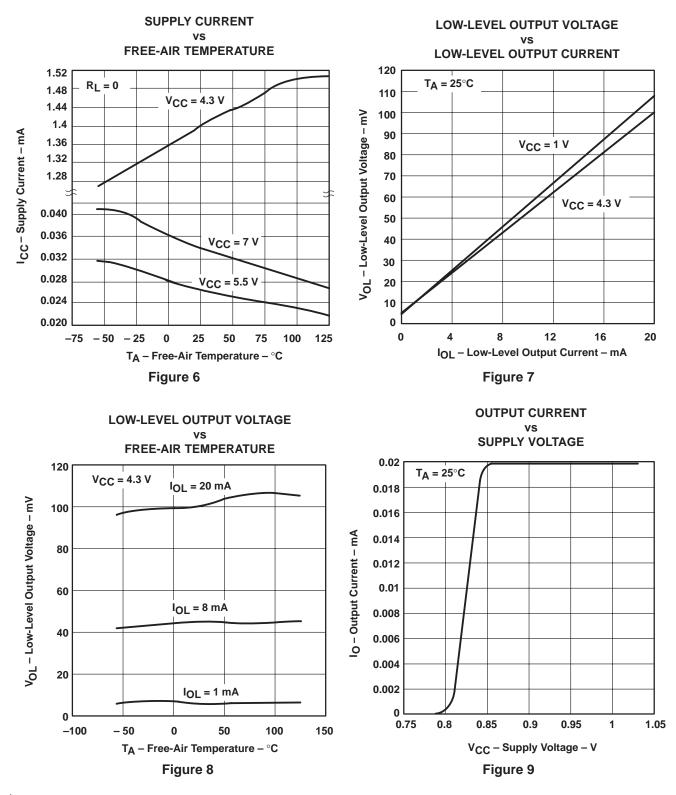
Figure 3. Switching Diagram



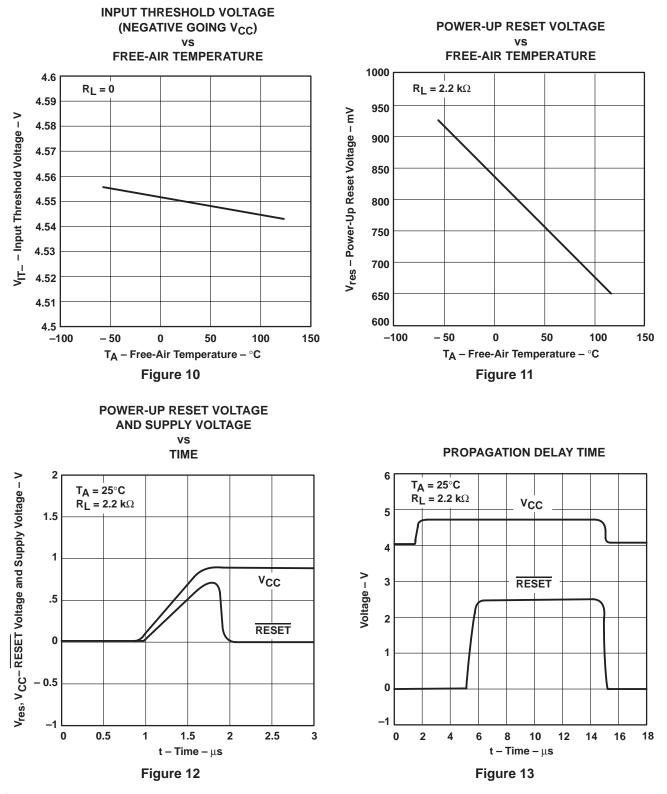
D – SEPTEMBER 1991 – REVISED AUGUST 1995

TYPICAL CHARACTERISTICS[†]

Table of Graphs


			FIGURE
VCC	Supply voltage	vs RESET output voltage	4
	Supply current	vs Supply voltage	5
ICC	Supply current	vs Free-air temperature	6
Val	Low-level output voltage	vs Low-level output current	7
VOL	Low-level output voltage	vs Free-air temperature	8
IOL	Output current	vs Supply voltage	9
VIT-	Input threshold voltage (negative-going V _{CC})	vs Free-air temperature	10
Vres	Power-up reset voltage	vs Free-air temperature	11
Vres	Power-up reset voltage and supply voltage	vs Time	12
	Propagation delay time		13

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated