
Rev. 0.1 2/05 Copyright © 2005 by Silicon Laboratories AN223

AN223

PORT CONFIGURATION AND GPIO FOR CP210X

1. Introduction
The devices discussed in this application note have added pin configurability for improved connectivity. These
added configuration options are accessed through the USB interface using a Dynamic Link Library (DLL).
This document details configuration options for the CP210x device port pins, which are used to connect to external
circuitry. These pins fall into three types of interface pins. First, the UART/Modem interface pins consist of the
signals RI, DCD, DTR, DSR, TXD, RXD, RTS, and CTS. These signals are used for UART communication and the
associated handshaking.
The second type of interface pin is for General Purpose Input/Output (GPIO). This type consists of all signals
named GPIO_x, where x is a number. These signals are available for any user-defined function.
The final type of interface pin is for power control and consists of Suspend and /Suspend signals. These signals
are used to gate power consumption of external circuitry for bus-powered USB products.

2. Customizable Options
The following interface pin configuration options are available.

2.1. Mode
The mode setting controls whether the interface pin operates in push-pull or open-drain mode. This setting is not
available on the RXD pin. See Sections 3.2 and 3.3 for details concerning pin modes.

2.2. Reset Latch Value
This setting controls the initial value of the interface pin latch, after a device reset. Not available on RXD, Suspend,
/Suspend, and GPIO pins set for device-controlled function. See Section 3.5 for details concerning pin reset
behavior.

2.3. Weak Pull-ups
This setting enables a weak pull-up for all interface pins. This setting applies to the device as a whole and cannot
be configured for each pin independently. Upon reset, weak pull-ups are enabled.

2.4. GPIO Pin Function
By default, the GPIO pins are controlled manually by host-based software using the CP210xRuntime.DLL and an
open handle to the COM port to read and write the latch.
Alternatively, the CP210x device can automatically control certain GPIO pin latches for a predetermined function.
When operating in this mode, the GPIO pin will no longer be available using the CP210xRuntime.DLL. Host writes
will have no effect, and host reads will be logic high. This device-controlled function is available as shown in
Table 1.

Relevant Devices
This application note applies to the following devices:
CP2103

AN223

2 Rev. 0.1

2.5. Dynamic Suspend
By default the latch values for all interface pins remains static during USB suspend.
Alternatively, the dynamic suspend feature sets the interface pin latch to a predefined state when the CP210x
device moves from the configured USB state to the suspend USB state (see chapter nine of USB 2.0 specification
for more information on USB device states). When the device exits the suspend USB state the interface pin latch is
restored to the previous value before entering the suspend state. Dynamic Suspend is configured separately for
the GPIO pins and UART/Modem Control pins.

2.6. Latch Value(Suspend)
When dynamic suspend is enabled, this value is written to the interface pin latch when the CP210x device moves
from the configured USB state to the suspend USB state (see chapter nine of USB 2.0 specification for more
information on USB device states). Not available on RXD, Suspend, /Suspend, and GPIO pins set for device-
controlled function.

3. Intended Use and Limitations
Using the various customizable options in conjunction with one another can achieve a broad range of device
characteristics. The following are some of the most common uses of those options and their limitations.

3.1. High-Impedance Input
By configuring for open-drain operation and writing logic high (1) to the latch, an interface pin assumes a high
impedance state. This input pin will have electrical characteristics as listed in table 3 of the device datasheet.

3.2. Push-Pull Output
By configuring for push-pull operation, an interface pin operates as a push-pull output. The output voltage is
determined by pin’s latch value. This output pin will have electrical characteristics as listed in table 3 of the device
datasheet. This type of output is most often used to connect directly to another device.

3.3. Open-Drain Output
By configuring for open-drain operation, an interface pin operates as an open-drain output. The output voltage is
determined by the pin’s latch value. This output pin will have electrical characteristics as listed in table 3 of the
device datasheet. This type of output is most often connected to another device using a pull-up resistor to a
voltage higher than VDD.

3.4. Low Power State
By writing logic low to the latch, an interface pin is grounded and consumes minimal power with weak pull-ups
disabled. This setting is best for unused interface pins that are not connected to external circuitry.

3.5. Reset Behavior
All interface pins temporarily float high during a device reset. If this behavior is undesirable, a strong pull-down
(10 kΩ) can be used to ensure the pin remains low during reset.

Table 1. GPIO Pin Function

Pin Name Function Behavior

GPIO.0 Transmit LED Logic low when there is UART data to transmit; otherwise logic high

GPIO.1 Receive LED Logic low when there is data on the UART receive buffer; otherwise logic high.

GPIO.2 RS-485 Logic low while transmitting UART data; otherwise logic high.

AN223

Rev. 0.1 3

3.6. DLL Organization
The configuration options presented in this document are included in the CP210xManufacturing.DLL and the
CP210xRuntime.DLL. The functions defined in the CP210xManufacturing.DLL are meant for use when the product
is manufactured, and should not be distributed with the end product. Configuration options set using this DLL do
not take effect until the CP210x device is reset.
The CP210xRuntime.DLL is meant for distribution with the end product. This library includes functions to read and
write the GPIO pins only. These functions take effect immediately, instead of at the next device reset.

4. Default Device Behavior
Table 2 defines the default device behavior programmed at the factory.

Table 2. CP2103 Default Settings

Signal Pin #$ Mode Latch Value
(Reset)

Controlled By

RI 1 Open-Drain 1 Win32 COM API or USBXpress

DCD 28 Open-Drain 1 Win32 COM API or USBXpress

DTR 27 Push-Pull 1 Win32 COM API or USBXpress

DSR 26 Open-Drain 1 Win32 COM API or USBXpress

TXD 25 Push-Pull 1 Win32 COM API or USBXpress

RXD 24 Open-Drain 1 Win32 COM API or USBXpress

RTS 23 Push-Pull 1 Win32 COM API or USBXpress

CTS 22 Open-Drain 1 Win32 COM API or USBXpress

Suspend 12 Push-Pull 1 USB Device State

/Suspend 11 Push-Pull 0 USB Device State

GPIO_0 19 Open-Drain 1 Manually by Host

GPIO_1 18 Open-Drain 1 Manually by Host

GPIO_2 17 Open-Drain 1 Manually by Host

GPIO_3 16 Open-Drain 1 Manually by Host

Note: Global settings: Weak Pull-up = ON; UART Dynamic Suspend = OFF; GPIO Dynamic
Suspend = OFF

AN223

4 Rev. 0.1

5. CP210x Port Configuration Utility
The CP210x Port Configuration Utility uses the CP210xManufacturing.DLL to customize the CP210x EEPROM
settings related to port pin behavior. The functions in this API (CP210x_SetPortConfig() and
CP210x_GetPortConfig()) give software access to these settings across the USB connection. For more information
on this API and corresponding functions, refer to “AN144: CP210x Device Customization Guide”.

Figure 1. Main Window
The main window of the CP210x Port Configuration Utility (Figure 2) has a drop down list at the top showing all of
the connected CP210x devices; this is where the CP210x device to be programmed can be selected. If a CP210x
device is plugged in after the program has been started, click the Refresh button to obtain the most recent list of
connected CP210x devices. The grid in the middle contains all the port configuration options available. Located at
the bottom of the window are buttons labeled “Get Configuration”, “Set Configuration”, “Restore to Default”, and
“Export Configuration”. The next sections will further explain how and when to use these buttons.

AN223

Rev. 0.1 5

5.1. Obtaining the Current Configuration of a Device
Click the Refresh button to obtain the most current list of connected CP210x devices. Clicking the “Get
Configuration” button will obtain the current configuration of the device that is selected.
Note: If a CP210x device is automatically detected on application start it will automatically retrieve and display this device’s

configuration. However, when a new CP210x device is selected the application does not automatically retrieve and dis-
play this device’s configuration. Pressing the “Get Configuration” button will retrieve and display the newly selected
device's configuration in the window. Because the configuration remains static while switching devices, multiple devices
can be programmed without having to re-enter the desired settings when a new device is selected.

5.2. Customizing the Current Configuration of a Device
Once the current configuration has been retrieved from the device, it can be modified as desired and then
programmed back into the device.

5.3. Programming the Current Configuration to a Device
Click on the “Set Configuration” button at any time to program the displayed configuration to the currently selected
device. Because the displayed configuration remains static while switching devices, multiple devices can be
programmed without having to re-enter the desired settings when a new device is selected.

5.4. Restoring the Default Baud Rate Configuration
Clicking the “Restore to Default” button will restore the default settings shown in Table 2 on page 3 to the device
selected.

5.5. Exporting the Configuration to a File
To export all the custom settings in the EEPROM into a file, click the “Export Configuration” to File button. A
common dialog will come up that allows a file to be specified for the output, as shown in Figure 2. This file is used
by Silicon Laboratories to mass-produce parts with the same settings. Please contact a sales representative for
availability and restrictions for this feature.

Figure 2. File Dialog

AN223

6 Rev. 0.1

6. CP210x Port Read/Write Example
The CP210x Port Read/Write Example illustrates how the GPIO latch can be read from and written to using the
CP210xRuntime.DLL. The functions in this API (CP210xRT_ReadLatch() and CP210xRT_WriteLatch()) give host-
based software access to the CP210x device’s GPIO latch using the USB connection as shown in Figure 3.

Figure 3. Main Window
The main window of the CP210x Port Read/Write Example contains one section to write the GPIO latch, and
another to read the GPIO latch. Below that is a list to select a COM port, and a display box for the device part
number.
To write new values to the latch, select which GPIO pins to update, and set the pin state for each. Any GPIO pins
not selected to change will remain static when the “Write Latch” button is pressed. The “Write Latch” button calls
the CP210xRT_WriteLatch() function followed by the CP210xRT_ReadLatch() function, which updates the values
displayed in the Read Latch portion of the dialog. At any time, the “Read Latch” button can be pressed to read in
the current GPIO pin state of the device.

7. Creating Custom Applications using CP210xRuntime.DLL
Custom applications can use the CP210x Runtime API implemented in CP210xRuntime.DLL. To use functions
implemented in CP210xRuntime.DLL, link CP210xRuntime.LIB with your Visual C++ 6.0 application. Include
CP210xRuntimeDLL.h in any file that calls functions implemented in CP210xRuntime.DLL.

8. CP210x Runtime API Functions
The CP210x Runtime API provides access to the GPIO port latch, and is meant for distribution with the product
containing a CP210x device.
CP210xRT_ReadLatch() - Returns the GPIO port latch of a CP210x device
CP210xRT_WriteLatch() - Sets the GPIO port latch of a CP210x device
CP210xRT_GetPartNumber() - Returns the 1-byte Part Number of a CP210x device

Typically, the user initiates communication with the target CP210x device by opening a handle to a COM port using
CreateFile() (See AN197: Serial Communication Guide for CP210x). The handle returned allows the user to call
the API functions listed above. Each of these functions are described in the following sections. Type definitions and
constants are defined in the "Appendix—Type Definitions and Constants" section.
Note: Functions calls into this API are blocked until completed. This can take several milliseconds depending on USB traffic.

AN223

Rev. 0.1 7

8.1. CP210xRT_ReadLatch

Description: Gets the current port latch value from the device.

Supported Devices: CP2103

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_ReadLatch(HANDLE Handle, LPBYTE Latch)

Parameters: 1. Handle – Handle to the Com port returned by CreateFile().
2. Latch – Pointer for 1-byte return GPIO latch value [Logic High = 1, Logic Low = 0].

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED
CP210x_FUNCTION_NOT_SUPPORTED

8.2. CP210xRT_WriteLatch

Description: Sets the current port latch value for the device.

Supported Devices: CP2103

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_WriteLatch(HANDLE Handle, BYTE Mask, BYTE Latch)

Parameters: 1. Handle – Handle to the Com port returned by CreateFile().
2. Mask – Determines which pins to change [Change = 1, Leave = 0].
3. Latch – 1-byte value to write to GPIO latch [Logic High = 1, Logic Low = 0]

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED
CP210x_FUNCTION_NOT_SUPPORTED

8.3. CP210xRT_GetCurrentPartNumber

Description: Gets the part number of the current device.

Supported Devices: CP2101, CP2102, CP2103

Location: CP210x Runtime DLL

Prototype: CP210x_STATUS CP210xRT_GetPartNumber(HANDLE Handle, LPBYTE PartNum)

Parameters: 1. Handle – Handle to the Com port returned by CreateFile().
2. PartNum – Pointer to a byte containing the return code for the part number.

Return Value: CP210x_STATUS = CP210x_SUCCESS,
CP210x_INVALID_HANDLE,
CP210x_DEVICE_IO_FAILED

AN223

8 Rev. 0.1

APPENDIX—TYPE DEFINITIONS AND CONSTANTS

Type Definitions from C++ Header File CP210xRuntimeDLL.h

// GetDeviceVersion() return codes
#define CP210x_CP2101_VERSION 0x01
#define CP210x_CP2102_VERSION 0x02
#define CP210x_CP2103_VERSION 0x03

// Return codes
#define CP210x_SUCCESS 0x00
#define CP210x_DEVICE_NOT_FOUND 0xFF
#define CP210x_INVALID_HANDLE 0x01
#define CP210x_INVALID_PARAMETER 0x02
#define CP210x_DEVICE_IO_FAILED 0x03
#define CP210x_FUNCTION_NOT_SUPPORTED 0x04
#define CP210x_GLOBAL_DATA_ERROR 0x05
#define CP210x_COMMAND_FAILED 0x08
#define CP210x_INVALID_ACCESS_TYPE 0x09

// Type definitions
typedef int CP210x_STATUS;

// Mask and Latch value bit definitions
#define CP210x_GPIO_0 0x01
#define CP210x_GPIO_1 0x02
#define CP210x_GPIO_2 0x04
#define CP210x_GPIO_3 0x08

AN223

Rev. 0.1 9

NOTES

AN223

10 Rev. 0.1

CONTACT INFORMATION
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories, Silicon Labs, and USBXpress are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	1. Introduction
	2. Customizable Options
	2.1. Mode
	2.2. Reset Latch Value
	2.3. Weak Pull-ups
	2.4. GPIO Pin Function
	Table 1. GPIO Pin Function

	2.5. Dynamic Suspend
	2.6. Latch Value(Suspend)

	3. Intended Use and Limitations
	3.1. High-Impedance Input
	3.2. Push-Pull Output
	3.3. Open-Drain Output
	3.4. Low Power State
	3.5. Reset Behavior
	3.6. DLL Organization

	4. Default Device Behavior
	Table 2. CP2103 Default Settings

	5. CP210x Port Configuration Utility
	Figure 1. Main Window
	5.1. Obtaining the Current Configuration of a Device
	5.2. Customizing the Current Configuration of a Device
	5.3. Programming the Current Configuration to a Device
	5.4. Restoring the Default Baud Rate Configuration
	5.5. Exporting the Configuration to a File
	Figure 2. File Dialog

	6. CP210x Port Read/Write Example
	Figure 3. Main Window

	7. Creating Custom Applications using CP210xRuntime.DLL
	8. CP210x Runtime API Functions
	8.1. CP210xRT_ReadLatch
	8.2. CP210xRT_WriteLatch
	8.3. CP210xRT_GetCurrentPartNumber

	Appendix-Type Definitions and Constants
	Notes

