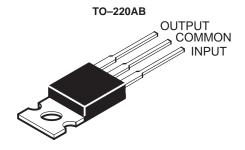
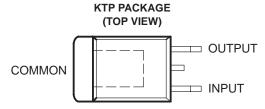

- 3-Terminal Regulators
- Output Current up to 500 mA
- No External Components
- Internal Thermal-Overload Protection
- High Power-Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Direct Replacements for Fairchild μA78M00 Series


description

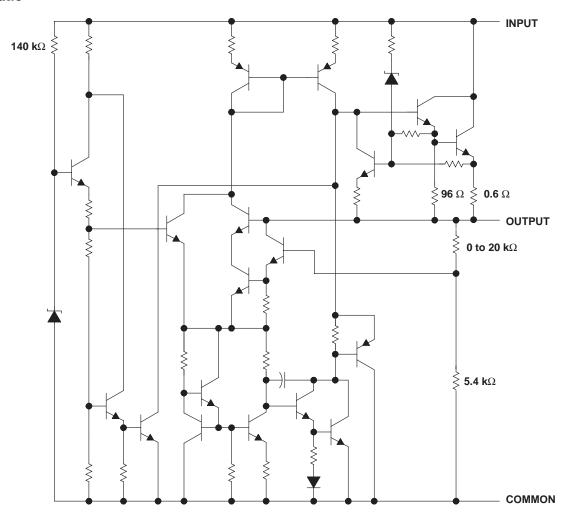

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 mA of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power-pass element in precision regulators.

KC PACKAGE (TOP VIEW)

The common terminal is in electrical contact with the mounting base.

The common terminal is in electrical contact with the mounting base.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

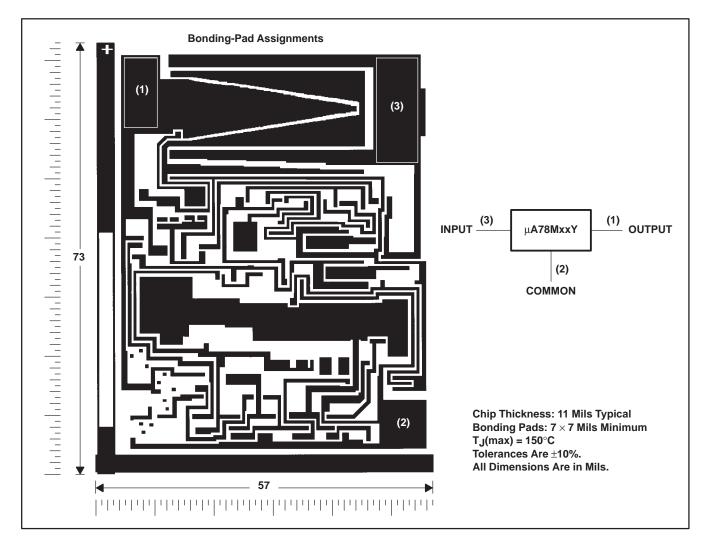


AVAILABLE OPTIONS

		PACKAG	ED DEVICES	CHIP
TJ	V _O (NOM) (V)	HEAT-SINK MOUNTED (KC)	PLASTIC FLANGE MOUNTED [†] (KTP)	FORM (Y)
	5	μΑ78M05CKC	μΑ78M05CKTP	μΑ78M05Y
	6	μΑ78M06CKC	μΑ78M06CKTP	μΑ78M06Y
	8	μΑ78M08CKC	μΑ78M08CKTP	μΑ78M08Y
	9	μΑ78M09CKC	μΑ78M09CKTP	μΑ78M09Y
0°C to 125°C	10	μΑ78M10CKC	μΑ78M10CKTP	μΑ78M10Y
	12	μΑ78M12CKC	μΑ78M12CKTP	μΑ78M12Y
	15	μΑ78M15CKC	μΑ78M15CKTP	μΑ78M15Y
	20	μΑ78M20CKC	μΑ78M20CKTP	μΑ78M20Y
	24	μΑ78M24CKC	μΑ78M24CKTP	μΑ78M24Y

[†] The KTP package is only available taped and reeled (e.g., μ A78M05CKTPR).

schematic



Resistor values shown are nominal.

μΑ78MxxY chip information

This chip, when properly assembled, has characteristics similar to the μ A78MxxC. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. The chip can be mounted with conductive epoxy or a gold-silicon preform.

absolute maximum ratings over operating temperature range (unless otherwise noted)†

		μ Α78Μxx	UNIT
Input voltage V	μΑ78Μ20, μΑ78Μ24	40	V
Input voltage, V _I Continuous total power dissipation (see Note 1)	All others	35	V
Continuous total power dissipation (see Note 1)		See Dissipation Ratir	ng Tables
Virtual junction temperature range, T _J		0 to 150	°C
Storage temperature range, T _{Stq}		-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

DISSIPATION RATING - FREE-AIR TEMPERATURE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
KC	2000 mW	16.0 mW/°C	1280 mW
KTP	1800 mW	14.5 mW/°C	1147 mW

DISSIPATION RATING - CASE TEMPERATURE

PACKAGE	T _C ≤ 50°C POWER RATING	DERATING FACTOR ABOVE T _C = 50°C	T _C = 125°C POWER RATING
KC	20000 mW	200.0 mW/°C	5000 mW
KTP	18000 mW	181.8 mW/°C	4365 mW

recommended operating conditions

		MIN	MAX	UNIT
	μΑ78Μ05	7	7 25 8 25 10.5 25 11.5 26 12.5 28 14.5 30	
Input voltage, V _I	μΑ78Μ06	8	25	
	μΑ78Μ08	10.5	25	
	μΑ78Μ09	11.5	26	
Input voltage, V _I	μΑ78M10	12.5	28	V
	μA78M12	14.5	30	
	μA78M15	17.5	30	
	μΑ78Μ20	23	35	
	μΑ78Μ24	27	38	
Output current, IO			500	mA
Operating virtual junction temperature, TJ		0	125	°C

electrical characteristics at specified virtual junction temperature, $V_I = 10 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER			,	μ.	A78M050	3	UNIT
PARAIVIETER		TEST CONDITIONS [†]			TYP	MAX	UNIT
Output well-and				4.8	5	5.2	V
Output voltage‡	$V_{I} = 7 V \text{ to } 20 V,$	$T_J = 0$ °C to 125°C		4.75		5.25	V
		V _I = 7 V to 25 V			3	100	
Input voltage regulation	I _O = 200 mA	V _I = 8 V to 20 V					mV
		V _I = 8 V to 25 V			1	50	
Ripple rejection	V _I = 8 V to 18 V,	f = 120 Hz	I _O = 100 mA, T _J = 0°C to 125°C	62			dB
			IO = 300 mA	62	80		
	$I_O = 5 \text{ mA to } 500 \text{ mA}$				20	100	mV
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	50	IIIV
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				40	200	μV
Dropout voltage					2		V
Bias current					4.5	6	mA
Diag current change	I _O = 200 mA,	$V_{I} = 8 V \text{ to } 25 V,$	T _J = 0°C to 125°C			0.8	mA
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0$ °C to 125°C				0.5	IIIA
Short-circuit output current	V _I = 35 V	•			300		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, V_I = 11 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

DADAMETED	TEST COMPLETIONS.			μ Α	μ Α78Μ06C		
PARAMETER		TEST CONDITIONS [†]			TYP	MAX	UNIT
Output wells not				5.75	6	6.25	V
Output voltage‡	$I_O = 5 \text{ mA to } 350 \text{ mA},$	V _I = 8 V to 21 V,	$T_J = 0^{\circ}C$ to $125^{\circ}C$	5.7		6.3	V
Input voltage regulation	lo - 200 mA	V _I = 8 V to 25 V			5	100	mV
Input voltage regulation	I _O = 200 mA	V _I = 9 V to 25 V			1.5	50	IIIV
Ripple rejection	V _I = 9 V to 19 V,	f = 120 Hz	$I_O = 100 \text{ mA},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	59			dB
·· ·	•		I _O = 300 mA	59	80		1
Output valtage regulation	I _O = 5 mA to 500 mA				20	120	mV
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$			10		60	
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				45		μV
Dropout voltage					2		V
Bias current					4.5	6	mA
Dies summent about	V _I = 9 V to 25 V,	I _O = 200 mA,	$T_J = 0$ °C to 125°C			0.8	A
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C		0.5		mA	
Short-circuit output current	V _I = 35 V				270		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 14 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER		TEST SOUDITIONS!		μ Α	A78M080	3	UNIT
PARAIVIETER		TEST CONDITIONS [†]			TYP	MAX	Olviii
Outrot walks no t				7.7	8	8.3	V
Output voltage‡	$V_{I} = 10.5 \text{ V to } 23 \text{ V},$	$I_O = 5$ mA to 350 mA,	$T_J = 0$ °C to 125°C	7.6		8.4	V
Input voltage regulation	10 - 200 mA	V _I = 10.5 V to 25 V			6	100	mV
Input voltage regulation	I _O = 200 mA	V _I = 11 V to 25 V			2	50	IIIV
Ripple rejection	V _I = 11.5 V to 21.5 V,	f = 120 Hz	I _O = 100 mA, T _J = 0°C to 125°C	56			dB
	<u> </u>		I _O = 300 mA	56	80		
Output voltage regulation	I _O = 5 mA to 500 mA				25	160	mV
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	80	IIIV
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				52		μV
Dropout voltage					2		V
Bias current					4.6	6	mA
Dies surrent change	V _I = 10.5 V to 25 V,	I _O = 200 mA,	$T_J = 0$ °C to 125°C			0.8	A
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	mA
Short-circuit output current	V _I = 35 V	V _I = 35 V			250		mA
Peak output current			_		0.7		Α

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, V_I = 16 V_I 0 = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER				μ Α	78M090	;	UNIT
PARAMETER	TEST CONDITIONS [†]			MIN	TYP	MAX	ONIT
Outrout walks no t				8.6	9	9.4	V
Output voltage [‡]	V _I = 11.5 V to 24 V,	$I_O = 5$ mA to 350 mA,	$T_J = 0$ °C to 125°C	8.5		9.5	V
Input voltage regulation	lo = 200 mA	V _I = 11.5 V to 26 V			6	100	mV
Input voltage regulation	I _O = 200 mA	V _I = 12 V to 26 V			2	50	IIIV
Ripple rejection	V _I = 13 V to 23 V,	f = 120 Hz	$I_O = 100 \text{ mA},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	56			dB
			I _O = 300 mA	56	80		
Output voltage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$			25	180	mV	
	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	90	IIIV
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				58		μV
Dropout voltage					2		V
Bias current					4.6	6	mA
Dice current change	V _I = 11.5 V to 26 V,	I _O = 200 mA,	$T_J = 0$ °C to 125°C			0.8	A
Bias current change	$I_0 = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	mA
Short-circuit output current	V _I = 35 V				250		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, V_I = 17 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			μ Α	78M100	3	UNIT
PARAMETER				MIN	TYP	MAX	OIIII
Outrot valtaget				9.6	10	10.4	V
Output voltage [‡]	$V_I = 12.5 \text{ V to } 25 \text{ V},$	$I_O = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0$ °C to 125°C	9.5		10.5	V
Input voltage regulation	V _I = 1	V _I = 12.5 V to 28 V			7	100	mV
——————————————————————————————————————	I _O = 200 mA	V _I = 14 V to 28 V			2	50	IIIV
Ripple rejection	V _I = 15 V to 25 V,	f = 120 Hz	$I_O = 100 \text{ mA},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	59			dB
			I _O = 300 mA	55	80		
Outrot valta as as autotics	$I_O = 5 \text{ mA to } 500 \text{ mA}$				25	200	mV
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	100	IIIV
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				64		μV
Dropout voltage					2		V
Bias current					4.7	6	mA
Diag current change	V _I = 12.5 V to 28 V,	I _O = 200 mA,	T _J = 0°C to 125°C			0.8	mA
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	T _J = 0°C to 125°C				0.5	IIIA
Short-circuit output current	V _I = 35 V				245		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, V_I = 19 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER		TEST SOMETISMST		μ Δ	78M120)	UNIT
PARAMETER	TEST CONDITIONS [†]			MIN	TYP	MAX	UNIT
Output voltage‡				11.5	12	12.5	V
Output voltage+	$V_{I} = 14.5 \text{ V to } 27 \text{ V},$	$I_O = 5$ mA to 350 mA,	$T_J = 0$ °C to 125°C	11.4		12.6	V
Input voltage regulation	I _O = 200 mA	$V_I = 14.5 \text{ V to } 30 \text{ V}$			8	100	mV
Input voltage regulation	10 = 200 IIIA	V _I = 16 V to 30 V			2	50	IIIV
Ripple rejection	V _I = 15 V to 25 V,	f = 120 Hz	$I_O = 100 \text{ mA},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	55			dB
			I _O = 300 mA	55	80		
Output voltage regulation	I _O = 5 mA to 500 mA				25	240	mV
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	120	IIIV
Temperature coefficient of output voltage	I _O = 5 mA				-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				75		μV
Dropout voltage					2		V
Bias current					4.8	6	mA
Dice current change	V _I = 14.5 V to 30 V,	I _O = 200 mA,	T _J = 0°C to 125°C			0.8	mA
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0$ °C to 125°C	·			0.5	IIIA
Short-circuit output current	V _I = 35 V	·			240		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, V_I = 23 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			μ Α	78M150	3	UNIT
PARAMETER				MIN	TYP	MAX	UNIT
Outrout walks mat				14.4	15	15.6	V
Output voltage‡	$V_I = 17.5 \text{ V to } 30 \text{ V},$	$I_O = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0$ °C to 125°C	14.25		15.75	V
Input voltage regulation	Io = 200 mA	V _I = 17.5 V to 30 V			10	100	mV
Input voltage regulation	I _O = 200 mA	V _I = 20 V to 30 V			3	50	IIIV
Ripple rejection	V _I = 18.5 V to 28.5 V,	f = 120 Hz	$I_O = 100 \text{ mA},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	54			dB
			I _O = 300 mA	54	70		
Outrot will an an an adding	I _O = 5 mA to 500 mA			25	300	mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	150	IIIV
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				90		μV
Dropout voltage					2		V
Bias current					4.8	6	mA
Ding gurrant change	V _I = 17.5 V to 30 V,	I _O = 200 mA,	T _J = 0°C to 125°C			0.8	mA
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0$ °C to 125°C	•			0.5	IIIA
Short-circuit output current	V _I = 35 V				240		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, V_I = 29 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER			TEST CONDITIONS [†]			μ Α78M20C		
PARAMETER		TEST CONDITIONS†		MIN	TYP	MAX	UNIT	
Outrout walka na †				19.2	20	20.8	V	
Output voltage [‡]	$V_{I} = 23 \text{ V to } 35 \text{ V},$	$I_O = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0$ °C to 125°C	19		21	V	
Input voltage regulation	lo = 200 mA	V _I = 23 V to 35 V			10	100	mV	
Input voltage regulation	I _O = 200 mA	V _I = 24 V to 35 V	= 24 V to 35 V		5	50	IIIV	
Ripple rejection	V _I = 24 V to 34 V,	4 V to 34 V, f = 120 Hz	$I_O = 100 \text{ mA},$ $T_J = 0^{\circ}\text{C to } 125^{\circ}\text{C}$	53			dB	
-			I _O = 300 mA	53	70			
Output voltage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$				30	400	mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10 200		1111	
Temperature coefficient of output voltage	I _O = 5 mA,	$T_J = 0$ °C to 125°C			-1.1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				110		μV	
Dropout voltage					2		V	
Bias current					4.9	6	mA	
Dies surrent change	V _I = 23 V to 35 V,	I _O = 200 mA,	$T_J = 0$ °C to 125°C			0.8	A	
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0$ °C to 125°C				0.5	mA	
Short-circuit output current	V _I = 35 V				240		mA	
Peak output current					0.7		Α	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 33 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS!			μ Α	78M240	3	UNIT
PARAMETER		TEST CONDITIONS†		MIN	TYP	MAX	UNIT
Outrout valta na t				23	24	25	V
Output voltage‡	$V_{I} = 27 \text{ V to } 38 \text{ V},$	$I_O = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	22.8		25.2	V
Input voltage regulation	In - 200 mA	V _I = 27 V to 38 V			10	100	mV
Input voltage regulation	I _O = 200 mA	V _I = 28 V to 38 V			5	50	IIIV
Ripple rejection	V _I = 28 V to 38 V,	f = 120 Hz	I _O = 100 mA, T _J = 0°C to 125°C	50			dB
			IO = 300 mA	50	70		
Output voltage regulation	I _O = 5 mA to 500 mA				30	480	mV
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$				10	240] ""V
Temperature coefficient of output voltage	I _O = 5 mA,	T _J = 0°C to 125°C			-1.2		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				170		μV
Dropout voltage					2		V
Bias current					5	6	mA
Dina aurrant abanca	V _I = 27 V to 38 V,	I _O = 200 mA,	T _J = 0°C to 125°C			0.8	mA
Bias current change	$I_O = 5 \text{ mA to } 350 \text{ mA},$	$T_J = 0$ °C to 125°C				0.5	IIIA
Short-circuit output current	V _I = 35 V	·	·		240		mA
Peak output current					0.7		Α

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, V_I = 10 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

DADAMETED	TEST CONDITIONS†			μ Α78M05Y			
PARAMETER				TYP	MAX	UNIT	
Output voltage [‡]				5		V	
Input voltage regulation	1- 200 mA	V _I = 7 V to 25 V		3		\/	
input voitage regulation	I _O = 200 mA	V _I = 8 V to 25 V		1		mV	
Ripple rejection	V _I = 8 V to 18 V,	$I_O = 300 \text{ mA}, \qquad f = 120 \text{ Hz}$		80		dB	
Output valtage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$			20			
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$	= 5 mA to 200 mA				m∨	
Temperature coefficient of output voltage	I _O = 5 mA			-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz			40		μV	
Dropout voltage				2		V	
Bias current				4.5		mA	
Short-circuit output current	V _I = 35 V			300		mA	
Peak output current				0.7		Α	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, V_I = 11 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TEST SOMBITIONS.			μ Δ	UNIT			
PARAMETER	TES	ST CONDITIONS†		MIN	TYP	MAX	UNII	
Output voltage [‡]					6		V	
Input voltage regulation	la - 200 mA	V _I = 8 V to 25 V			5		mV	
	I _O = 200 mA	V _I = 9 V to 25 V			1.5		mv	
Ripple rejection	$V_{I} = 9 V \text{ to } 19 V,$	$I_O = 300 \text{ mA},$	f = 120 Hz		80		dB	
Output voltage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$			20		mV		
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$			10			1117	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$			-1			mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				45		μV	
Dropout voltage					2		V	
Bias current					4.5		mA	
Short-circuit output current	V _I = 35 V				270		mA	
Peak output current					0.7		Α	

TAll characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, V_I = 14 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			μ Δ	UNIT		
PARAMETER				MIN	TYP	MAX	UNII
Output voltage [‡]					8		V
Input voltage regulation	la - 200 mA	V _I = 10.5 V to 25	5 V		6		mV
Input voltage regulation	I _O = 200 mA	V _I = 11 V to 25 V			2		IIIV
Ripple rejection	V _I = 11.5 V to 21.5 V,	I _O = 300 mA,	f = 120 Hz		80		dB
I _O = 5 mA to 500 mA			25			mV	
Output voltage regulation	O = 5 mA to 200 mA				10		IIIV
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$				-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz				52		μV
Dropout voltage					2		V
Bias current					4.6		mA
Short-circuit output current	V _I = 35 V				250		mA
Peak output current					0.7		А

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 16 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			μ Α78Μ09Υ			
PARAMETER	TES	ST CONDITIONS!	MIN	TYP	MAX	UNIT	
Output voltage [‡]				9		V	
Input voltage regulation	la - 200 mA	V _I = 11.5 V to 26 V		6		mV	
input voitage regulation	I _O = 200 mA	V _I = 12 V to 26 V		2		IIIV	
Ripple rejection	$V_I = 13 \text{ V to } 23 \text{ V},$	$I_O = 300 \text{ mA}, \qquad f = 120 \text{ Hz}$		80		dB	
Output voltage regulation	$I_O = 5$ mA to 500 mA			25		mV	
Output voltage regulation	$I_O = 5 \text{ mA to } 200 \text{ mA}$			10		1117	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA},$	$T_J = 0$ °C to 125°C		-1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz			58		μV	
Dropout voltage				2		V	
Bias current				4.6		mA	
Short-circuit output current	V _I = 35 V			250		mA	
Peak output current				0.7		Α	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, V_I = 17 V, I_O = 350 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TTOT COMPLETONS!			μ Α78M10Y			
PARAMETER	TES	TEST CONDITIONS†			MAX	UNIT	
Output voltage [‡]				10		V	
Input voltage regulation	In - 200 mA	V _I = 12.5 V to 28 V		7		m\/	
	I _O = 200 mA	V _I = 14 V to 28 V		2		mV	
Ripple rejection	V _I = 15 V to 25 V,	I _O = 300 mA, f = 120 Hz		80		dB	
Output voltage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$			25			
Output voltage regulation	$I_0 = 5 \text{ mA to } 200 \text{ mA}$		10			mV	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$		-1			mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz			64		μV	
Dropout voltage				2		V	
Bias current				4.7		mA	
Short-circuit output current	V _I = 35 V			245		mA	
Peak output current				0.7		А	

TAll characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 19 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			μ Α78Μ12Υ			
PARAMETER	TES	ST CONDITIONS!	MIN	TYP	MAX	UNIT	
Output voltage [‡]				12		V	
Input voltage regulation	1 200 mA	V _I = 14.5 V to 30 V		8		mV	
	I _O = 200 mA	V _I = 16 V to 30 V		2		IIIV	
Ripple rejection	$V_I = 15 \text{ V to } 25 \text{ V},$	$I_O = 300 \text{ mA}, \qquad f = 120 \text{ Hz}$		80		dB	
$I_{O} = 5 \text{ mA to } 500 \text{ mA}$			25		mV		
Output voltage regulation	I _O = 5 mA to 200 mA	= 5 mA to 200 mA		10] ""	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$		-1			mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz			75		μV	
Dropout voltage				2		V	
Bias current				4.8		mA	
Short-circuit output current	V _I = 35 V			240		mA	
Peak output current				0.7		Α	

[†] All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 23 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			μ Α	UNIT			
PARAMETER				MIN	TYP	MAX	ONT	
Output voltage [‡]					15		V	
Input voltage regulation	la - 200 mA	V _I = 17.5 V to 30	O V		10		mV	
	I _O = 200 mA	$V_{I} = 20 \text{ V to } 30 \text{ V}$	V		3		IIIV	
Ripple rejection	V _I = 18.5 V to 28.5 V	$I_O = 300 \text{ mA},$	f = 120 Hz		70		dB	
Output voltage regulation				25		mV		
Output voltage regulation	I _O = 5 mA to 200 mA				10		IIIV	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$			-1			mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				90		μV	
Dropout voltage					2		V	
Bias current					4.8		mA	
Short-circuit output current	V _I = 35 V				240		mA	
Peak output current					0.7		Α	

TAII characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

electrical characteristics at specified virtual junction temperature, $V_I = 29 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			μ Δ	UNIT			
PARAMETER	TES	TEST CONDITIONS!			TYP	MAX	UNIT	
Output voltage [‡]					20		V	
Input voltage regulation	I _O = 200 mA	V _I = 23 V to 35 \	/	10			\/	
Input voltage regulation	10 = 200 IIIA	$V_{I} = 24 \text{ V to } 35 \text{ V}$	/		5		m∨	
Ripple rejection	$V_I = 24 \text{ V to } 34 \text{ V},$	f = 120 Hz,	I _O = 300 mA		70		dB	
Output voltage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$			30			mV	
Output voltage regulation	Output voltage regulation I _O = 5 mA to 200 mA				10] ""	
Temperature coefficient of output voltage	$I_O = 5 \text{ mA}$				-1.1		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz				110		μV	
Dropout voltage					2		V	
Bias current					4.9		mA	
Short-circuit output current	V _I = 35 V				240		mA	
Peak output current					0.7		Α	

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

electrical characteristics at specified virtual junction temperature, $V_I = 33 \text{ V}$, $I_O = 350 \text{ mA}$, $T_J = 25^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER				μ Α78M24Y			
PARAMETER	TES	TEST CONDITIONS [†]			MAX	UNIT	
Output voltage [‡]				24		V	
Input voltage regulation	In - 200 mA	V _I = 27 V to 38 V		10		mV	
	I _O = 200 mA	V _I = 28 V to 38 V		5		IIIV	
Ripple rejection	V _I = 28 V to 38 V,	$I_O = 300 \text{ mA}, \qquad f = 120 \text{ Hz}$		70		dB	
Output valtage regulation	$I_O = 5 \text{ mA to } 500 \text{ mA}$			30		mV	
Output voltage regulation	I _O = 5 mA to 200 mA			10		IIIV	
Temperature coefficient of output voltage	I _O = 5 mA			-1.2		mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz			170		μV	
Dropout voltage				2		V	
Bias current				5		mA	
Short-circuit output current	V _I = 35 V			240		mA	
Peak output current				0.7		А	

TAll characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques maintain T_J as close to T_A as possible. Thermal effects must be taken into account separately.

[‡] This specification applies only for dc power dissipation permitted by absolute maximum ratings.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated