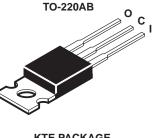
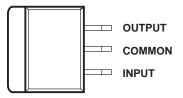

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

- 3-Terminal Regulators
- Output Current Up to 1.5 A
- Internal Thermal-Overload Protection
- High Power-Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Direct Replacements for Fairchild µA7800 Series

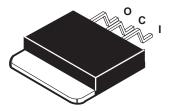
description


This series of fixed-voltage monolithic integratedcircuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 A of output current. The internal current limiting and thermal shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also can be used as the power-pass element in precision regulators.

The μ A7800C series is characterized for operation over the virtual junction temperature range of 0°C to 125°C. The μ A7805Q and μ A7812Q are characterized for operation over the virtual junction temperature range of -40°C to 125°C.



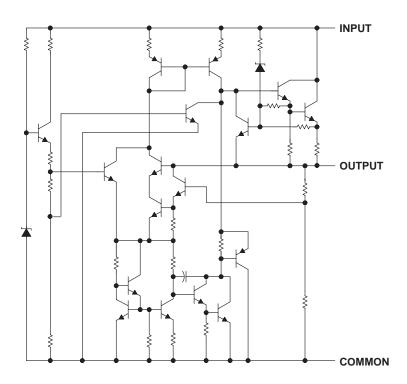
KC PACKAGE (TOP VIEW)


The common terminal is in electrical contact with the mounting base.

The common terminal is in electrical contact with the mounting base.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

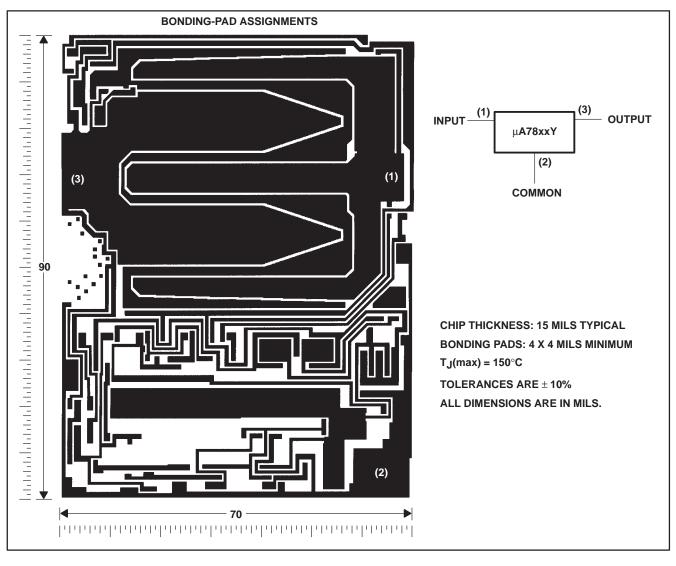

Copyright © 1998, Texas Instruments Incorporated

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

	S			
		PACKAGED	DEVICES	
Тյ	VO(NOM) (V)	PLASTIC FLANGE-MOUNT (KC)	HEAT-SINK MOUNTED (KTE) [†]	CHIP FORM (Y)
	5	μA7805CKC	μA7805CKTE	μA7805Y
	6	μA7806CKC	μA7806CKTE	μA7806Y
	8	μA7808CKC	μA7808CKTE	μA7808Y
	8.5	μA7885CKC	μA7885CKTE	μA7885Y
0°C to 125°C	10	μA7810CKC	μA7810CKTE	μA7810Y
	12	μA7812CKC	μA7812CKTE	μA7812Y
	15	μA7815CKC	μA7815CKTE	μA7815Y
	18	μA7818CKC	μA7818CKTE	μA7818Y
	24	μA7824CKC	μA7824CKTE	μA7824Y
-40°C to 125°C	5	μA7805QKC	μA7805QKTE	—
-40 C 10 125 C	12	μA7812QKC	μA7812QKTE	—

[†] The KTE package is only available taped and reeled (e.g., µA7805CKTER)

schematic



SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

μ A78xxY chip information

These chips, when properly assembled, have characteristics similar to the μ A78xxC. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. The chips can be mounted with conductive epoxy or a gold-silicon preform.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

absolute maximum ratings over operating temperature ranges (unless otherwise noted)[†]

		μ Α78xx	UNIT
Input voltage, VI	μA7824C	40	V
	All others	35	v
Continuous total power dissipation (see Note 1)		See Dissipation Rating Tables 1	and 2
	µA7800C series	0 to 150	℃
Virtual junction temperature range, TJ	μA7805Q, μA7812Q	-40 to 150	
Storage temperature range, T _{stg}		-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: For operation above 25°C free-air or 90°C case temperature, refer to Figure 1 and Figure 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

DISSIPATION-RATING TABLE 1 — FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 105°C POWER RATING	T _A = 125°C POWER RATING
KC	2000 mW	16.0 mW/°C	1280 mW	720 mW	400 mW
KTE	1900 mW	15.2 mW/°C	1216 mW	684 mW	380 mW

DISSIPATION-RATING TABLE 2 — CASE TEMPERATURE

PACKAGE	T _C ≤ 90°C POWER RATING	DERATING FACTOR ABOVE T _C = 90°C	T _A = 125°C POWER RATING
KC	15000 mW	250.0 mW/°C	6250 mW
KTE	14300 mW	238.0 mW/°C	5970 mW

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

recommended operating conditions

		MIN	MAX	UNIT
Dutput current, I _O	μΑ7805C, μΑ7805Q	7	25	
	μA7806C	7805Q 7 8 10.5 10.5 12.5 7812Q 14.5 17.5 21 27 27 es 0	25	
	μA7808C	10.5	25	
Input voltage, V ₁ μA7 μA7 μA7 μA7 μA7 μA7 μA7 μA7 0utput current, I _O	μA7885C	10.5	25	
	μA7810C	12.5	28	V
	μΑ7812C, μΑ7812Q	14.5	30	
	μA7815C	17.5	30	
	μΑ7818C	21	33	
	μA7824C	27	38	
Output current, IO			1.5	А
Operating virtual junction temperature T	μA7800C series	0	125	°C
Output current, IO	μΑ7805Q, μΑ7812Q	-40	125	

electrical characteristics at specified virtual junction temperature, $V_I = 10 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS	_ +	μ Α780 5	5 C, μ A7	805Q	UNIT
PARAMETER	TEST CONDITIONS	TJ†	MIN	TYP	MAX	UNIT
		25°C	4.8	5	5.2	
Output voltage [‡]	$\label{eq:loss} \begin{array}{ll} I_O=5 \text{ mA to 1 A}, & V_I=7 \text{ V to 20 V}, \\ P\leq 15 \text{ W} \end{array}$	Full range§	4.75		5.25	V
Input voltage regulation	$V_{I} = 7 V \text{ to } 25 V$	25°C		3	100	mV
Input voltage regulation	V _I = 8 V to 12 V	25 C		1	50	mv
Ripple rejection	$V_{I} = 8 V \text{ to } 18 V$, $f = 120 \text{ Hz}$	Full range§	62	78		dB
Output voltage regulation	I _O = 5 mA to 1.5 A	25°C		15	100	mV
Output voltage regulation	I _O = 250 mA to 750 mA	250	5 5		50	mv
Output resistance	f = 1 kHz	Full range§		0.017		Ω
Temperature coefficient of output voltage	$I_{O} = 5 \text{ mA}$	Full range§		-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		40		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.2	8	mA
	$V_1 = 7 V \text{ to } 25 V$	S			1.3	4
Bias current change	I _O = 5 mA to 1 A	Full range§			0.5	mA
Short-circuit output current		25°C		750		mA
Peak output current		25°C		2.2		А

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full-range virtual junction temperature is 0°C to 125°C for the μA7805C and -40°C to 125°C for the μA7805Q.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 11 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS	_ +	μ /	7806C		UNIT
PARAMETER	TEST CONDITIONS	⊤j†	MIN	TYP	MAX	
		25°C	5.75	6	6.25	
Output voltage‡	$\label{eq:loss} \begin{array}{ll} I_O = 5 \text{ mA to 1 A}, & V_I = 8 \text{ V to 21 V}, \\ P \leq 15 \text{ W} \end{array}$	0°C to 125°C	5.7		6.3	V
Input voltage regulation	$V_{I} = 8 V \text{ to } 25 V$	25%0		5	120	mV
Input voltage regulation	V _I = 9 V to 13 V	25°C		1.5	60	mv
Ripple rejection	$V_{I} = 9 V$ to 19 V, $f = 120 Hz$	0°C to 125°C	59	75		dB
	I _O = 5 mA to 1.5 A	0500		14	120	mV
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	60	
Output resistance	f = 1 kHz	0°C to 125°C		0.019		Ω
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		45		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.3	8	mA
Dias surrent change	V _I = 8 V to 25 V	0°C to 125°C			1.3	mA
Bias current change	$I_{O} = 5 \text{ mA to 1 A}$	0 0 10 125 0			0.5	mA
Short-circuit output current		25°C		550		mA
Peak output current		25°C		2.2		А

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

$\mu \text{A7800-SERIES} \\ \text{POSITIVE-VOLTAGE REGULATORS} \\$

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 14 V$, $I_O = 500 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	_ +	μ Α7808C			UNIT	
PARAMETER	TEST CONDITIONS	т _J †	MIN	TYP	MAX	UNIT	
		25°C	7.7	8	8.3		
Output voltage [‡]	$\label{eq:loss} \begin{array}{llllllllllllllllllllllllllllllllllll$	0°C to 125°C	7.6		8.4	V	
	V _I = 10.5 V to 25 V	25°C		6	160	mV	
Input voltage regulation	V _I = 11 V to 17 V	25-0		2	80	mv	
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	0°C to 125°C	55	72		dB	
	I _O = 5 mA to 1.5 A	0500		12	160		
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	80	mV	
Output resistance	f = 1 kHz	0°C to 125°C		0.016		Ω	
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-0.8		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		52		μV	
Dropout voltage	I _O = 1 A	25°C		2		V	
Bias current		25°C		4.3	8	mA	
	V _I = 10.5 V to 25 V	000 1- 40500			1		
Bias current change	$I_{O} = 5 \text{ mA to 1 A}$	0°C to 125°C			0.5	mA	
Short-circuit output current		25°C		450		mA	
Peak output current		25°C		2.2		А	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 15 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS	_ +	μ Α7885C			UNIT	
PARAMETER	TEST CONDITIONS	т _J †	MIN	TYP	MAX		
		25°C	8.15	8.5	8.85		
Output voltage‡	$\label{eq:loss} \begin{array}{ll} I_O = 5 \text{ mA to 1 A}, & V_I = 11 \text{ V to 23.5 V}, \\ P \leq 15 \text{ W} \end{array}$	0°C to 125°C	8.1		8.9	V	
	V _I = 10.5 V to 25 V	0500		6	170		
Input voltage regulation	V _I = 11 V to 17 V	25°C		2	85	mV	
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	0°C to 125°C	54	70		dB	
	I _O = 5 mA to 1.5 A	0500		12	170	mV	
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	85		
Output resistance	f = 1 kHz	0°C to 125°C		0.016		Ω	
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-0.8		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		55		μV	
Dropout voltage	I _O = 1 A	25°C		2		V	
Bias current		25°C		4.3	8	mA	
	V _I = 10.5 V to 25 V	000 1- 10500			1		
Bias current change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$	0°C to 125°C			0.5	- mA	
Short-circuit output current		25°C		450		mA	
Peak output current		25°C		2.2		А	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 17 V$, $I_O = 500 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	- +	μ	A7810C		UNIT
PARAMETER	TEST CONDITIONS	TJ‡	MIN	TYP	MAX	
		25°C	9.6	10	10.4	
Output voltage [‡]	$\label{eq:loss} \begin{array}{ll} I_O = 5 \text{ mA to 1 A}, & V_I = 12.5 \text{ V to 25 V}, \\ P \leq 15 \text{ W} \end{array}$	0°C to 125°C	9.5	10	10.5	V
	V _I = 12.5 V to 28 V	25%		7	200	mV
Input voltage regulation	VI = 14 V to 20 V	25°C		2	100	
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	0°C to 125°C	55	71		dB
	I _O = 5 mA to 1.5 A	0500		12	200	mV
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	100	
Output resistance	f = 1 kHz	0°C to 125°C		0.018		W
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		70		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.3	8	mA
	V _I = 12.5 V to 28 V	000 to 40500			1	
Bias current change	I _O = 5 mA to 1 A	0°C to 125°C		0.5	mA	
Short-circuit output current		25°C		400		mA
Peak output current		25°C		2.2		A

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 19 V$, $I_O = 500 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	- +	μ Α7812	2 C , μ A7	812Q	UNIT
PARAMETER	TEST CONDITIONS	TJ‡	MIN	TYP	MAX	UNIT
		25°C	11.5	12	12.5	
Output voltage‡	$\label{eq:loss} \begin{array}{ll} I_{O}=5 \text{ mA to 1 A}, & V_{I}=14.5 \text{ V to 27 V}, \\ P\leq 15 \text{ W} \end{array}$	Full range§	11.4		12.6	V
	V _I = 14.5 V to 30 V	25°C		10	240	mV
Input voltage regulation	VI = 16 V to 22 V	25-0		3	120	mv
Ripple rejection	V _I = 15 V to 25 V, f = 120 Hz	Full range§	55	71		dB
	I _O = 5 mA to 1.5 A	25°C		12	240	m∨
Output voltage regulation	I _O = 250 mA to 750 mA			4	120	
Output resistance	f = 1 kHz	Full range§		0.018		W
Temperature coefficient of output voltage	I _O = 5 mA	Full range§		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		75		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.3	8	mA
Dias surrent change	V _I = 14.5 V to 30 V				1	mA
Bias current change	I _O = 5 mA to 1 A	Full range§			0.5	mA
Short-circuit output current		25°C		350		mA
Peak output current		25°C		2.2		A

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

§ Full range virtual junction temperature is 0°C to 125°C for the μA7812C and -40°C to 125°C for the μA7812Q.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 23 V$, $I_O = 500 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	_ +	μ Α7815C			UNIT
PARAMETER	TEST CONDITIONS	TJ‡	MIN	TYP	MAX	
		25°C	14.4	15	15.6	
Output voltage‡	$\label{eq:loss} \begin{array}{ll} I_O = 5 \text{ mA to 1 A}, & V_I = 17.5 \text{ V to 30 V} \\ P \leq 15 \text{ W} \end{array}$	0°C to 125°C	14.25		15.75	V
	V _I = 17.5 V to 30 V	25°C		11	300	mV
Input voltage regulation	V _I = 20 V to 26 V	25°C		3	150	mv
Ripple rejection	V _I = 18.5 V to 28.5 V, f = 120 Hz	0°C to 125°C	54	70		dB
	I _O = 5 mA to 1.5 A	0500		12	300	
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	150	mV
Output resistance	f = 1 kHz	0°C to 125°C		0.019		W
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		90		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.4	8	mA
Dies summert skon as	V _I = 17.5 V to 30 V	000 to 40500			1	
Bias current change	I _O = 5 mA to 1 A	0°C to 125°C			0.5	mA
Short-circuit output current		25°C		230		mA
Peak output current		25°C		2.1		A

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 27 V$, $I_O = 500 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	- +	μ	A7818C		UNIT	
PARAMETER	TEST CONDITIONS	TJ†	MIN	TYP	MAX		
		25°C	17.3	18	18.7		
Output voltage‡	$\label{eq:loss} \begin{array}{ll} I_O = 5 \text{ mA to 1 A}, & V_I = 21 \text{ V to 33 V}, \\ P \leq 15 \text{ W} \end{array}$	0°C to 125°C	17.1		18.9	V	
	V _I = 21 V to 33 V	0500		15	360		
Input voltage regulation	V _I = 24 V to 30 V	25°C		5	180	mV	
Ripple rejection	V _I = 22 V to 32 V, f = 120 Hz	0°C to 125°C	53	69		dB	
	I _O = 5 mA to 1.5 A	0500		12	360		
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	180	mV	
Output resistance	f = 1 kHz	0°C to 125°C		0.022		W	
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		110		μV	
Dropout voltage	I _O = 1 A	25°C		2		V	
Bias current		25°C		4.5	8	mA	
	V _I = 21 V to 33 V	000 1- 40500			1		
Bias current change	$I_{O} = 5 \text{ mA to 1 A}$	- 0°C to 125°C	0		0.5	mA	
Short-circuit output current		25°C		200		mA	
Peak output current		25°C		2.1		А	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 33 V$, $I_O = 500 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	- +	μ Α7824C			UNIT	
PARAMETER	TEST CONDITIONS	TJ‡	MIN	TYP	MAX		
		25°C	23	24	25		
Output voltage‡	$\label{eq:IO} \begin{array}{ll} I_O = 5 \text{ mA to 1 A}, & V_I = 27 \text{ V to 38 V}, \\ P \leq 15 \text{ W} \end{array}$	0°C to 125°C	22.8		25.2	V	
	V _I = 27 V to 38 V	25°C		18	480	mV	
Input voltage regulation	V _I = 30 V to 36 V	25.0		6	240	mv	
Ripple rejection	V _I = 28 V to 38 V, f = 120 Hz	0°C to 125°C	50	66		dB	
	I _O = 5 mA to 1.5 A	2500		12	480		
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	240	mV	
Output resistance	f = 1 kHz	0°C to 125°C		0.028		W	
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-1.5		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		170		μV	
Dropout voltage	I _O = 1 A	25°C		2		V	
Bias current		25°C		4.6	8	mA	
Rice surrent shange	VI = 27 V to 38 V	0°C to 125°C			1		
Bias current change	I _O = 5 mA to 1 A	0.0125.0			0.5 mA		
Short-circuit output current		25°C		150		mA	
Peak output current		25°C		2.1		A	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 10 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C^{\dagger}$ (unless otherwise noted)

TEST CONDITIONS	μ Α7805Υ	
TEST CONDITIONS	MIN TYP MAX	
	5	V
$V_{I} = 7 V \text{ to } 25 V$	3	mV
V _I = 8 V to 12 V	1	
V _I = 8 V to 18 V, f = 120 Hz	78	dB
I _O = 5 mA to 1.5 A	15	
I _O = 250 mA to 750 mA	5	mV
f = 1 kHz	0.017	W
I _O = 5 mA	-1.1	mV/°C
f = 10 Hz to 100 kHz	40	μV
I _O = 1 A	2	V
	4.2	mA
	750	mA
	2.2	A
	$V_{I} = 8 V \text{ to } 12 V$ $V_{I} = 8 V \text{ to } 18 V, f = 120 \text{ Hz}$ $I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $I_{O} = 250 \text{ mA to } 750 \text{ mA}$ $f = 1 \text{ kHz}$ $I_{O} = 5 \text{ mA}$ $f = 10 \text{ Hz to } 100 \text{ kHz}$	TEST CONDITIONS MIN TYP MAX $V_I = 7 V \text{ to } 25 V$ 3 5 $V_I = 8 V \text{ to } 12 V$ 1 1 $V_I = 8 V \text{ to } 12 V$ 1 1 $V_I = 8 V \text{ to } 18 V$, $f = 120 \text{ Hz}$ 78 $I_O = 5 \text{ mA to } 1.5 \text{ A}$ 15 $I_O = 250 \text{ mA to } 750 \text{ mA}$ 5 $f = 1 \text{ HZ}$ 0.017 $I_O = 5 \text{ mA}$ -1.1 $f = 10 \text{ Hz to } 100 \text{ kHz}$ 40 $I_O = 1 \text{ A}$ 2 4.2 750

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into

account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. [‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 11 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C^{\dagger}$ (unless otherwise noted)

DADAMETED	TECT CONDITIONS	μ	μ Α7806Υ			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output voltage [‡]			6		V	
	V _I = 8 V to 25 V		5		mV	
Input voltage regulation	V _I = 9 V to 13 V		mv			
Ripple rejection	$V_{I} = 9 V \text{ to } 19 V, \qquad f = 120 \text{ Hz}$		75		dB	
Output voltage regulation	I _O = 5 mA to 1.5 A		14			
	I _O = 250 mA to 750 mA		4		mV	
Output resistance	f = 1 kHz		0.019		W	
Temperature coefficient of output voltage	I _O = 5 mA		-0.8		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz		45		μV	
Dropout voltage	I _O = 1 A		2		V	
Bias current			4.3		mA	
Short-circuit output current			550		mA	
Peak output current			2.2		А	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 14 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C^{\dagger}$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS	μ Α7808Υ				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output voltage‡			8		V	
	V _I = 10.5 V to 25 V		6		mV	
Input voltage regulation	$V_{I} = 11 V \text{ to } 17 V$		2			
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz		72		dB	
Output voltage regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		12		mV	
	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		4		mv	
Output resistance	f = 1 kHz		0.016		W	
Temperature coefficient of output voltage	$I_{O} = 5 \text{ mA}$		-0.8		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz		52		μV	
Dropout voltage	I _O = 1 A		2		V	
Bias current			4.3		mA	
Short-circuit output current			450		mA	
Peak output current			2.2		A	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 15 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C^{\dagger}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	μ	47885Y		UNIT
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage [‡]			8.5		V
	V _I = 10.5 V to 25 V		6		mV
Input voltage regulation	V _I = 11 V to 17 V		2		mv
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz		70		dB
Output voltage regulation	I _O = 5 mA to 1.5 A		12		
	I _O = 250 mA to 750 mA		4		mV
Output resistance	f = 1 kHz		0.016		W
Temperature coefficient of output voltage	I _O = 5 mA		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		55		μV
Dropout voltage	I _O = 1 A		2		V
Bias current			4.3		mA
Short-circuit output current			450		mA
Peak output current			2.2		А

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 17 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C^{\dagger}$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS	μ Α7 8	310Y	LINUT
PARAMETER	TEST CONDITIONS	MIN T	YP MAX	
Output voltage [‡]			10	V
	V _I = 12.5 V to 28 V		7	
Input voltage regulation	V _I = 14 V to 20 V		2	− mV
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz		71	dB
Output voltage regulation	I _O = 5 mA to 1.5 A		12	mV
	I _O = 250 mA to 750 mA		4	
Output resistance	f = 1 kHz	0.0	18	W
Temperature coefficient of output voltage	IO = 5 mA		-1	mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		70	μV
Dropout voltage	I _O = 1 A		2	V
Bias current			4.3	mA
Short-circuit output current		4	00	mA
Peak output current			2.2	Α

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

electrical characteristics at specified virtual junction temperature, $V_I = 19 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C^{\dagger}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	μ	μ Α7812Υ			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output voltage [‡]			12		V	
	V _I = 14.5 V to 30 V	10			mV	
Input voltage regulation	$V_{I} = 16 V \text{ to } 22 V$		3			
Ripple rejection	$V_{I} = 15 V \text{ to } 25 V, \qquad f = 120 \text{ Hz}$		71		dB	
Output voltage regulation	I _O = 5 mA to 1.5 A		12		mV	
	I _O = 250 mA to 750 mA		4		mv	
Output resistance	f = 1 kHz		0.018		Ω	
Temperature coefficient of output voltage	I _O = 5 mA		-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz		75		μV	
Dropout voltage	I _O = 1 A		2		V	
Bias current			4.3		mA	
Short-circuit output current			350		mA	
Peak output current			2.2		А	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 23 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C^{\dagger}$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS	μ Α7815Υ			LINUT
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage [‡]			15		V
	V _I = 17.5 V to 30 V		11		mV
Input voltage regulation	$V_{I} = 20 V \text{ to } 26 V$		3		
Ripple rejection	V _I = 18.5 V to 28.5 V, f = 120 Hz		70		dB
Output voltage regulation	IO = 5 mA to 1.5 A		12		
	I _O = 250 mA to 750 mA		4		mV
Output resistance	f = 1 kHz		0.019		W
Temperature coefficient of output voltage	IO = 5 mA		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		90		μV
Dropout voltage	I _O = 1 A		2		V
Bias current			4.4		mA
Short-circuit output current			230		mA
Peak output current			2.1		А

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

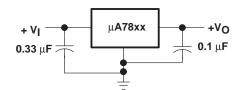
electrical characteristics at specified virtual junction temperature, $V_I = 27 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C^{\dagger}$ (unless otherwise noted)

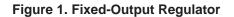
PARAMETER	TEST CONDITIONS	μ Α7818Υ	UNIT
PARAMETER	TEST CONDITIONS	MIN TYP MAX	
Output voltage‡		18	V
	V _I = 21 V to 33 V	15	mV
Input voltage regulation	$V_{I} = 24 V$ to 30 V	5	
Ripple rejection	$V_{I} = 22 V \text{ to } 32 V$, $f = 120 \text{ Hz}$	69	dB
Output voltage regulation	I _O = 5 mA to 1.5 A	12	mV
	I _O = 250 mA to 750 mA	4	
Output resistance	f = 1 kHz	0.022	W
Temperature coefficient of output voltage	I _O = 5 mA	-1	mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	110	μV
Dropout voltage	I _O = 1 A	2	V
Bias current		4.5	mA
Short-circuit output current		200	mA
Peak output current		2.1	A

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

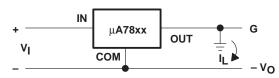
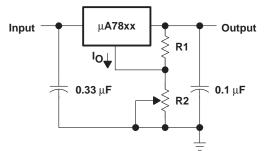
electrical characteristics at specified virtual junction temperature, $V_I = 33 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C^{\dagger}$ (unless otherwise noted)

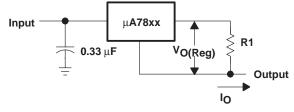

PARAMETER	TEST CONDITIONS	μ Α7824Υ			UNIT
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage‡			24		V
	$V_{I} = 27 V \text{ to } 38 V$		18		mV
Input voltage regulation	$V_{I} = 30 \text{ V} \text{ to } 36 \text{ V}$			mv	
Ripple rejection	V _I = 28 V to 38 V, f = 120 Hz		66		dB
Output voltage regulation	I _O = 5 mA to 1.5 A		12		mV
	I _O = 250 mA to 750 mA		4		mv
Output resistance	f = 1 kHz		0.028		W
Temperature coefficient of output voltage	$I_{O} = 5 \text{ mA}$		-1.5		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		170		μV
Dropout voltage	I _O = 1 A		2		V
Bias current			4.6		mA
Short-circuit output current			150		mA
Peak output current			2.1		А


[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

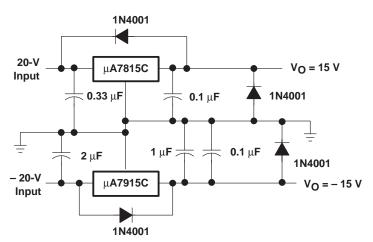
APPLICATION INFORMATION


Figure 2. Positive Regulator in Negative Configuration (VI Must Float)

NOTE A: The following formula is used when V_{XX} is the nominal output voltage (output to common) of the fixed regulator.

$$V_{O} = V_{XX} + \left(\frac{V_{XX}}{R1} + I_{Q}\right) R2$$



- IO = (VO/R1) + IO Bias Current
- Figure 4. Current Regulator

SLVS056D - MAY 1976 - REVISED NOVEMBER 1998

APPLICATION INFORMATION

Figure 5. Regulated Dual Supply

operation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground, but is connected to a voltage source of opposite polarity (e.g., op amps, level-shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals during start-up and short-circuit operation.

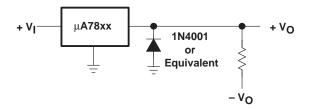


Figure 6. Output Polarity-Reversal Protection Circuit

reverse-bias protection

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. This can occur, for example, when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be used as shown in Figure 7.

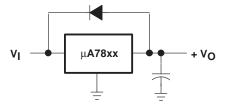


Figure 7. Reverse-Bias Protection Circuit

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated