
SLVS042C – JANUARY 1991 – REVISED MARCH 1998

- Power-On Reset Generator
- Automatic Reset Generation After Voltage Drop
- Precision Input Threshold Voltage . . . 4.55 V ±120 mV
- Low Standby Current . . . 20 μA
- Reset Outputs Defined When V_{CC} Exceeds 1 V
- True and Complementary Reset Outputs
- Wide Supply Voltage Range . . . 1 V to 7 V

description

NC - No internal connection

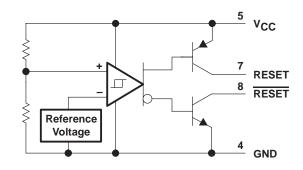
The TL7759C is a monolithic supply-voltage supervisor designed for use as a reset controller in microcomputer and microprocessor systems. The supervisor monitors the supply voltage for undervoltage conditions. During power up, when the supply voltage, V_{CC} , attains a value approaching 1 V, the RESET and RESET outputs become active (high and low, respectively) to prevent undefined operation. If at any time the supply voltage drops below the input threshold voltage level (V_{IT-}), the reset outputs go to the reset active state until the supply voltage has returned to its nominal value (see timing diagram).

The TL7759C is characterized for operation from 0°C to 70°C.

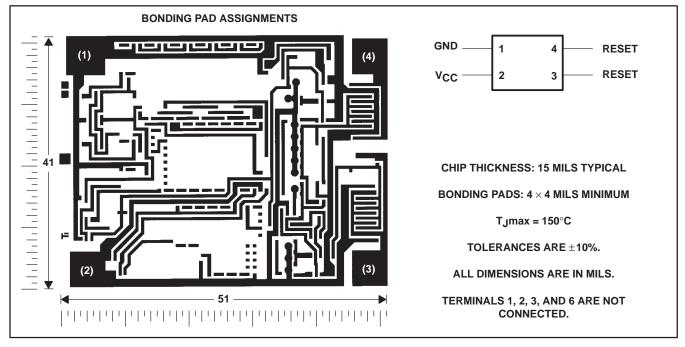
AVAILABLE OPTIONS

		PACKAGE	DEVICES	CHIP
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	PLASTIC DIP (P)	FORM (Y)
0°C to 70°C	2.5 mV	TL7759CD	TLC7759CP	TL7759Y

The D packages are available taped and reeled. Add R suffix to device type (e.g., TL7759CDR). Chips are tested at 25° C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


SLVS042C - JANUARY 1991 - REVISED MARCH 1998

functional block diagram

TL7759Y chip information

This chip, when properly assembled, displays characteristics similar to the TL7759C. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. The chip can be mounted with conductive epoxy or a gold-silicon preform.

SLVS042C - JANUARY 1991 - REVISED MARCH 1998

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	20 V
Off-state output voltage range: RESET voltage	
RESET voltage	/ to 20 V
Low-level output current, I _{OL} (RESET)	. 30 mA
High-level output current, I _{OH} (RESET)	-10 mA
Package thermal impedance, θJ _A (see Note 2): D package	. 197°C
P package	. 104°C
Storage temperature range, T _{stg} –65°C	to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	. 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

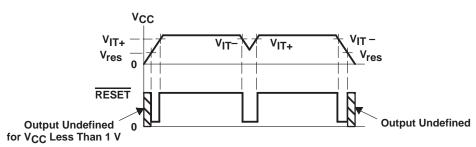
		MIN	MAX	UNIT
Supply voltage, V _{CC}		1	7	V
Output voltage, V_O (see Note 3)	Transistor off RESET voltage		15	V
	Transistor off RESET voltage	0		v
Low-level output current, I _{OL} RESET			24	~ ^
High-level output current, IOH	RESET		-8	mA
Operating free-air temperature, T _A			70	°C

NOTE 3: RESET output must not be pulled down below GND potential.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					TL7759C			
	PARAMETER		TEST CONDITIONS		MIN	TYP‡	MAX	UNIT
VOL	Low-level output voltage	RESET	Vac 42V	I _{OL} = 24 mA		0.4	0.8	V
VOH	High-level output voltage	RESET	V _{CC} = 4.3 V	I _{OH} = -8 mA	V _{CC} -1			V
	tive going $(a a)$	$T_A = 25^{\circ}C$		4.43	4.55	4.67	V	
VIT-	Input threshold voltage (negative-going V_{CC})		$T_A = 0^{\circ}C$ to $70^{\circ}C$		4.4		4.7	v
V 8	r_{res} Power-up reset voltage $R_L = 2.2 \text{ k}\Omega$			$T_A = 25^{\circ}C$		0.8	1	V
Vres ⁹			$T_A = 0^{\circ}C$ to $70^{\circ}C$			1.2	v	
. «			$T_A = 25^{\circ}C$		40	50	60	mV
V _{hys} ¶	Hysteresis at V _{CC} input	_	$T_A = 0^{\circ}C$ to $70^{\circ}C$		30		70	mV
ЮН	High-level output current	RESET	V _{CC} = 7 V,	V _{OH} = 15 V			1	μΑ
IOL	Low-level output current	RESET	See Figure 1	V _{OL} = 0 V			-1	μΑ
	Current		No load	V _{CC} = 4.3 V		1400	2000	
lcc	Supply current			V _{CC} = 5.5 V			40	μA

[‡]Typical values are at $T_A = 25^{\circ}C$.


§ This is the lowest voltage at which RESET becomes active, V_{CC} slew rate \leq 5 V/µs.

This is the difference between positive-going input threshold voltage, VIT+, and negative-going input threshold voltage, VIT-.

SLVS042C - JANUARY 1991 - REVISED MARCH 1998

timing diagram

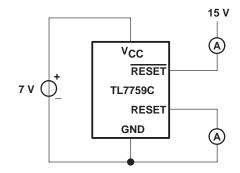
switching characteristics at $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		FROM	то	TEST CONDITIONS	TL7759C		UNIT
		(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT
^t PLH	Propagation delay time, low-to high-level output	VCC	RESET	See Figures 2 and 3 [†]		5	
^t PHL	Propagation delay time, high-to low-level output	VCC	RESET	See Figures 2 and 4		5	μs
tr	Rise time		RESET	See Figures 2 and 4 [†]		1	μs
t _f	Fall time		RESET	See Figures 2 and 4		1	μs
^t w(min)	Minimum pulse duration	VCC	RESET	See Figures 2 and 4	5		μs

 $1\,\text{V}_{CC}$ slew rate $\leq 5\,\text{V/}\mu\text{s}$

electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

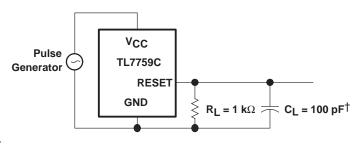
PARAMETER		TEST CONDITIONS	TL7759Y				
		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
VOL	Low-level output voltage	RESET	$V_{CC} = 4.3 \text{ V}, \text{ I}_{OL} = 24 \text{ mA}$		0.4		V
VIT-	Input threshold voltage (negative-going V _{CC})				4.55		V
V _{res} ‡	s [‡] Power-up reset voltage		$R_L = 2.2 \text{ k}\Omega$		0.8		V
V _{hys} §	Hysteresis at V _{CC} input				50		mV
ICC	CC Supply current		V_{CC} = 4.3 V, No load		1400		μA

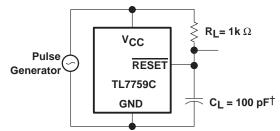

[‡]This is the lowest voltage at which RESET becomes active, V_{CC} slew rate \leq 5 V/µs.

§ This is the difference between positive-going input threshold voltage, VIT+, and negative-going input threshold voltage, VIT-.

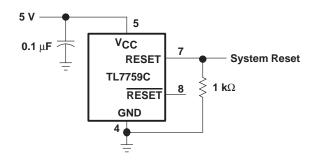
SLVS042C - JANUARY 1991 - REVISED MARCH 1998

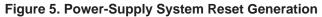
PARAMETER MEASUREMENT INFORMATION




NOTE A: V_{CC} slew rate $\leq 5 V/\mu s$.

 $^{\dagger}C_{L}$ Includes jig and probe capacitance.


 $^{\dagger}\,C_L$ Includes jig and probe capacitance.



SLVS042C - JANUARY 1991 - REVISED MARCH 1998

APPLICATION INFORMATION

